

Rocky Mountain Power Pacific Power PacifiCorp Energy

2011 Integrated Resource Plan Addendum

Let's turn the answers on.

June 27, 2011

For more information, contact: PacifiCorp IRP Resource Planning 825 N.E. Multnomah, Suite 600 Portland, Oregon 97232 (503) 813-5245 irp@pacificorp.com http://www.pacificorp.com

Cover Photos (Left to Right):

Wind: McFadden Ridge I Thermal-Gas: Lake Side Power Plant Hydroelectric: Lemolo 1 on North Umpqua River Transmission: Distribution Transformers Solar: Salt Palace Convention Center Photovoltaic Solar Project Wind Turbine: Dunlap I Wind Project

TABLE OF CONTENTS

TABLE OF CONTENTS	I
INDEX OF TABLES	Ι
INDEX OF FIGURES	I
ADDENDUM INTRODUCTIONII	Ι
CHAPTER 1 - STOCHASTIC RESULTS FOR ENERGY GATEWAY SCENARIOS	1
Introduction	1
Stochastic Production Cost Modeling Results	4
Conclusion	5
SUPPLEMENTAL LIMITED ENERGY GATEWAY SCENARIO ANALYSIS	5
Introduction	5
Study Approach Details	6
Study Results	7
Conclusion1	
CHAPTER 2 – CLASS 2 DSM DECREMENT STUDY1	
MODELING APPROACH1	3
Generation Resource Capacity Deferral Benefit Methodology14	4
CLASS 2 DSM DECREMENT VALUE RESULTS14	4
CHAPTER 3 – APPRAISAL OF INTERWEST ENERGY ALLIANCE'S WIND CAPITAL COST AND	
CAPACITY FACTOR RECOMMENDATIONS2	
INTRODUCTION2	
CAPITAL COSTS	5
Capacity Factors	7
Conclusion	8
APPENDIX A - COMMENTS AND DATA SUBMISSION FROM INTERWEST ENERGY ALLIANCE 24	9

INDEX OF TABLES

TABLE 1 – STOCHASTIC MEAN PVRR COST COMPARISON FOR ENERGY GATEWAY SCENARIOS, NO CO2 TAX ("GREEN RESOURCE FUTURE")
TABLE 2 – STOCHASTIC MEAN PVRR COST COMPARISON FOR ENERGY GATEWAY SCENARIOS, MEDIUM CO_2 Tax
SCENARIO ("GREEN RESOURCE FUTURE")4
TABLE 3 - RESOURCE PORTFOLIO, REVISED FULL ENERGY GATEWAY SCENARIO ("GREEN RESOURCE FUTURE")8
TABLE 4 - RESOURCE PORTFOLIO, REVISED ENERGY GATEWAY-LIMITED SCENARIO ("GREEN RESOURCE FUTURE").9
TABLE 5 – RESOURCE PORTFOLIO DIFFERENCES, REVISED FULL ENERGY GATEWAY SCENARIO LESS ENERGY
GATEWAY-LIMITED SCENARIO10
TABLE 6 – PORTFOLIO STOCHASTIC AVERAGE PVRR COMPARISON, GATEWAY-LIMITED VS. FULL GATEWAY
Scenarios11
TABLE 7 – LEVELIZED CLASS 2 DSM AVOIDED COSTS BY CARBON DIOXIDE TAX SCENARIO, 20-YEAR NET PRESENT
VALUE (2011-2030)
TABLE 8 – ANNUAL NOMINAL CLASS 2 DSM AVOIDED COSTS, NO CO2 TAX SCENARIO, 2011-203017
TABLE 9 – ANNUAL NOMINAL CLASS 2 DSM AVOIDED COSTS, LOW TO VERY HIGH CO2 TAX SCENARIO, 2011-2030
$TABLE \ 10-ANNUAL \ NOMINAL \ CLASS \ 2 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ Tax \ Scenario, \ 2011-2030 \ \dots \ 2010 \ DSM \ Avoided \ Costs, \ Medium \ CO_2 \ DSM \ Avoided \ Costs, \ Medium \ Costs, \ Medium \ Costs, \$

INDEX OF FIGURES

FIGURE 1 – ENERGY GATEWAY SCENARIO 1 ("GATEWAY-LIMITED")	2
FIGURE 2 – ENERGY GATEWAY SCENARIO 2	
FIGURE 3 – ENERGY GATEWAY SCENARIO 3	3
FIGURE 4 – ENERGY GATEWAY SCENARIO 4 ("FULL GATEWAY")	3
FIGURE 5 – TRANSMISSION SYSTEM MODEL TOPOLOGY	7
FIGURE 6 – EAST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS, LOW TO VERY HIGH CO2 TAX SCENARIO	22
FIGURE 7 – WEST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS, LOW TO VERY HIGH CO2 TAX SCENARIO	22
FIGURE 8 – EAST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS, MEDIUM CO2 TAX SCENARIO	23
FIGURE 9 – WEST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS, MEDIUM CO2 TAX SCENARIO	23
FIGURE 10 – EAST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS, NO CO2 TAX SCENARIO	24
FIGURE 11 – WEST CLASS 2 DSM NOMINAL AVOIDED COST TRENDS, NO CO2 TAX SCENARIO	24

ADDENDUM INTRODUCTION

This addendum to the 2011 IRP includes the results of additional studies and analysis that could not be completed in time to include in the original filed IRP document. These studies and analysis consist of the following:

- Development of stochastic cost results for 16 Energy Gateway scenarios documented in Chapter 4 of the 2011 IRP.
- Stochastic production cost simulation of revised full Energy Gateway and minimal Energy Gateway portfolios; the revised portfolios account for transmission operational constraints not captured with the *System Optimizer* capacity expansion model, as well as an alternate strategy for representing out-year generation resources.
- An energy efficiency (Class 2 demand-side management) avoided cost study, referred to as the DSM decrement analysis.
- An evaluation of wind capital cost and capacity factor recommendations and associated supporting data provided by Interwest Energy Alliance.

CHAPTER 1 – STOCHASTIC RESULTS FOR ENERGY GATEWAY SCENARIOS

Introduction

PacifiCorp conducted stochastic Monte Carlo production cost simulation of the portfolios and associated transmission assumptions for the "Green Resource Future" Energy Gateway expansion scenarios described in Chapter 4 of the 2011 IRP. (Refer to the "Transmission Scenario Analysis" section, beginning on page 66, for background information on these scenarios and associated resource modeling assumptions.) As noted in the IRP, PacifiCorp assumes that state and federal energy policies will continue to emphasize strong support for renewables development. Hence, the Company focused on the "Green Resource Future" set of scenarios for stochastic modeling. The Company also concluded that the full Energy Gateway configuration provides a number of strategic benefits. These benefits include insurance for regulatory uncertainty and risk mitigation associated with increased resource diversity and operational flexibility.

These production cost simulations, performed with the Planning and Risk (PaR) model, are consistent with the stochastic simulations conducted for the core portfolio cases¹, utilizing two carbon dioxide (CO₂) tax scenarios: $0/10^{-10}$ for (or "medium" scenario).² Figures 1 through 4 are maps of the four Energy Gateway expansion scenarios.

¹ Refer to the "Monte Carlo Production Cost Simulation" section of Chapter 7, beginning on page 182, for

background on stochastic production cost modeling conducted for the IRP.

 $^{^{2}}$ Refer to page 159 of the 2011 IRP for definition of the CO₂ tax scenarios.

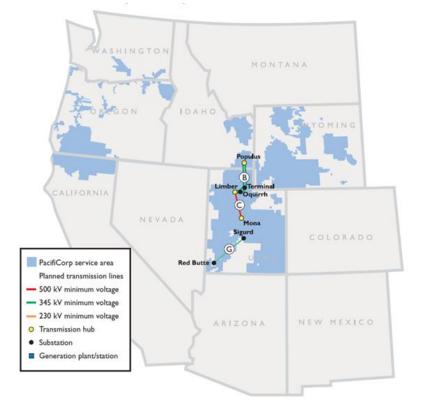
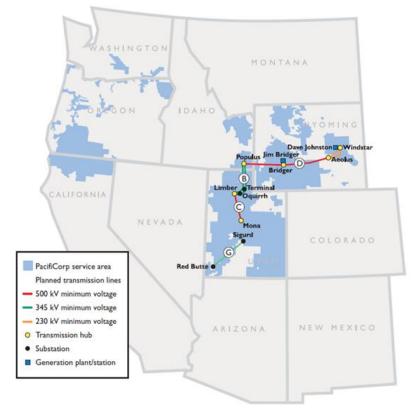



Figure 1 – Energy Gateway Scenario 1 ("Gateway-Limited")

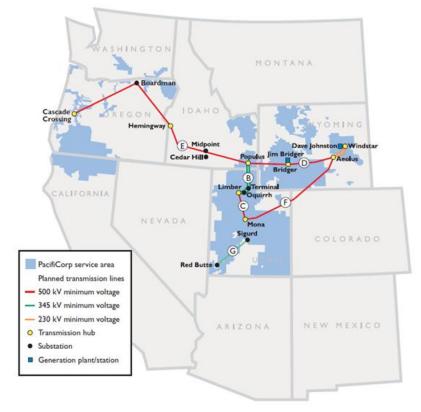

Figure 2 – Energy Gateway Scenario 2

Figure 3 – Energy Gateway Scenario 3

Figure 4 – Energy Gateway Scenario 4 ("Full Gateway")

Stochastic Production Cost Modeling Results

Tables 1 and 2 report the stochastic mean Present Value Revenue Requirement (PVRR) for the two CO_2 tax scenarios along with the PVRR cost component details.

Table 1 – Stochastic Mean PVRR Cost Comparison for Energy Gateway Scenarios, No CO₂ Tax ("Green Resource Future")

	Mediu	ım Natural (Gas Price Fo	orecast	Hig	h Natural G	as Price For	ecast
Cost Component (Million \$)	Scenario 1	Scenario 2	Scenario 3	Scenario 4*	Scenario 1	Scenario 2	Scenario 3	Scenario 4*
Variable Costs								
Fuel & O&M	15,295	15,235	15,232	15,184	15,327	15,211	15,288	15,181
Emission Cost	2	2	2	2	2	2	2	2
FOT's & Long Term Contracts	3,857	3,858	3,858	3,858	3,819	3,811	3,800	3,807
Demand Side Management	3,373	3,421	3,421	3,421	4,059	4,137	4,139	4,137
Renewables	699	699	699	699	700	681	681	681
System Balancing Sales	(6,031)	(6,008)	(6,007)	(6,017)	(6,084)	(6,014)	(5,989)	(6,011)
System Balancing Purchases	1,715	1,705	1,705	1,727	1,683	1,673	1,695	1,709
Energy Not Served	44	48	48	47	42	50	50	49
Dump Power	(133)	(131)	(131)	(132)	(137)	(140)	(140)	(141)
Reserve Deficiency	0	0	0	0	0	0	0	0
Total Variable Costs	\$18,821	\$18,829	\$18,827	\$18,789	\$19,411	\$19,412	\$19,525	\$19,412
Capital and Fixed Costs	\$12,067	\$11,131	\$11,159	\$11,201	\$12,128	\$11,362	\$11,111	\$11,336
Total PVRR	\$30,888	\$29,960	\$29,986	\$29,990	\$31,540	\$30,774	\$30,636	\$30,748

* Scenario 4 corresponds to Scenario 7 in Table 4.2, page 78, of the 2011 IRP.

Table 2 – Stochastic Mean PVRR Cost Comparison for Energy Gateway Scenarios,Medium CO2 Tax Scenario ("Green Resource Future")

	Mediu	m Natural G	as Price For	ecast		High	Natural Ga	2 3 4* 15,181 15,263 15,00 7,190 7,238 7,09 4,008 3,994 4,00 4,137 4,139 4,13 681 681 68 (6,422) (6,399) (6,38 2,597 2,623 2,71 50 49 4 (135) (135) (135) 0 0 9		
Cost Component (Million \$)	Scenario 1	Scenario 2	Scenario 3	Scenario 4*		Scenario 1	Scenario 2		Scenario 4*	
Variable Costs					Ī					
Fuel & O&M	15,231	15,165	15,155	15,048		15,300	15,181	15,263	15,087	
Emission Cost	7,409	7,332	7,335	7,230		7,331	7,190	7,238	7,096	
FOT's & Long Term Contracts	4,063	4,064	4,064	4,064		4,018	4,008	3,994	4,003	
Demand Side Management	3,373	3,421	3,421	3,421		4,059	4,137	4,139	4,137	
Renewables	693	693	693	693		694	681	681	681	
System Balancing Sales	(6,458)	(6,413)	(6,413)	(6,387)		(6,528)	(6,422)	(6,399)	(6,387)	
System Balancing Purchases	2,631	2,646	2,647	2,740		2,583	2,597	2,623	2,710	
Energy Not Served	44	48	48	47		42	50	49	48	
Dump Power	(127)	(126)	(126)	(128)		(131)	(135)	(135)	(137)	
Reserve Deficiency	0	0	0	0		0	0	0	0	
Total Variable Costs	\$26,858	\$26,830	\$26,826	\$26,729		\$27,368	\$27,287	\$27,452	\$27,237	
Capital and Fixed Costs	\$12,067	\$11,131	\$11,159	\$11,201		\$12,128	\$11,362	\$11,111	\$11,336	
Total PVRR	\$38,925	\$37,961	\$37,985	\$37,930		\$39,496	\$38,650	\$38,563	\$38,573	

* Scenario 4 corresponds to Scenario 7 in Table 4.2, page 78, of the 2011 IRP.

Conclusion

The stochastic modeling results indicate that the full Energy Gateway configuration is costeffective when compared to the Limited Gateway configuration in all CO_2 tax/natural gas price scenarios and outperforms Energy Gateway Scenarios 2 and 3 with medium natural gas prices and medium CO_2 prices. Consistent with the deterministic modeling results using the System Optimizer model, the stochastic PVRR range for Energy Gateway expansion scenarios 2 through 4 is narrow, suggesting that economics does not drive a clear selection of the alternatives. As noted in the 2011 IRP, the Company continues to conclude that proceeding with the full Energy Gateway expansion scenario is the most prudent strategy.

Supplemental Limited Energy Gateway Scenario Analysis

Introduction

The 2011 IRP contemplated seven different scenarios of the Company's Energy Gateway transmission expansion program. The "base case" (Scenario 1) is a minimum-build transmission plan that, while part of the overall Energy Gateway strategy, needs to be constructed regardless of other Energy Gateway options due to specific load and reliability requirements. This group of projects—referred to as "Gateway-Limited" for the purpose of this IRP addendum—includes Populus to Terminal, Mona to Oquirrh and Sigurd to Red Butte. (Refer to Chapter 10 of the 2011 IRP³ for detailed information on each of the planned Energy Gateway segments). To analyze these transmission planning scenarios, PacifiCorp used its *System Optimizer* model to select optimal resource portfolios constrained by the transmission topology defined for each Energy Gateway scenario. Both the System Optimizer results reported in the 2011 IRP and the stochastic production cost simulations described in the previous section indicate that the full Energy Gateway strategy has a lower PVRR than the Gateway-Limited strategy under a range of alternative natural gas and CO₂ price assumptions. These two Energy Gateway scenarios are shown in Figures 1 and 4 above.

As an extension of this Energy Gateway scenario analysis, the Company wanted to investigate the extent to which operational limitations of the transmission system under the Gateway-Limited scenario constrain the location of thermal resources as determined by System Optimizer. At issue is whether System Optimizer is adequately accounting for the need (and associated cost) to site thermal resources at alternative locations given such operational constraints. A particular focus is on *growth resources* that the model uses to balance capacity in the outer years of the simulations. Growth resources, which are assigned forward market prices, serve as proxies for unspecified electricity supply options. They are also made available within load bubbles as opposed to acquiring them from market hubs.⁴ Use of growth resources circumvents transmission constraints as a limiting factor for adding future resources, and thus may not be a suitable out-year resource modeling strategy when evaluating transmission expansion scenarios.

For this supplemental Energy Gateway scenario analysis, the Company's goal was thus to determine the resource selection and cost impact of applying locational resource constraints

³ PacifiCorp IRP documents are available at <u>www.pacificorp.com/es/irp.html</u>

⁴ Growth resources are described on page 179 of the 2011 IRP.

based on transmission capacity limits, as well as removing growth resources as future resource options. To this end, PacifiCorp developed revised Full Gateway and Gateway-Limited portfolios reflecting application of these resource modeling changes, and then simulated them with the PaR production cost model to provide a PVRR cost comparison. Subsequent sections provide more details on the revised portfolio development approach and the results of the scenario analysis.

Study Approach Details

As noted above, the study approach consisted of developing Gateway-Limited and Full Gateway portfolios using System Optimizer, and then simulating both portfolios using the Planning and Risk production cost model. The main modeling assumptions for the study are as follows:

- The expected load, natural gas price, wholesale electricity price, CO₂ price forecasts from the 2011 IRP (described on pages 175-176), developed in September 2010, were used.
- With the exception of growth resources (previously available beginning in 2021) and geothermal⁵, all resource options specified for the 2011 IRP were available for System Optimizer selection. Gas-fired combined-cycle combustion turbine plants acquired after 2019 are represented by two technology options: Mitsubishi G/General Electric H class 1x1⁶, and General Electric F class 2x1, both with duct firing. (System Optimizer is allowed to select a fractional amount of duct-firing capacity up to the specified megawatt limits.) All east-side CCCTs beyond 2014 are assumed to be dry-cooled.
- Consistent with the Green Resource Future outlined in Chapter 4 of the 2011 IRP ("Transmission Planning"), portfolios are required to meet minimum annual renewable generation requirements based on the Waxman-Markey proposed targets (6 percent by 2012, 9.5 percent by 2014, 13 percent by 2016, 16.5% by 2018, and 20% by 2020). The model is allowed to select an optimal amount of wind resources subject to the minimum renewable generation requirements.
- System Optimizer was allowed to select a variable amount of market purchases (front office transaction proxy resources) up to the annual market hub limits.
- Consistent with the original minimum-build Energy Gateway scenario, incremental wind resources in Wyoming were excluded as model options in the Gateway-Limited scenario.
- The base transmission topology for the 2011 IRP was used, which is shown in Figure 5.

To account for operational transmission constraints under the Gateway-Limited scenario, PacifiCorp first ran System Optimizer based on the above assumptions to create a base Gateway-Limited portfolio for inspection by the Transmission Department. Based on this inspection, PacifiCorp conducted a final System Optimizer run that incorporated the following resource changes needed to account for a 700 MW incremental capacity transfer limit from the "Utah South" to "Utah North" topology bubbles once the Mona-Oquirrh transmission project is in place:

⁵ Geothermal resources are excluded as resource options due to recovery risk for resource development costs, a procurement issue identified in the 2011 IRP. Geothermal projects will nevertheless be included as eligible resources in future Requests for Proposals.

⁶ The G and H class CCCTs are assumed to have the same capacity and other attributes, and are considered interchangeable.

- The model was constrained to locate 300 MW of Utah wind ("Utah South" bubble) to the west side of the system (Oregon and Washington).
- The 2019 CCCT resource originally selected by the model at Currant Creek ("Utah South" Bubble) was manually moved to the "Utah North" bubble.
- The 2025 CCCT resource originally selected by the model for the "Utah North" bubble was moved to the Borah bubble located in Idaho.

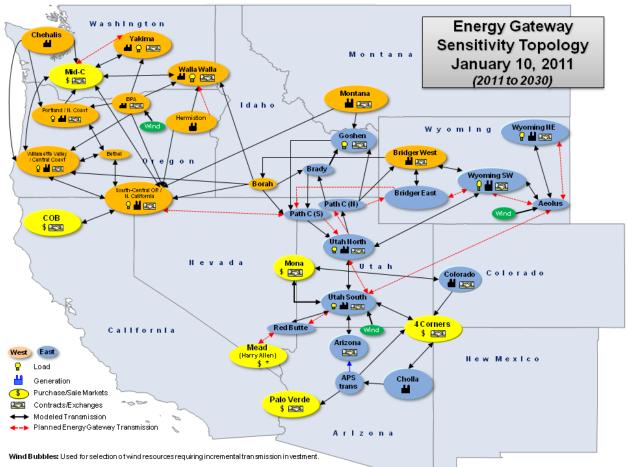


Figure 5 – Transmission System Model Topology

PacifiCorp simulated the Full Gateway and final Gateway-Limited portfolios using the PaR model. Transmission investment costs were incorporated in the PVRRs, consistent with the approach used for the original minimal-build and full Energy Gateway scenarios.

Study Results

Tables 4 and 5 show the revised Full Gateway and Gateway-Limited portfolio resources respectively after running System Optimizer with the resource modifications described above. Table 6 provides the resource differences between the two portfolios. The major resource changes consist of a location shift of a simple-cycle combustion turbine plant and the Wyoming wind to the west.

	[(Capacity	(MW))									Resource	Totals *
	Resource	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	10-year	20-year
East																							
	CCCT F 2x1: Utah North, Utah South	-	-	-	625	-	597	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,222	1,222
	CCCT G 1x1: Goshen, Utah North	-	-	-	-	-	-	-	-	-	-	-	-	-	-	388	-	388	-	-	-	-	776
	CCCT H 1x1, Utah South	-	-	-	-	-	-	-	-	475	-	-	-	-	-	-	-	-	-	-	-	475	475
	IC Aero Goshen	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	93	-	-	93
	SCCT Aero, Utah South	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	118	-	118
	Coal Plant Turbine Upgrades	12.1	18.9	1.8	-	-	18.0	-	-	-	-	2.4	-	-	-	-	-	-	-	-	-	51	53
	Wind, Goshen, 29% Cap Factor	-	-	-	-	-	-	70	-	-	-	-	-	-	-	-	-	-	-	-	-	70	70
	Wind, Utah, 29% Cap Factor	-	-	-	-	-	-	100	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100
	Wind, Wyoming, 35% Cap Factor	-	-	-	-	-	-	-	200	200	200	15	73	38	48	20	99	49	78	40	187	600	1,247
	Total Wind	-	-	-	-	-	-	170	200	200	200	15	73	38	48	20	99	49	78	40	187	770	1,418
	CHP - Biomass	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10	20
	DSM, Class 1 Total	6	69	3	20	86	-	-	-	-	-	-	2	-	-	-	10	-	-	-	-	184	196
	DSM, Class 2, Goshen	1	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	14	40
	DSM, Class 2, Utah	45	48	41	43	44	47	49	50	52	57	60	64	64	67	86	92	64	67	70	74	477	1,186
	DSM, Class 2, Wyoming	3	4	4	5	5	6	6	7	7	8	9	10	11	14	15	19	20	24	29	31	55	236
	DSM, Class 2 Total	48	53	46	49	51	55	57	59	61	66	71	76	78	84	104	114	86	94	102	108	545	1,462
	Micro Solar - Hot Water Heating	-	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.37	2.64	24	50
	FOT Mead Q3	-	168	264	264	99	17	1	1	-	-	-	-	-	-	-	-	-	1	-	-	81	41
	FOT Utah Q3	200	200	200	8	243	-	57	200	-	176	-	8	106	145	73	202	-	111	198	200	128	116
	FOT Mona-3 Q3	-	-	-	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	210	255
	FOT Mona-4 Q3	-	-	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	8
Vest														-									
	Coal Plant Turbine Upgrades	-	-	3.7	-	-	-	-	8.3	-	-	-	-	-	-	-	-	-	-	-	-	12	12
	Wind, Yakima, 29% Cap Factor	-	-	-	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100
	Wind, Walla Walla, 29% Cap Factor	-	-	-	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100
	Total Wind	-	-	-	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	200	200
	Utility Biomass	-	-	-	-	-	-	-	-	-	50	-	-	-	-	-	-	-	-	-	-	50	50
	CHP - Biomass	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	42	84
	DSM, Class 1 Total	-	-	62	6	4	-	-	-	-	-	-	-	-	-	-	7	-	-	-	-	72	78
	DSM, Class 2, Walla Walla	4	4	4	5	5	5	5	4	5	5	5	5	5	5	5	5	4	4	4	4	46	91
	DSM, Class 2, California/Oregon	51	51	54	59	60	60	59	52	52	52	52	52	52	52	53	52	44	37	37	36	550	1,017
	DSM, Class 2, Yakima	6	6	6	6	6	6	6	7	7	7	8	9	9	9	9	7	6	7	6	7	64	141
	DSM, Class 2 Total	61	62	65	70	72	71	70	63	63	64	65	66	66	67	67	64	55	47	47	47	659	1,250
	OR Solar Cap Standard	-	2	2	2	3	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	9	9
	OR Solar Pilot	4	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	10
	Micro Solar - Hot Water Heating	-	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.29	0.97	0.97	16	32
	FOT COB Q3	150	150	150	150	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65	32
	FOT MidColumbia Q3	-	400	400	400	400	400	400	400	375	400	333	400	400	400	400	400	400	400	400	400	358	375
	FOT MidColumbia Q3 - 2	-	271	211	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	48	24
	FOT South-Central Oregon/North Cal Q3	-	50	50	50	50	50	50	50	-	50	-	50	50	50	50	50	50	50	50	50	40	43
	Annual Additions, Long Term Resources	136	217	196	983	225	750	308	340	808	389	163	227	191	208	589	303	588	228	290	469		
	Annual Additions, Short Term Resources	350	1,239	1,425	1,172	1,142	767	807	950	675	926	633	758	856	895	823	952	750	861	948	950		
	Total Annual Additions	486	1,456	1,621	2,155	1,367	1,517	1,114	1,290	1,484	1,316	796	986	1,047	1,104	1,412	1,254	1,338	1,089	1,238	1,419		

Table 3 – Resource Portfolio, Revised Full Energy Gateway Scenario ("Green Resource Future")

* Front office transactions (FOT) are not additive. For the 10-Year column, FOT are a 10-year average for 2011-2020, whereas the 20-Year column report a 10-year average for 2021-2030.

			·			00		•			a	AUT							·				-
	-										Capacity	· · · ·											e Totals *
F (Resource	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	10-year	20-year
East				1	525	1	505	1			1		1	1						1		1 000	1 222
	CCCT F 2x1: Utah North, Utah South	-	-	-	625	-	597	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,222	1,222
	CCCT G 1x1: Goshen, Utah North	-	-	-	-	-	-	-	-	-	-	-	-	-	-	388	-	388	-	-	-	-	776
	CCCT H 1x1, Utah South	-	-	-	-	-	-	-	-	475	-	-	-	-	-	-	-	-	-	-	-	475	475
	IC Aero, Goshen	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	93	-	93
	Coal Plant Turbine Upgrades	12.1	18.9	1.8	-	-	18.0	-	-	-	-	2.4	-	-	-	-	-	-	-	-	-	51	53 200
	Wind, Goshen, 29% Cap Factor	-	-	-	-	-	100	100	-	-	-	-	-	-	-	-	-	-	-	-	-	200	200
	Wind, Utah, 29% Cap Factor	-	-	-	-	-	-	94	100	100	100	18	88	-	-	-	-	-	-	-	-	394	
	Total Wind	-	-	-	-	-	100	194	100	100	100	18	88	-	-	-	-	-	-	-	-	594	700
	CHP - Biomass	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10	20
	DSM, Class 1 Total	6	69	3	20	79	-	-	-	-	-	-	2	-	-	-	17	-	-	-	-	177	196
	DSM, Class 2, Goshen	1	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	14	40
	DSM, Class 2, Utah	45	48	41	43	44	47	49	50	52	57	60	64	64	67	71	92	63	67	70	90	477	1,186
	DSM, Class 2, Wyoming	3	4	4	5	5	6	6		7	8	9	10	11	14	15	19	20	24	29	31	55	236
	DSM, Class 2 Total	48	53	46	49	51	55	57	59	61	66	71	76	78	84	89	114	86	94	102	124	545	1,463
	Micro Solar - Hot Water Heating	-	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	24	50
	FOT Mead Q3	-	168	264	264	99	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	81	40
	FOT Utah Q3	200	200	200	8	250	-	52	195	-	171	-	3	101	140	80	202	-	111	189	200	128	115
	FOT Mona-3 Q3	-	-	-	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	210	255
	FOT Mona-4 Q3	-	-	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	8
West				1	1	1		1	1		1	0	1	-			-		1	1			1
	Coal Plant Turbine Upgrades	-	-	3.7	-	-	-	-	8.3	-	-	-	-	-	-	-	-	-	-	-	-	12	12
	IC Aero, South-Central Oregon/California	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	102	-	-	102
	Wind, Yakima, 29% Cap Factor	-	-	-	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100
	Wind, Oregon, 29% Cap Factor	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	-	-	-	84	-	104
	Wind, Washington, 29% Cap Factor	-	-	-	-	-	13	6	100	100	100	-	-	43	57	26	100	58	95	45	100	319	844
	Wind, Walla Walla, 29% Cap Factor	-	-	-	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100
	Total Wind	-	-	-	200	-	13	6	100	100	100	-	-	43	57	26	120	58	95	45	184	519	1,148
	Utility Biomass	-	-	-	-	-	-	-	-	-	50	-	-	-	-	-	-	-	-	-	-	50	50
	CHP - Biomass	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	42	84
	DSM, Class 1 Total	-	-	62	6	4	-	-	-	-	-	-	-	-	-	-	7	-	-	-	-	72	78
	DSM, Class 2, Walla Walla	4	4	4	5	5	5	5	4	5	5	5	5	5	5	5	5	4	4	4	4	45	91
	DSM, Class 2, California/Oregon	51	51	54	59	60	60	59	52	52	52	52	52	52	52	53	52	44	37	37	36	550	1,018
	DSM, Class 2, Yakima	6	6	6	6	6	6	6	7	7	7	8	9	9	9	9	7	6	7	6	7	64	141
	DSM, Class 2 Total	61	62	65	70	72	70	70	63	63	64	65	66	66	67	67	64	55	47	47	47	659	1,250
	OR Solar Cap Standard	-	2	2	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	9
	OR Solar Pilot	4	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	10
	Micro Solar - Hot Water Heating	-	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	1.81	16	34
	FOT COB Q3	150	150	150	150	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65	32
	FOT MidColumbia Q3	-	400	400	400	400	400	400	400	370	400	328	400	400	400	400	400	400	400	400	400	357	375
	FOT MidColumbia Q3 - 2	-	271	211	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	48	24
	FOT South-Central Oregon/North Cal Q3	-	50	50	50	50	50	50	50	-	50	-	50	50	50	50	50	50	50	50	50	40	43
-	Annual Additions, Long Term Resources	136	217	196	983	218	863	337	340	808	389	166	242	197	217	580	331	597	245	306	458	-	
	Annual Additions, Short Term Resources	350	1,239	1,425	1,172	1,149	765	802	945	670	921	628	753	851	890	830	952	750	861	939	950		
	Total Annual Additions	486	1,456	1,621	2,155	1,367	1,628	1,139	1,285	1,479	1,311	794	995	1,048	1,107	1,410	1,283	1,347	1,106	1,245	1,408		

Table 4 – Resource Portfolio, Revised Energy Gateway-Limited Scenario ("Green Resource Future")

* Front office transactions (FOT) are not additive. For the 10-Year column, FOT are a 10-year average for 2011-2020, whereas the 20-Year column report a 10-year average for 2021-2030.

											Capacit	ty, MV	N									Resource	Totals *
	Resource	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	10 Year	20 Year
East																							
	IC Aero Goshen	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(93)	93	-	-
	SCCT Aero Utah South	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(118)	-	(118)
	Wind, Goshen, 29% Cap Factor	-	-	-	-	-	100	30	-	-	-	-	-	-	-	-	-	-	-	-	-	130	130
	Wind, Utah, 29% Cap Factor	-	-	-	-	-	-	(6)	100	100	100	18	88	-	-	-	-	-	-	-	-	294	400
	Wind, Wyoming, 35% Cap Factor	-	-	-	-	-	-	-	(200)	(200)	(200)	(15)	(73)	(38)	(48)	(20)	(99)	(49)	(78)	(40)	(187)	(440)	(1,087)
	Total Wind	-	-	-	-	-	100	23	(100)	(100)	(100)	3	15	(38)	(48)	(20)	(99)	(49)	(78)	(40)	(187)	(177)	(718)
	DSM, Class 1, Utah, DLC-Residential	-	-	-	-	(7.2)	-	-	-	-	-	-	-	-	-	-	7.2	-	-	-	-	(7)	0
	DSM, Class 2, Utah	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(14.9)	-	(0.1)	-	-	15.8	-	1
	Micro Solar - Hot Water Heating	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.3	-	-	0
	FOT Mead Q3	-	-	-	-	-	(2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(2)	(2)
	FOT Utah Q3	-	-	-	-	7	-	(5)	(5)	-	(5)	-	(5)	(5)	(5)	7	(0)	-	(0)	(9)	-	(8)	(26)
West																							
	IC Aero, South-Central Oregon/CA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	102	-	-	102
	Wind, Yakima, 29% Cap Factor	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Wind, Washington, 29% Cap Factor	-	-	-	-	-	13	6	100	100	100	-	-	43	57	26	100	58	95	45	100	319	844
	Wind, Oregon, 29% Cap Factor	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	-	-	-	84	-	104
	Wind, Walla Walla, 29% Cap Factor	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total Wind	-	-	-	-	-	13	6	100	100	100	-	-	43	57	26	120	58	95	45	184	319	948
	DSM, Class 2, Walla Walla	-	-	-	-	-	(0.1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(0)	(0)
	DSM, Class 2, California/Oregon	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1	-	0
	DSM, Class 2 Total	-	-	-	-	-	(0.1)	-	-	-	-	-	-	-	-	-	-	-	-	-	0.1	(0)	(0)
	Micro Solar - Hot Water Heating	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	-	2
	FOT MidColumbia Q3	-	-	-	-	-	-	-	-	(5)	-	(5)	-	-	-	-	-	-	-	-	-	(1)	(1)
	Annual Additions, Long Term Resources	-	-	-	-	(7)	113	30	-	-	-	3	15	6	9	(9)	28	9	17	16	(11)		
	Annual Additions, Short Term Resources	-	-	-	-	7	(2)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	7	(0)	-	(0)	(9)	-		
	Total Annual Additions	-	-	-	-	(0)	111	24	(5)	(5)	(5)	(2)	9	1	4	(2)	28	9	17	7	(11)		

Table 5 – Resource Portfolio Differences, Revised Full Energy Gateway Scenario less Energy Gateway-Limited Scenario

* Front office transactions (FOT) are not additive. For the 10-Year column, FOT are a 10-year average for 2011-2020, whereas the 20-Year column report a 10-year average for 2021-2030.

Table 6 reports the stochastic average PVRR and cost component details for the revised Full Gateway and Gateway-Limited scenarios under the Green Resource Future scenario assuming medium CO_2 and medium natural gas prices. A comparison of these PVRR results with the original Full and Gateway-Limited PVRR results is also provided. As indicated, the generation resource changes, which account for transmission operational constraints, resulted in higher PVRRs for both scenarios. The table also shows that the PVRR difference between the revised Full Gateway and Gateway-Limited scenario portfolios increased by \$89 million (\$1.084 billion less \$995 million) relative to the difference for the original portfolios.

Table 6 - Portfolio Stochastic Average PVRR Comparison, Gateway-Limited vs. Full	l
Gateway Scenarios	

	Original I	Energy Gateway	Portfolios		Revised E	nergy Gateway l	Portfolios
Cost Component (Million \$)	Original Gateway- Limited Scenario	Original Full Gate way Scenario	Difference (Original Gateway Limited less Full Gateway)		Revised Gateway- Limited Scenario	Revised Full Gateway Scenario	Difference (Original Gateway Limited less Full Gateway)
Variable Costs				Γ			
Fuel & O&M	\$15,231	\$15,048	\$183		\$14,858	\$14,586	\$272
Emission Cost	7,409	7,230	179		7,448	7,172	276
FOT's & Long Term Contracts	4,063	4,064	(1)		4,195	4,195	(0)
Demand Side Management	3,373	3,421	(48)		3,657	3,639	18
Renewables	693	693	0		665	665	(0)
System Balancing Sales	(6,458)	(6,387)	(71)		(6,529)	(6,250)	(279)
System Balancing Purchases	2,631	2,740	(109)		2,586	2,744	(158)
Energy Not Served	44	47	(3)		46	38	8
Dump Power	(127)	(127)	0		(125)	(124)	(1)
Reserve Deficiency	0	0	0		0	0	0
Total Variable Costs	\$26,858	\$26,729	\$129	_	\$26,802	\$26,666	\$136
Capital and Fixed Costs	\$12,067	\$11,201	\$866		\$12,693	\$11,745	\$948
Total PVRR	\$38,925	\$37,930	<mark>\$995</mark>		\$39,495	\$38,411	\$1,084

Conclusion

Based on these results, PacifiCorp concludes that for future Energy Gateway and other transmission expansion scenarios conducted for the IRP, a review of initial System Optimizer portfolio results in light of operational transmission constraints—followed by manual resource adjustments as needed—is a worthwhile modeling refinement. However, the cost impact is relatively small such that it would not be expected to change relative cost rankings of alternative transmission expansion scenarios. Excluding growth resources as a resource option has a more significant impact, raising portfolio costs due to the higher fixed costs associated with generation plant. The Company will revisit the efficacy of the growth resource approach for the next IRP.

CHAPTER 2 – CLASS 2 DSM DECREMENT STUDY

This section presents the methodology and results of the energy efficiency (Class 2 demand-side management) decrement study. For this analysis, the 2011 IRP preferred portfolio was used to calculate the decrement value ("avoided cost") of various types of Class 2 DSM resources. PacifiCorp will use these decrement values when evaluating the cost-effectiveness of current programs and potential new programs between IRP cycles.

The Class 2 DSM decrement study was enhanced for the 2011 IRP. To align with the resource costs applied for resource portfolio development using the System Optimizer capacity expansion model, cost credits were applied to the Class 2 DSM decrement values reflecting (1) a transmission and distribution (T&D) investment deferral benefit, (2) a generation capacity investment deferral benefit, and (3) a stochastic risk reduction benefit associated with clean, no-fuel resources.⁷ Decrement values for two new energy efficiency load shapes were also estimated: residential water heating and "plug" loads (i.e., energy consumed by electronic devices plugged into sockets.)

Modeling Approach

To determine the Class 2 DSM decrement values, PacifiCorp defined 17 shaped Class 2 DSM resources, each at 100 megawatts at the time of peak load, and available starting in 2011 and for the duration of the 20-year IRP study period. In contrast, the valuation study for the 2008 IRP focused on 13 resources. The added resources consist of residential water heating and plug loads for both east and west control areas. Adding these new energy efficiency resources to the analysis is intended to provide a refined valuation for energy savings and further aid in developing program initiatives for such applications as showerheads, heat pump water heaters, and consumer electronics.

Consistent with prior valuation studies, PacifiCorp first determined the system production cost with and without each Class 2 DSM resources using the PaR production cost model in Monte Carlo stochastics mode. The difference in production cost (stochastic mean PVRR) for the two runs indicates the system value attributable to the DSM resource through lower spot market transaction activity and resource re-optimization with the DSM resource in the portfolio. The cost credits mentioned above are then added separately outside of the model, thereby increasing Class 2 DSM decrement values. The resource deferral benefit, as a new step for deriving the decrement values value, is described below. The PaR decrement values were determined for three CO_2 tax scenarios: zero, medium (starting at \$19/ton and escalating to \$39/ton by 2030), and low-to-very high (starting as \$12/ton and escalating to \$93/ton by 2030).

⁷ Refer to Volume 1, page 147 of the 2011 IRP for a summary of the T&D investment deferral and stochastic risk reduction cost credits applied to the System Optimizer energy efficiency resource options.

Generation Resource Capacity Deferral Benefit Methodology

PacifiCorp used the System Optimizer model to determine the generation resource capacity deferral benefit. The approach is similar to the stochastic production cost difference method, except that only the fixed cost benefit of adding each 100-megawatt Class 2 DSM resource is calculated. This is accomplished by running System Optimizer with a base resource portfolio that excludes each 100-megawatt Class 2 DSM program, and then comparing the fixed portfolio costs against the cost of the same portfolio derived by System Optimizer that includes the DSM program at zero cost. The simulation period is 20 years. As a simplifying assumption, PacifiCorp applied the East "system" load shape for the generic DSM program, which has a capacity planning contribution of 93 percent and a capacity factor of 69 percent. The resource deferral fixed cost benefit is comprised of the deferred capital recovery and fixed operation and maintenance costs of a "next best alternative" resource—a combined-cycle combustion turbine (CCCT). The difference in the portfolio fixed cost represents the resource deferral benefit of the DSM program. (Note that System Optimizer's production cost benefits were not taken into account to avoid double-counting the benefit extracted from stochastic PaR model results.)

Since a 100-megawatt Class 2 DSM is not sufficiently large enough to defer a CCCT, System Optimizer was configured to allow fractional CCCT unit sizes for both the base portfolio and each of the 17 Class 2 DSM resource portfolios. Deferral of CCCT capacity can begin starting in 2015, the year after the Lake Side 2 CCCT is planned to be in service. Note that each Class 2 DSM resource can also defer front office transactions (a market resource representing a range of forward firm market purchase products).

The resource capacity deferral benefit is calculated in two steps:

1. Fixed Cost Deferral Benefit Determination

Fixed cost benefits are obtained by calculating the differences in annual fixed and capital recovery costs (millions of 2010 dollars) between the base portfolio and the portfolio with the Class 2 DSM program addition. The stream of annual benefits is then converted into a net present value (NPV) using the 2011 IRP discount rate (7.17 percent).

Levelized Value Calculation
 The fixed cost resource deferral benefit value obtained from step 1 is divided by the Class
 2 DSM program energy in megawatt-hours (also converted to a NPV) to yield a value in
 dollars per megawatt-hour-year (\$/MWh-yr).

This value, along with the T&D investment deferral credit and stochastic risk reduction credit, are added to the PaR model decrement values to yield the final adjusted values.

Class 2 DSM Decrement Value Results

Table 7 reports the NPV levelized avoided costs by DSM resource and CO_2 tax scenario for 2011 through 2030, along with a breakdown of the three cost credits (capacity deferral, T&D investment deferral, and stochastic risk reduction). Tables 8, 9, and 10 report the annual nominal-dollar avoided costs, in MWh, for each CO_2 tax scenario. Figures 6 through 11 graphically

show the avoided annual cost trends for the three CO_2 tax scenarios by east and west location, along with average annual forward market prices for the relevant location (Palo Verde (PV) for the east and Mid-Columbia (Mid-C) for the west.)

Consistent with the results for the 2008 IRP, the residential air conditioning decrements produce the highest value for both the east and west locations. The water heating (new), plug loads (new), and system load shapes provide the lowest avoided costs. Much of their end use shapes reduce loads during a greater percentage of off-peak hours than the other shapes and during all seasons, not just the summer.

				sts by Carbon Diox uding all Cost Crea (\$/MWh)			Cost Credit (\$/M	Components [Wh)	
Resource	Location	Load Factor	Low to Very High	Medium	None	Capacity Resource Deferral	T&D Investment Deferral	Stochastic Risk Reduction	Total Credit
Residential Cooling	East	10%	114.94	116.46	101.55	16.69	11.80	14.98	43.47
Residential Lighting	East	48%	91.17	91.71	78.49	16.69	2.35	14.98	34.02
Residential Whole House	East	35%	94.37	94.89	81.48	16.69	3.23	14.98	34.91
Commercial Cooling	East	20%	102.05	102.96	88.88	16.69	1.91	14.98	33.58
Commercial Lighting	East	48%	93.27	93.59	79.91	16.69	1.97	14.98	33.64
Water Heating	East	57%	90.57	90.95	77.72	16.69	5.83	14.98	37.50
Plug Loads	East	59%	90.16	90.49	77.40	16.69	2.33	14.98	34.00
System Load Shape	East	69%	90.31	90.72	77.53	16.69	1.62	14.98	33.29
Residential Cooling	West	7%	111.17	123.03	112.04	16.69	16.63	14.98	48.30
Residential Heating	West	25%	90.44	99.31	88.69	16.69	5.59	14.98	37.26
Residential Lighting	West	48%	88.82	97.81	88.02	16.69	2.48	14.98	34.15
Commercial Cooling	West	16%	96.04	106.31	96.43	16.69	2.60	14.98	34.27
Residential Whole House	West	49%	88.81	97.96	87.86	16.69	2.03	14.98	33.70
Commercial Lighting	West	48%	89.40	98.56	88.86	16.69	2.20	14.98	33.87
Water Heating	West	56%	87.35	96.12	86.53	16.69	7.11	14.98	38.79
Plug Loads	West	59%	87.61	96.35	86.72	16.69	2.46	14.98	34.13
System Load Shape	West	71%	87.38	96.26	86.54	16.69	1.75	14.98	33.42

Table 7 – Levelized Class 2 DSM Avoided Costs by Carbon Dioxide Tax Scenario, 20-Year Net Present Value (2011-2030)

			Avoided Cost Values (Nominal \$/MWh)													
Resource	Actual Load Factor	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020					
EAST																
Residential Cooling	10%	92.59	93.45	98.67	96.34	101.80	98.22	96.60	97.05	98.60	97.21					
Residential Lighting	48%	68.52	71.88	75.53	76.95	79.37	77.68	77.26	75.56	75.80	77.67					
Residential Whole House	35%	71.53	74.73	78.69	79.45	81.63	80.27	79.94	77.98	78.73	80.67					
Commercial Cooling	20%	78.04	80.13	85.32	84.93	89.12	86.45	85.23	85.02	86.60	87.68					
Commercial Lighting	48%	69.01	72.91	77.14	77.66	80.19	78.99	78.08	77.13	78.32	79.02					
Water Heating	57%	67.18	70.81	74.26	75.81	78.05	76.78	76.36	74.80	75.40	77.29					
Plug Loads	59%	67.15	70.61	74.11	75.52	77.67	76.22	76.17	74.64	75.42	76.54					
System Load Shape	69%	67.17	70.50	74.01	75.23	77.42	76.31	75.89	74.81	75.50	76.78					
WEST																
Residential Cooling	7%	87.50	93.55	98.82	103.91	110.65	110.55	108.64	109.64	113.62	115.96					
Residential Heating	25%	70.91	76.58	81.06	84.69	85.77	85.61	85.78	86.51	89.45	91.47					
Residential Lighting	48%	69.00	74.09	78.90	83.43	86.40	85.48	84.82	86.34	88.94	90.75					
Commercial Cooling	16%	74.58	79.96	84.81	89.76	94.93	94.49	93.23	95.07	97.84	100.16					
Residential Whole House	49%	68.87	74.32	78.88	83.14	85.81	85.12	84.74	86.14	88.73	90.75					
Commercial Lighting	48%	68.94	74.78	79.90	84.42	87.23	86.57	86.08	87.13	89.46	91.68					
Water Heating	56%	67.78	72.97	77.56	82.04	84.79	84.09	83.45	84.93	87.26	89.23					
Plug Loads	59%	68.10	73.23	77.85	82.15	84.81	84.20	83.75	85.01	87.57	89.47					
System Load Shape	71%	67.69	72.87	77.49	82.00	84.66	84.11	83.54	84.90	87.31	89.41					

Table 8 – Annual Nominal Class 2 DSM Avoided Costs, No CO₂ Tax Scenario, 2011-2030

			Avoided Cost Values (Nominal \$/MWh)										
Resource	Actual Load Factor	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
EAST													
Residential Cooling	10%	102.98	105.51	106.53	109.80	108.14	103.44	102.23	123.84	127.89	137.29		
Residential Lighting	48%	79.83	81.78	82.95	82.03	83.11	82.89	81.40	91.99	93.97	100.83		
Residential Whole House	35%	82.57	84.72	85.49	86.08	86.83	86.64	83.04	96.68	98.67	106.22		
Commercial Cooling	20%	90.70	92.79	94.83	96.95	95.40	93.63	91.82	107.39	110.82	118.31		
Commercial Lighting	48%	80.99	83.36	84.90	84.92	85.20	84.32	82.21	94.02	97.11	104.06		

				A	voided C	ost Value	s (Nomina	al \$/MWh	ı)		
Resource	Actual Load Factor	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Water Heating	57%	79.38	81.02	82.00	82.11	83.18	82.88	80.68	92.25	93.94	100.95
Plug Loads	59%	78.87	80.54	81.88	81.80	82.29	82.16	80.79	91.57	93.24	100.38
System Load Shape	69%	78.74	80.98	82.21	82.41	82.97	82.52	80.69	92.46	94.55	101.68
WEST											
Residential Cooling	7%	120.27	123.27	124.84	125.63	125.40	129.01	133.33	138.61	138.61	143.17
Residential Heating	25%	92.80	95.16	97.02	98.79	99.22	104.26	103.19	107.04	108.91	111.73
Residential Lighting	48%	93.08	95.64	97.17	99.10	98.70	102.28	103.77	108.10	109.58	112.83
Commercial Cooling	16%	103.11	105.94	107.30	108.81	108.76	111.45	114.54	119.99	120.88	124.49
Residential Whole House	49%	92.90	95.35	96.83	98.67	98.66	102.84	103.53	107.85	109.37	112.47
Commercial Lighting	48%	93.73	96.29	98.04	99.81	99.82	103.61	104.89	109.10	110.91	114.12
Water Heating	56%	91.56	93.78	95.40	97.39	97.37	100.54	101.92	106.01	107.97	110.79
Plug Loads	59%	91.64	94.06	95.52	97.55	97.30	100.76	102.00	106.38	108.17	110.99
System Load Shape	71%	91.59	93.94	95.49	97.36	97.34	100.84	101.95	106.36	108.06	110.84

Table 9 – Annual Nominal Class 2 DSM Avoided Costs, Low to Very High CO₂ Tax Scenario, 2011-2030

				A	voided C	ost Value	s (Nomina	al \$/MWh	ı)		
Resource	Actual Load Factor	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
EAST											
Residential Cooling	10%	89.02	91.10	92.33	92.16	103.87	104.22	101.20	107.09	108.23	107.72
Residential Lighting	48%	66.01	69.58	70.80	71.90	82.56	83.19	84.43	84.44	85.99	88.06
Residential Whole House	35%	68.62	72.05	73.32	74.41	85.38	85.61	86.07	86.87	88.69	90.57
Commercial Cooling	20%	74.91	78.03	79.48	80.02	92.09	92.05	92.18	94.33	95.64	97.16
Commercial Lighting	48%	66.77	70.07	71.87	72.75	83.71	84.70	85.82	85.88	87.70	90.14
Water Heating	57%	64.81	68.17	69.37	70.79	81.39	82.33	83.15	83.56	85.45	87.50
Plug Loads	59%	64.77	68.02	69.74	70.70	80.96	82.08	83.29	83.18	84.54	87.26
System Load Shape	69%	64.92	67.96	69.35	70.61	81.02	82.00	82.79	83.20	84.55	86.87
WEST											
Residential Cooling	7%	81.27	85.07	86.47	88.00	97.88	100.55	101.45	105.26	108.10	110.90
Residential Heating	25%	65.81	69.58	71.51	72.85	78.56	80.34	82.14	84.17	86.31	89.79

			Avoided Cost Values (Nominal \$/MWh)											
Resource	Actual Load Factor	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020			
Residential Lighting	48%	63.51	66.58	68.62	69.88	77.33	78.88	80.28	82.87	85.31	88.27			
Commercial Cooling	16%	69.05	71.80	73.84	75.16	84.02	86.47	87.30	90.75	93.15	95.89			
Residential Whole House	49%	63.50	66.85	68.74	69.99	77.15	78.85	80.42	82.88	85.08	88.07			
Commercial Lighting	48%	63.63	66.80	68.84	70.10	77.71	79.31	80.95	83.31	85.71	89.06			
Water Heating	56%	62.41	65.52	67.55	68.75	75.92	77.70	79.10	81.50	83.84	86.53			
Plug Loads	59%	62.69	65.88	67.74	69.05	76.15	77.70	79.31	81.75	84.10	86.86			
System Load Shape	71%	62.33	65.60	67.45	68.71	75.84	77.58	79.08	81.44	83.94	86.53			


			Avoided Cost Values (Nominal \$/MWh)										
Resource	Actual Load Factor	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
EAST													
Residential Cooling	10%	115.85	123.61	128.08	137.47	142.06	143.42	154.90	180.57	195.11	218.30		
Residential Lighting	48%	92.62	98.32	101.69	107.97	114.59	120.87	127.13	145.77	155.11	173.70		
Residential Whole House	35%	95.44	101.09	105.17	112.72	118.69	125.05	131.36	153.26	162.52	182.70		
Commercial Cooling	20%	104.73	109.14	114.83	123.93	130.80	133.09	140.06	163.32	172.93	200.70		
Commercial Lighting	48%	94.91	100.06	105.47	111.87	117.96	124.03	130.47	151.20	162.60	182.58		
Water Heating	57%	92.12	96.97	101.95	108.16	114.88	121.02	127.93	146.87	156.64	177.16		
Plug Loads	59%	91.66	96.70	101.49	107.16	114.32	120.32	126.73	145.55	154.26	175.57		
System Load Shape	69%	91.99	96.97	102.03	107.61	114.12	121.03	127.26	146.11	156.69	177.64		
WEST													
Residential Cooling	7%	115.53	122.06	127.58	133.97	141.79	152.37	157.59	170.65	179.22	189.63		
Residential Heating	25%	91.99	96.35	102.37	109.15	116.02	131.46	131.07	138.81	148.06	156.39		
Residential Lighting	48%	90.78	96.25	101.85	108.30	115.04	127.27	130.17	139.61	148.59	156.89		
Commercial Cooling	16%	99.30	104.81	110.54	116.53	123.95	133.70	138.61	150.45	159.46	167.57		
Residential Whole House	49%	90.98	95.99	101.64	108.18	115.27	127.79	129.88	139.27	148.30	156.82		
Commercial Lighting	48%	91.70	96.89	102.75	109.04	115.95	128.63	131.20	140.77	150.07	158.85		
Water Heating	56%	89.26	94.46	100.05	106.42	113.45	125.22	127.93	136.94	146.45	154.84		
Plug Loads	59%	89.49	94.60	100.50	106.75	113.61	125.58	128.42	137.40	146.68	155.09		
System Load Shape	71%	89.51	94.43	100.23	106.42	113.37	125.63	128.18	137.32	146.53	155.10		

				A	voided C	ost Value	s (Nomina	al \$/MWb	ı)		
Resource	Actual Load Factor	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
EAST											
Residential Cooling	10%	92.01	91.50	95.47	90.41	116.85	114.75	113.45	116.39	118.93	120.59
Residential Lighting	48%	66.61	69.53	71.34	70.94	92.99	93.51	93.38	93.64	94.83	97.91
Residential Whole House	35%	69.58	72.28	74.46	73.30	95.62	95.85	95.98	96.54	97.25	101.50
Commercial Cooling	20%	76.46	77.82	81.97	78.94	103.42	103.58	102.17	102.89	105.32	109.07
Commercial Lighting	48%	67.25	70.38	73.04	71.88	93.98	95.26	95.04	95.71	96.77	100.30
Water Heating	57%	65.18	68.06	69.97	69.89	91.92	92.64	92.97	92.54	93.96	97.41
Plug Loads	59%	65.16	67.97	70.05	69.56	91.40	92.10	92.42	92.15	94.08	96.67
System Load Shape	69%	65.12	68.04	70.00	69.38	91.26	92.30	92.18	92.08	94.11	97.25
WEST											
Residential Cooling	7%	85.37	92.78	94.94	97.51	122.94	126.87	122.17	124.77	130.24	132.77
Residential Heating	25%	71.42	77.64	79.39	81.76	97.95	99.54	99.23	100.19	104.18	106.21
Residential Lighting	48%	66.78	72.50	74.85	76.94	97.90	99.53	97.51	99.69	103.47	106.07
Commercial Cooling	16%	71.77	78.06	80.78	83.07	107.22	109.27	105.19	108.42	112.10	116.03
Residential Whole House	49%	67.45	73.49	75.67	77.80	97.76	99.54	97.56	99.55	103.43	106.03
Commercial Lighting	48%	67.07	73.49	75.70	78.00	98.68	100.19	97.82	100.18	103.92	107.07
Water Heating	56%	65.47	71.34	73.54	75.71	96.26	97.73	95.86	98.04	101.70	104.37
Plug Loads	59%	65.86	71.77	73.90	75.96	96.54	97.84	96.18	98.14	101.85	104.85
System Load Shape	71%	65.66	71.57	73.79	75.85	96.25	97.78	96.04	98.12	101.86	104.56

			Avoided Cost Values (Nominal \$/MWh)									
Resource	Actual Load Factor	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
EAST												
Residential Cooling	10%	125.57	131.25	133.34	142.19	141.47	131.18	130.37	153.07	158.43	171.00	
Residential Lighting	48%	101.70	104.18	106.66	109.14	110.57	108.57	107.94	118.67	123.53	130.43	
Residential Whole House	35%	104.62	107.48	110.95	114.02	114.98	111.90	110.68	123.55	128.44	136.13	
Commercial Cooling	20%	114.81	117.06	121.00	125.42	125.90	119.41	117.43	135.09	140.99	152.28	

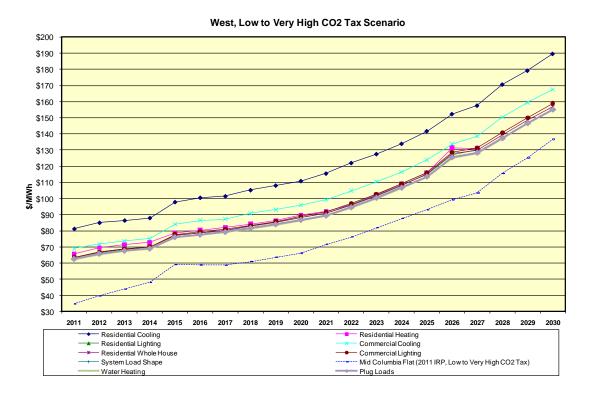

				A	voided C	ost Value	s (Nomina	al \$/MWh	ı)		
Resource	Actual Load Factor	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Commercial Lighting	48%	104.02	105.75	110.04	112.67	114.01	110.31	109.83	121.35	126.81	136.27
Water Heating	57%	101.05	103.59	106.94	109.61	111.00	108.15	107.17	118.92	122.52	131.34
Plug Loads	59%	100.36	102.51	106.08	108.83	109.89	107.38	106.80	117.64	121.95	130.47
System Load Shape	69%	100.75	102.91	106.59	109.26	109.93	107.93	107.42	118.90	123.86	131.88
WEST											
Residential Cooling	7%	135.63	140.77	146.35	152.81	150.62	149.83	147.88	158.04	160.17	168.14
Residential Heating	25%	108.12	111.39	116.14	120.47	120.99	123.05	119.50	123.79	127.27	131.90
Residential Lighting	48%	108.09	111.69	117.11	121.96	121.47	121.70	119.29	125.50	129.29	133.97
Commercial Cooling	16%	117.95	122.18	128.59	133.56	132.06	130.80	128.51	137.31	140.79	146.76
Residential Whole House	49%	107.89	111.61	116.71	121.52	121.45	121.57	119.04	125.02	128.36	133.51
Commercial Lighting	48%	108.95	112.32	117.74	122.87	122.05	122.48	120.08	126.55	130.75	135.41
Water Heating	56%	106.22	109.93	114.91	120.15	119.37	119.33	116.97	123.06	126.97	131.66
Plug Loads	59%	106.36	110.07	115.23	119.84	119.50	119.33	117.21	123.24	127.08	131.90
System Load Shape	71%	106.46	109.92	115.12	119.93	119.67	119.41	117.23	123.11	127.20	131.91

Figure 6 – East Class 2 DSM Nominal Avoided Cost Trends, Low to Very High CO₂ Tax Scenario

East, Low to Very High CO2 Tax Scenario

Figure 7 – West Class 2 DSM Nominal Avoided Cost Trends, Low to Very High CO₂ Tax Scenario

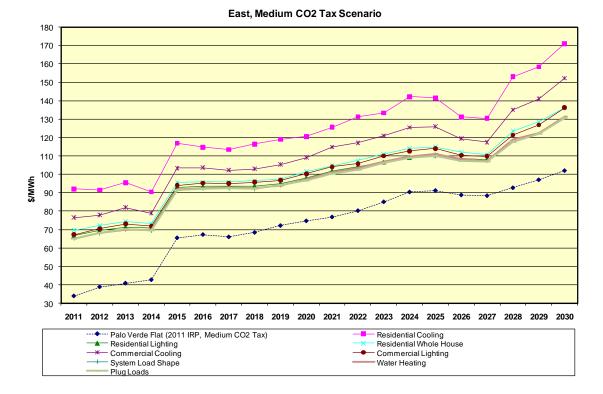
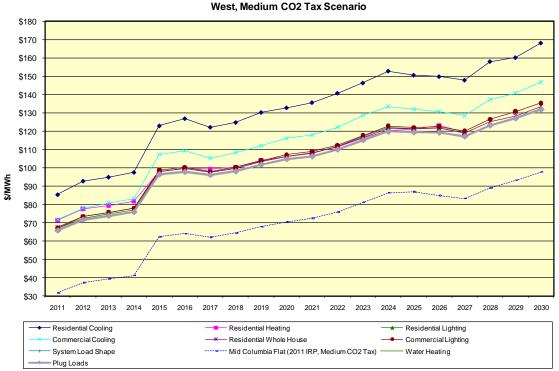
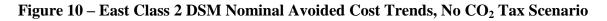




Figure 8 – East Class 2 DSM Nominal Avoided Cost Trends, Medium CO₂ Tax Scenario

Figure 9 – West Class 2 DSM Nominal Avoided Cost Trends, Medium CO2 Tax Scenario

West, Medium CO2 Tax Scenario

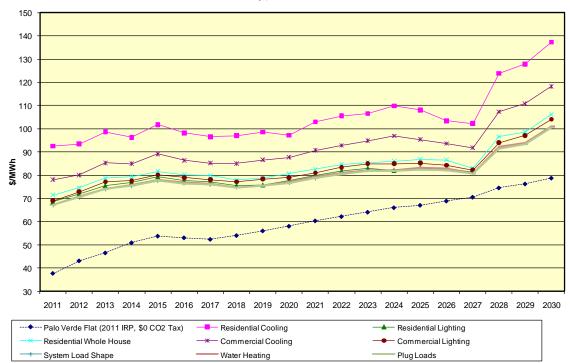
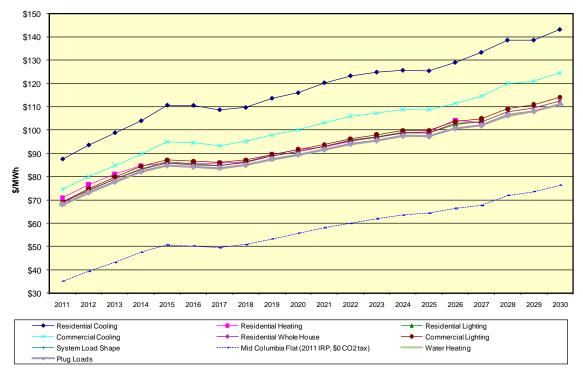



Figure 11 – West Class 2 DSM Nominal Avoided Cost Trends, No CO2 Tax Scenario

West, \$0 CO2 Tax Scenario

CHAPTER 3 – APPRAISAL OF INTERWEST ENERGY Alliance's Wind Capital Cost and Capacity Factor Recommendations

Introduction

At the 2011 IRP public input meeting held December 15, 2010, Wasatch Wind (a wind project developer headquartered in Utah) and other participants contended that PacifiCorp's planning capital cost value for east-side wind projects were too high, while the planning capacity factor value—35 percent for Wyoming and 29 percent for Utah—were too low. PacifiCorp agreed to review information supplied by participants and provide its assessment to all IRP public participants, also noting that it was too late to incorporate such information into the portfolio development process.⁸ At the Company's discretion, a sensitivity analysis on wind selection impacts of alternative capital cost and capacity factor values may be conducted as warranted based on its findings. On January 10, 2011, PacifiCorp received wind capital cost and net capacity factor information from Interwest Energy Alliance (IEA). This information is included as Appendix A. The sections below provide PacifiCorp's response to both IEA's capital cost and capacity factor recommendations.

Capital Costs

The Company has reviewed the IEA's "ITC Grant Recipient" project cost overview and, while informative, the information is not viewed as a suitable replacement for PacifiCorp's own wind cost information. The reasons are summarized below.

First, The IEA information is generally not representative of projects that would interconnect to PacifiCorp's transmission system. None of the example projects are located in Wyoming and only one is located in Utah. In contrast, PacifiCorp's wind capital cost estimates are informed by both actual project costs and regionally-adjusted capital costs used in an independently produced model (ICF International's IPM® model). The IPM model supports development of PacifiCorp's forward price curve and, therefore, assumptions within the IPM model are inherently important as it relates to the Company's IRP.

Second, the costs represented by IEA are derived by taking United States Treasury Department's ITC Grants stemming from the 2009 Stimulus Bill and dividing by 0.285. The result is shown on a cost per unit basis (\$/MW). IEA represents the divisor as being an adjustment factor to convert the amount of cost qualifying for the cash grant into "total wind project costs". It is not known if the "total wind project costs" being promoted by IEA can accurately be compared to the capital

⁸ PacifiCorp presented and discussed resource option characteristics, including those for wind, at the August 4, 2010, public input meeting. The subsequent meeting report, provided to IRP participants on October 5, 2010 and posted to PacifiCorp's IRP Web site, included the detailed table of resource characteristics.

cost assumptions used by PacifiCorp in its most recent version of the IRP. PacifiCorp's cost estimate is intended to represent all costs to develop, permit, construct, own and operate a representative wind-powered generation resource using PacifiCorp's weighted average cost of capital and with an assumed economic life of 25 years.

IEA's estimate appears to rely on two key assumptions: (1) that IEA's view of "total wind project costs" includes all of the factors included in PacifiCorp's cost estimate, and (2) IEA has accurately interpreted Internal Revenue Service (IRS) guidance associated with such grants. It is uncertain if IEA's interpretation of IRS guidance as applied to such a limited set of western project data can, or should, serve as definitive prediction of all costs that will affect the total bus bar costs of future wind-powered generation resources as seen from the customer's perspective. For example, it is uncertain what portion of transmission-related costs the IRS considers as being "qualifying costs" under the 2009 Stimulus Bill and how transmission-related costs (e.g., generation tie line and/or transmission collector system costs) will change as future projects are brought to fruition.

Third, the IEA's sample data set data represents projects that were poised and ready to qualify for a cash grant under the 2009 Stimulus Act. As such, the data set does not account for significant new and prospective environmental regulatory actions or other policy decisions that are expected to change development costs for future projects. Examples include (1) Wyoming's Greater sage-grouse core breeding area plan, (2) the effect of emerging "Land-Based Wind Energy Guidelines" by the U.S. Fish and Wildlife Service, and (3) federal, state or local tax and/or permitting policies. (As noted above, none of the sample projects in the IEA data set include projects in Wyoming, which are subject to Wyoming's sales tax and generation excise tax policies.)

Fourth, even if IEAs estimates include all of the cost elements included in PacifiCorp's estimate, because of the factors that led to the 2009 Stimulus Act, it is impossible to ascertain what cost concessions developers were able to extract from major equipment suppliers and/or construction contractors during then-current market conditions. Furthermore, because PacifiCorp is planning for the long-term, any long-run cost improvements can reasonably be expected to be offset to some degree by supply chain pricing dynamics and/or the effects of domestic and/or international market demand, depth and liquidity. Finally, it can also reasonably be expected that market forces will result in the development of increasingly less desirable and/or more costly sites as the more optimal sites are utilized (i.e., moving higher up the cost-supply curve).

In summary, PacifiCorp does not see definitive evidence suggesting that the capital cost estimates in the IRP for wind-powered generation resources are inappropriately high. However, to get a sense for what IEA's capital cost recommendation would do in terms of a wind resource selection impact, we refer to the alternate wind integration cost sensitivity results on page 244 of the 2011 IRP. The lower wind integration cost used for this sensitivity study, \$5.38/MWh, equates to a fixed cost reduction of \$195/kW. Using the alternative wind integration cost value resulted in 81 MW of additional wind. Based on the \$346/kW capital cost reduction advocated by IEA (\$2,239/kW from IRP Table 6.5 less \$1,893/kW from page 1 of IEA's materials), the capacity impact is not likely to exceed 150 MW.

Capacity Factors

IEA makes multiple generalized assumptions and, using these assumptions as a basis, suggests that PacifiCorp should use a 43.6% or higher net capacity factor (NCF) for modeling future Wyoming wind projects. Below is a discussion of these generalized assumptions and their suitability for characterizing NCFs for use in the IRP context.

IEA assumes that the NCF associated with PacifiCorp owned wind resources in Wyoming should serve as a base-level assumption for future wind projects. IEA determines the average NCF for seven selected resources. Using this average NCF, IEA represents that it can "back into" an annual average wind speed (in meters per second) that should be associated with future wind projects constructed in Wyoming. IEA concludes that 8.6 meters per second should be assumed as the annual average wind speed. Using this average wind assumption, IEA further concludes a theoretical NCF increase of 112 percent can be achieved if a General Electric (GE) model 1.5 megawatt (MW) "XLE" wind turbine generator (WTG) is used instead of a GE 1.5 MW "SLE" WTG. The GE 1.5 MW XLE WTG has longer blades and a larger rotor diameter (82.5 meters) than the GE 1.5 MW SLE WTG (77 meter rotor diameter). IEA considers the GE 1.5 XLE to be an "advanced" WTG design. IEA likewise considers the Vestas V90 and Siemens 2.3 MW WTGs, with 90 meter and 101 meter rotor diameters respectively, to be advanced WTG designs. Applying the 112 percent enhancement to the Dunlap I NCF, IEA represents it has demonstrated its theory.

In short IEA suggest that PacifiCorp should assume that all future wind projects in Wyoming are suitable for WTGs with increased rotor diameters. While PacifiCorp agrees that WTG design evolutions may favorably impact performance for those sites for which they are suitable, the Company makes the following observations regarding IEA's NCF recommendation and the assumptions it is based on.

First, IEA's NCF recommendation assumes all Wyoming wind developments could utilize WTGs with increased rotor diameters. In arriving at this conclusion, IEA points toward an unreferenced GE determination that, depending on final layouts and turbulence intensity, the GE XLE model is "meteorologically suitable for some wind projects at 7500' altitude with annual average wind speeds of 8.5 m/s to over 10 m/s". IEA's representation that WTG suitability for a site is primarily based on average annual wind speed and turbulence intensity is flawed. The suitability of a WTG model(s) for any given site can only be determined using a site specific mechanical loads assessment performed by the turbine manufacturer. IEA has provided no evidence of such assessments demonstrating that WTGs with rotor diameters as large as 101 meters are broadly suitable for use in Wyoming. Further, IEA fails to adequately discuss that WTG suitability is often driven by 50-year peak gusts and turbulence intensity at high wind speeds. Without a sufficient amount of reliable data from the site towers, it is difficult to conclusively determine if a WTG is suitable for a given site, let alone if specific WTG models are broadly suitable for use in Wyoming. Indeed, manufacturers may require more site data to be collected to verify that their WTGs are suitable, and in the event that site conditions are more extreme than was indicated by the data provided to the manufacturer (e.g., higher wind gusts or higher overall average wind speeds), they may not honor warranties in the event of failures associated with greater than estimated environmental conditions at the site. For these reasons, PacifiCorp's IRP does not rely on generalized WTG assumptions.

Second, IEA's assumed NCF improvement (12 percent applied broadly) associated with the GE XLE WTG over the GE SLE WTG is significantly higher than that indicated by a recent Company procurement process. In its "2009R" renewable Request for Proposals, PacifiCorp received two separate bids from the same developer using the same site and based on the GE SLE WTG versus GE XLE WTG. The capacity factor difference was only 1.8 percentage points in favor of the GE 1.5 XLE WTG, a difference of 4.6 percent. This is in contrast to the 12 percent capacity factor improvement recommended by IEA.⁹ Of note is that the bid based on the GE XLE WTG commanded a price premium relative to the bid based on the GE SLE WTG. PacifiCorp further notes that IEA's recommendation to reduce assumed capital costs (discussed above) relied on information where the model of WTG was not disclosed.

Finally, in selecting the seven wind projects that serve as the source of the average NCF assumption that, in turn, serves as the starting point for all of IEA's subsequent assumptions and resulting adjustments, IEA fails to consider all of PacifiCorp's owned and contracted wind resources in Wyoming. IEA dismisses this choice by stating that "We did not average the capacity factors for projects in western Wyoming as those projects do not reflect the higher capacity factors experienced in the central Wyoming projects". PacifiCorp believes there is no basis to assume that all future Wyoming resources would be restricted to locations in just central Wyoming. PacifiCorp's IRP assumption of a 35 percent NCF for planning purposes is informed by those wind resources—both owned and acquired through power purchase contracts—is 34.98 percent based on weighted averaging with each resource's nameplate capacity. This weighted average NCF reflects capacity factor updates utilized in the latest Wyoming General Rate Case. Of note is that Dunlap I has a NCF of 36.4 percent rather than the 38.6 percent NCF cited by IEA. This is in comparison to IEA's starting-point assumption of 37.6 percent.

PacifiCorp emphasizes that the NCF assumption in the IRP is not intended to be based on idealistic or theoretical assumptions of what may find its way into the portfolio. Indeed, NCF is not what will determine which individual renewable resources will be added to PacifiCorp's portfolio in the future. The cost and risk to customers of those case-by-case decisions is what will be the determining factor.

Conclusion

For the reasons cited above, PacifiCorp does not find IEA's recommendations to change the IRP cost or NCF assumptions associated with wind-powered generation resources to be warranted. PacifiCorp will continue to rely on its procurement practice of making decisions regarding individual renewable resource additions on a case-by-case basis, and the standard for such decisions will continue to be established regulatory principals regarding prudence and benefit to customers.

⁹ Mechanical load suitability of the alternate GE XLE WTG is uncertain.

APPENDIX A – COMMENTS AND DATA SUBMISSION FROM INTERWEST ENERGY ALLIANCE

10 January 2011

Pete Warnken PacifiCorp IRP Team IRP@PacifiCorp.com

Re: 2011 IRP Modeling

Dear Mr. Warnken:

Interwest Energy Alliance appreciates the opportunity to provide input to promote accurate cost analysis of wind and solar energy in the public process related to development of PacifiCorp's 2011 IRP. We ask you to consider some of the enclosed materials related to wind development costs and net capacity factors as you develop modeling inputs and consider the results. Several questions raised at the public meeting held on December 15, 2010, by Wasatch Wind and others, which require further response and consideration. We want to provide any support you may require to inform the resource planning process related to these issues.

First, wind costs are lower than PacifiCorp assumes in its modeling, due to decreases in turbine prices and related costs. See attached Schedule 1 "Recent Turbines Using the ITC Grant Proxy", and "ITC Grant Recipients – CAPEX For U.S. Wind Farms" attached thereto.

Second, please consider the information related to net capacity factors attached as Schedule 2, with Appendix A "Wind Turbine Brochure Information" and Appendix B "Summary of Utah WREZ Prospects" attached thereto. Your modeling should reflect the increased net capacity factors available from this new equipment available to the market.

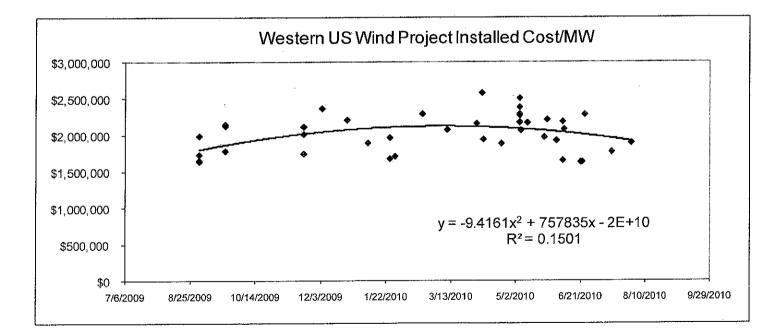
We appreciate the opportunity to provide this input.

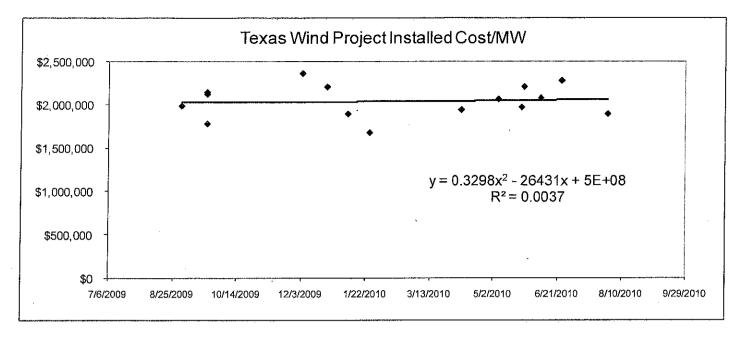
Best regards.

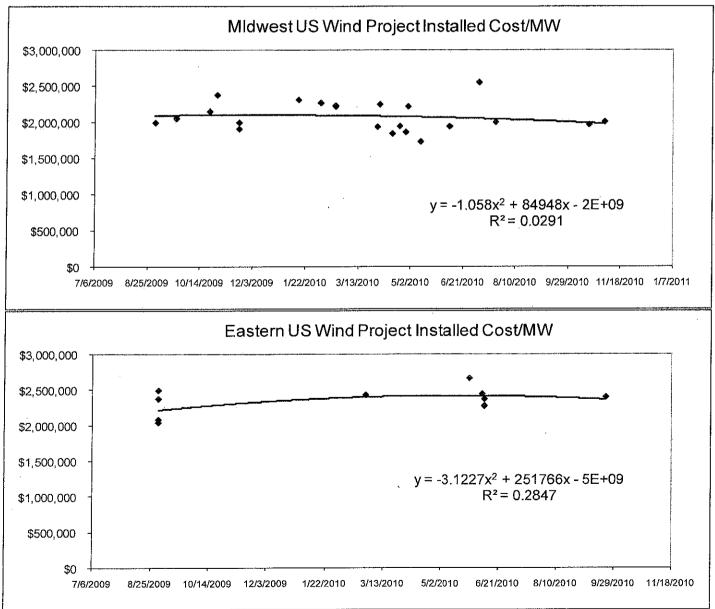
Sincerely,

CRA12UX

Craig Cox Executive Director Schedule 1


Recent Turbine Prices using the ITC Grant Proxy


Under the 2009 Stimulus bill, wind projects became eligible to receive a cash grant (the "ITC Grant") from the US Treasury Department equal to 30% of the "qualified costs" of a wind project within 60 days after the wind project achieved commercial operations. Qualified costs include approximately 95% of total wind project costs.


The US Treasury Department published the recipient, date, and amount of the ITC Grant. Based on the recipient information, we were able to identify the location of the wind project (and the related MW). Based on the amount of the ITC Grant, we were able to approximate the cost of the wind project. This cost approximation assumes that since the ITC Grant represents 30% of 95% of the wind project costs, then by simply taking the ITC Grant amount and dividing it by the product of 30% and 95% (or 28.5%) the total wind project costs are calculated. For example, assume that the ITC Grant was \$100 million. Based on the above assumptions, the wind project cost would be approximated at \$350.9 million (\$100 million / (30% x 95%)).

Using this data from Appendix A we plotted below a polynomial 2^{nd} order trend line to determine the cost per MW for each region of the US. The dataset may reflect higher prices than market as of Dec 2010 due to 1)Developers with frame agreements prior to 2009 when turbine prices were higher placing those turbines on projects in 2009 and 2010 2)A perverse ITC incentive that encourages an increase in capex by requiring turbine suppliers to bundle O/M contracts with the turbine supply.

Looking at the Western US installed cost per MW graph below the trend line indicates turbine prices decreasing beginning in 2Q 2010 and ending at \$1,893,430 per MW on July 30, 2010

Appendix A: ITC Grant Recipients - Capex for US Wind Farms

ITC Grant % of Eligible CAPEX CAPEX % Eligible for ITC Grant Min. Project Size \$ 30.00% 95.00% \$17,000,000 By Region As of Nov. 3, 2010

Min. Project Size \$	\$17,000,000							CapEx		
	Property		Property	Amount	Award	Project	5 Year			-
Business	Location	Region	Туре	Awarded	Date	Size	MACRS	Other	Total	Cost/MW
Evergreen Wind Power V, LLC	Maine	East	Wind	\$40,441,471	9/1/2009	57.0 MW	\$134,804,903	\$7,094,995	\$141,899,898	
Stetson Wind IL LLC	Maine	East	· Wind	\$19,328,865	5/27/2010	25.5 MW	\$64,429,550	\$3,391,029	\$67,820,579	\$2,659,631
Canandaigua Power Partners II, LLC	New York	East	Wind	\$22,296,494	9/1/2009	37.6 MW	\$74,321,647	\$3,911,666	\$78,233,312	\$2,078,775
Canandaigua Power Partners, LLC	New York	East	Wind	\$52,352,334	9/1/2009	88.4 MW	\$174,507,780	\$9,184,620	\$183,692,400	\$2,078,775
Noble Wethersfield Windpark, LLC	New York	East	Wind	\$81,776,684	6/9/2010	126.0 MW	\$272,588,947	\$14,346,787	\$286,935,733	\$2,277,268
Noble Chateaugay Windpark, LLC	New York	East	Wind	\$71,840,780	6/9/2010	106.5-MW	\$239,469,267	\$12,603,646	\$252,072,912	\$2,366,882
Noble Altona Windpark, LLC	New York	East	Wind	\$67,804,589	6/7/2010	97.5 MW	\$226,015,297	\$11,895,542	\$237,910,839	\$2,440,111
Locust Ridge II, LLC	Pennsylvania	East	Wind	\$59,162,064	9/1/2009	102.0 MW	\$197,206,880	\$10,379,309	\$207,586,189	\$2,035,159
Stony Creek Wind Farm, LLC	Pennsylvania	East	Wind	\$33,918,368	6/9/2010	52.5 MW	\$113,061,227	\$5,950,591	\$119,011,818	\$2,266,892
Krayn Wind LLC	Pennsylvania	East	Wind	\$42,204,562	9/1/2009	62.5 MW	\$140,681,873	\$7,404,309	\$148,086,182	\$2,369,379
AES Armenia Mountain Wind, LLC	Pennsylvania	East	Wind	\$69,460,892	2/26/2010	100.5 MW	\$231,536,307	\$12,186,121	\$243,722,428	
Beech Ridge Energy LLC	West Virginia	East	Wind	\$68,609,459	9/22/2010	100.5 MW	\$228,698,197	\$12,036,747	\$240,734,944	\$2,395,373
Blackstone Wind Farm, LLC	Illinois	Midwest	Wind	\$55,202,420	11/20/2009	102.0 MW	\$184,008,067	\$9,684,635	\$193,692,702	\$1,898,948
Streator-Cayuga Ridge Wind	Illinois	Midwest	Wind	\$170,115,870	7/22/2010	300.0 MW	\$567,052,900	\$29,844,889	\$596,897,789	\$1,989,659
Rail Splitter Wind Farm, LLC	Illinois	Midwest	Wind	\$61,447,344	10/23/2009	100.5 MW	\$204,824,480	\$10,780,236	\$215,604,716	\$2,145,321
Grand Ridge Energy IVLLC	Illinois	Midwest	Wind	\$5,706,907	4/29/2010	9.1 MW	\$19,023,023	\$1,001,212	\$20,024,235	\$2,210,582
Grand Ridge Energy III LLC	Tlinois	Midwest	Wind	\$32,094,053	2/19/2010	50.9 MW	\$106,980,177	\$5,630,536	\$112,610,712	\$2,210,582
Grand Ridge Energy II LLC	Illinois	Midwest	Wind	\$32,300,165	2/19/2010	51.0 MW	\$107,667,217	\$5,666,696	\$113,333,912	\$2,222,234
FPL Energy Illinois Wind, LLC	Illinois	Midwest	Wind	\$138,854,047	4/2/2010	217.5 MW	\$462,846,823	\$24,360,359	\$487,207,182	\$2,240,033
EcoGrove Wind LLC	Illinois	Midwest	Wind	\$67,868,807	10/30/2009	100.5 MW	\$226,229,357	\$11,906,808	\$238,136,165	\$2,369,514
Meadow Lake Wind Farm II LLC	Indiana	Midwest	Wind	\$55,212,505	10/19/2010	99.0 MW	\$184,041,683	\$9,686,404	\$193,728,088	\$1,956,849
Meadow Lake Wind Farm LLC	Indiana	Midwest	Wind	\$113,181,518	11/20/2009	199.7 MW	\$377,271,727	\$19,856,407	\$397,128,133	\$1,989,122
Meadow Lake Wind Farm III LLC	Indiana	Midwest	Wind	\$58,886,968	11/3/2010	103.5 MW	\$196,289,893	\$10,331,047	\$206,620,940	\$1,996,338
Hoosier Wind Project,LLC	Indiana	Midwest	Wind	\$69,555,205	1/15/2010	106.0 MW	\$231,850,683	\$12,202,668	\$244,053,351	\$2,302,390
Garden Wind, LLC	Iowa	Midwest	Wind	\$83,576,778	4/14/2010	160.0 MW	\$278,589,260	\$14,662,593	\$293,251,853	\$1,832,824
Crystal Lake Wind III, LLC	lo wa	Midwest	Wind	\$36,267,267	3/31/2010	66.0 MW	\$120,890,890	\$6,362,678	\$127,253,568	\$1,928,084
Lost Lakes Wind Farm LLC	Iowa	Midwest	Wind	\$55,544,888	4/21/2010	100.7 MW	\$185,149,627	\$9,744,717	\$194,894,344	\$1,936,357
Barton Windpower LLC	Iowa	Midwest	Wind	\$93,419,883	9/21/2009	160.0 MW	\$311,399,610	\$16,389,453	\$327,789,063	\$2,048,682
Heritage Stoney Corners	Michigan	Midwest	Wind	\$9,016,266	2/5/2010	14.0 MW	\$30,054,220	\$1,581,801	\$31,636,021	\$2,259,716
Moraine Wind II LLC	Minnesota	Midwest	Wind	\$28,019,520	9/1/2009	49.5 MW	\$93,398,400	\$4,915,705	\$98,314,105	\$1,986,144
Farmers City Wind, LLC	Missouri	Midwest	Wind	\$84,959,857	9/21/2009	146.0 MW	\$283,199,523	\$14,905,238	\$298,104,761	\$2,041,813
Lost Creek Wind, LLC	Missouri	Midwest	Wind	\$107,685,043	7/6/2010	148.5 MW	\$358,950,143	\$18,892,113	\$377,842,256	\$2,544,392
Rugby Wind LLC	North Dakota	Midwest	Wind	\$73,094,236	5/11/2010	149.0 MW	\$243,647,453	\$12,823,550	\$256,471,004	\$1,721,282
Otter Tail Power Company	North Dakota	Midwest	Wind	\$30,182,104	10/23/2009	49.5 MW	\$100,607,013	\$5,295,106	\$105,902,119	\$2,139,437
Elk City Wind	Oklahoma	Midwest	Wind	\$52,254,333	4/27/2010	98.9 MW	\$174,181,110	\$9,167,427	\$183,348,537	\$1,853,878
Day County Wind, LLC	South Dakota	Midwest	Wind	\$54,518,743	6/8/2010	99.0 MW	\$181,729,143	\$9,564,692	\$191,293,835	\$1,932,261
Inadale Wind Farm, LLC	Texas	Texas	Wind	\$94,163,024	1/25/2010	197.0 MW	\$313,876,747	\$16,519,829	\$330,396,575	\$1,677,140
Panther Creek Wind Farm LLC	Texas	Texas	Wind	\$107,636,863	1/8/2010	199.5 MW	\$358,789,543	\$18,883,660	\$377,673,204	\$1,893,099
Penascal II Wind Project LLC	Texas	Texas	Wind	\$108,789,503	7/30/2010	201.6 MW	\$362,631,677	\$19,085,878	\$381,717,554	\$1,893,440
Goat Wind, LP	Texas	Texas	Wind	\$38,499,056	4/7/2010	69.6 MW	\$128,330,187	\$6,754,220	\$135,084,407	\$1,940,868
Langford Wind Power, LLC	Texas	Texas	Wind	\$84,201,645	5/24/2010	150.0 MW	\$280,672,150	\$14,772,218	\$295,444,368	\$1,969,629
Penascal Wind Power LLC	Texas	Texas		\$114,071,646	9/1/2009	201.6 MW	\$380,238,820	\$20,012,569	\$400,251,389	\$1,985,374
South Trent Wind LLC	Texas	Texas	Wind	\$59,494,413	5/6/2010	101,2 MW	\$198,314,710	\$10,437,616	\$208,752,326	\$2,062,770
Notrees Windpower LP	Texas	Texas	Wind	\$90,354,625	6/8/2010	152.6 MW	\$301,182,083		\$317,033,772	
Barton Chapel Wind, LLC	Texas	Texas	Wind	\$72,573,627		120.0 MW	\$241,912,090	and the second se	\$254,644,305	
E.ON Climate & Renewables	Texas	Texas	Wind	\$121,903,306		199.5 MW	\$406,344,353	\$21,386,545	\$427,730,898	\$2,144,015
Pattern Gulf Wind Holdings LLC	Texas	Texas		\$178,004,264	12/23/2009		\$593,347,547	\$31,228,818	\$624,576,365	
Loraine Windpark Project, LLC	Texas	Texas	Wind	\$63,219,787		100.5 MW	\$210,732,623	\$11,091,191	\$221,823,814	\$2,207,202
EC&R Papalote Creek I, LLC	Texas	Texas	Wind	\$116,784,666			\$389,282,220	\$20,488,538	\$409,770,758	
Sunray Wind LLC	Texas	Texas	Wind	\$26,246,825	12/4/2009	39.0 MW	\$87,489,417	\$4,604,706	\$92,094,123	\$2,361,388
Bull Creek Wind LLC	Texas	Texas	Wind	\$91,390,497	9/21/2009	180.0 MW	\$304,634,990		\$320,668,411	
Duri Crown II and Labo						L				·····

Dry Lake Wind Power LLC	Arizona	West	Wind	\$31,345,799	11/20/2009	63.0 MW	\$104,485,997	\$5,499,263	\$109,985,260	\$1,745,798
Northern Colorado Wind Energy, LLC	Colorado	West	Wind	\$99,900,326	11/20/2009	174.3 MW	\$333,001,087	\$17,526,373	\$350,527,460	\$2,011,058
Benentt Creek Windfarm, LLC	Idaho	West	Wind	\$9,762,704	6/21/2010	21.0 MW	\$32,542,347	\$1,712,755	\$34,255,102	\$1,631,195
Hot Springs Windfarm, LLC	Idaho	West	Wind	\$9,767,356		21.0 MW	\$32,557,853	\$1,713,571	\$34,271,425	\$1,631,973
Cássia Wind Farm LLC	Idaho	West	Wind	\$5,123,426	1/29/2010	10.5 MW	\$17,078,087	\$898,847	\$17,976,933	\$1,710,946
Cassia Gulch Wind Park LLC	Idaho	West	Wind	\$9,212,592	1/29/2010	18.9 MW	\$30,708,640	\$1,616,244	\$32,324,884	\$1,710,946
Tuana Springs Energy, LLC	Idaho	West	Wind	\$8,467,825	7/15/2010	16.8 MW	\$28,226,083	\$1,485,583	\$29,711,667	\$1,768,552
NaturEner Glacier Wind Energy 2, LLC	Montana	West	Wind	\$62,249,825	11/20/2009	103.5 MW	\$207,499,417	\$10,921,022	\$218,420,439	\$2,110,342
High Lonesome Mesa, LLC	New Mexico	West	Wind	\$53,632,975	4/21/2010	100.0 MW	\$178,776,583	\$9,409,294	\$188,185,877	\$1,881,859
Hay Canyon Wind LLC	Oregon	West	Wind	\$47,092,555	9/1/2009	100.8 MW	\$156,975,183	\$8,261,852	\$165,237,035	
Star Point Wind Project LLC	Oregon	West	Wind	\$46,454,062	6/7/2010	98.7 MW	\$154,846,873	\$8,149,835	\$162,996,709	
Pebble Springs Wind LLC	Oregon	West	Wind	\$46,543,219	9/1/2009	98.7 MW	\$155,144,063	\$8,165,477	\$163,309,540	\$1,654,605
Wheat Field Wind Power Project LLC	Oregon	West	Wind	\$47,717,155	9/1/2009	96,6 MW	\$159,057,183	\$8,371,431	\$167,428,614	
FPL Energy Stateline II, Inc	Oregon	West	Wind	\$55,386,898	1/25/2010	98.9 MW	\$184,622,993	\$9,717,000	\$194,339,993	
Butter Creek Power, LLC	Oregon	West	Wind	\$3,216,739	5/11/2010	5.0 MW	\$10,722,463	\$564,340	\$11,286,804	\$2,166,154
Wagon Trail, LLC	Oregon	West	Wind	\$2,144,682	5/5/2010	3,3 MW	\$7,148,940	\$376,260	\$7,525,200	\$2,166,345
Ward Butte Windfarm, LLC	Oregon	West	Wind	\$4,304,774	5/5/2010	6.6 MW	\$14,349,247	\$755,224	\$15,104,470	
Eurus Combine Hills II LLC	Oregon	West	Wind	\$39,133,973	6/7/2010	63.0 MW	\$130,446,577	\$6,865,609	\$137,312,186	\$2,179,559
Oregon Trail Windfarm, LLC	Oregon	West	Wind	\$6,388,002	5/5/2010	9.9 MW	\$21,293,340	\$1,120,702	\$22,414,042	
Sand Ranch Windfärm, LLC	Oregon	West	Wind	\$6,393,713	5/5/2010	9.9 MW	\$21,312,377	\$1,121,704	\$22,434,081	<u> </u>
Pacific Canyon Windfarm, LLC	Oregon	West	Wind	\$5,338,964	5/5/2010	8.3 MW	\$17,796,547	\$936,660	\$18,733,207	
Big Top, LLC	Oregon	West	Wind	\$1,073,733	5/5/2010	1.7 MW	\$3,579,110	\$188,374		\$2,283,324
Four Mile Canyon Windfarm, LLC	Oregon	West	Wind	\$6,766,453	5/5/2010	10.0 MW	\$22,554,843	\$1,187,097	\$23,741,940	
Four Corners Windfarm, LLC	Oregon	West	Wind	\$7,124,870	5/5/2010	10.0 MW	\$23,749,567	\$1,249,977	\$24,999,544	
Threemile Canyon Wind L LLC	Oregon	West	Wind	\$7,252,653	4/6/2010	9.9 MW	\$24,175,510	\$1,272,395	\$25,447,905	
Milford Wind Corridor Phase I, LLC	Utah	West	Wind	\$120,147,810	3/10/2010	203.5 MW	\$400,492,700	\$21,078,563	\$421,571,263	
Windy Flats Partners, LLC	Washington	West	Wind	\$218,482,326	6/2/2010	398,8 MW	\$728,274,420	\$38,330,233	\$766,604,653	
Harvest Wind	Washington	West	Wind	\$60,755,706	4/2/2010		\$202,519,020	\$10,658,896	\$213,177,916	
Puget Sound Energy, Inc.	Washington	West	Wind	\$28,674,664	2/19/2010	44.0 MW	\$95,582,213	\$5,030,643	\$100,612,856	\$2,286,656

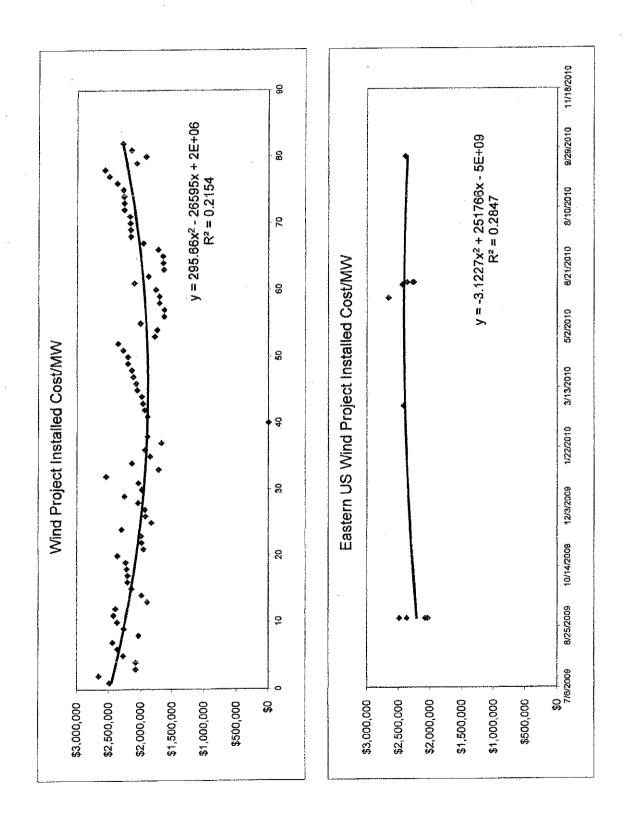
.

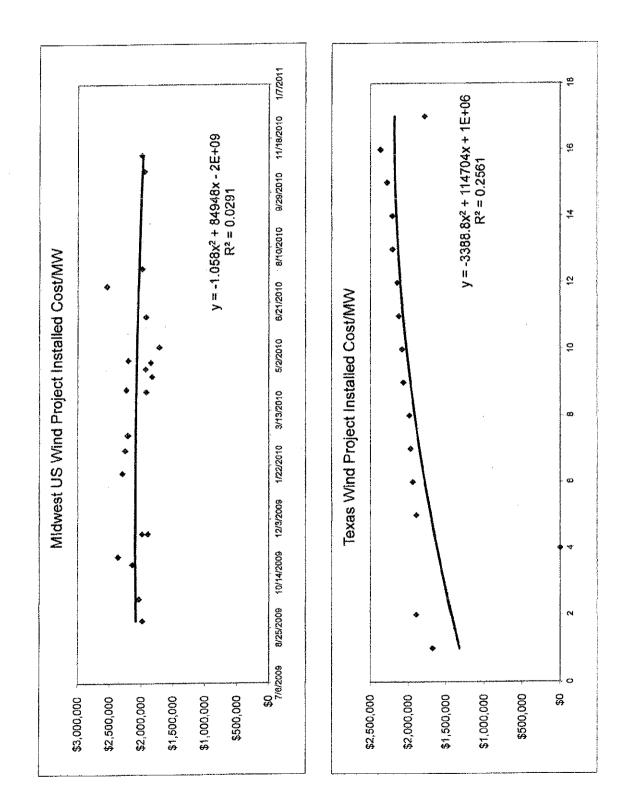
	2
	arm
	Far
	nd
	Win
	r U.S.
-	<u>.</u>
ent	5
ğ	Q.
e.	Å.
~	Ũ
an	сđ
Ľ,	Ŧ
TCC	<u>e</u>
Ĕ	St
) and the local division of the local divisi

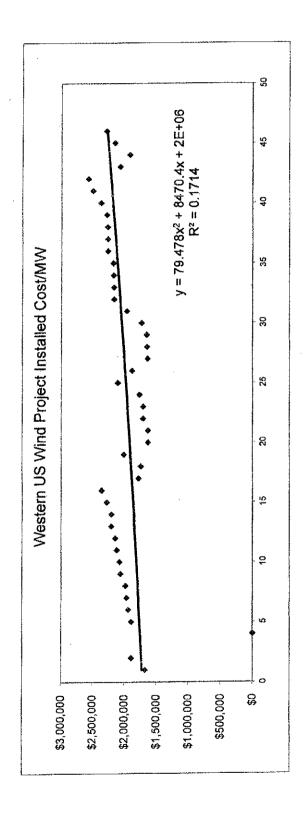
Assumptions ITC Grant % of Eligible CAPEX CAPEX % Eligible for ITC Grant Min. Project Size §

By Region As of Nov. 3, 2010

30.00% 95.00% \$17,000,000


CapEx


	ŕ		ŝ			1		Lapex		
Business	Location	Region	гторетту Түре	Amount Awarded	Award Date Project Size	Project Size	5 Year MACRS	Other	Total (Cost/MW
Evergreen Wind Power V, LLC	Maine	East	Wind	\$40,441,471	9/1/2009	57.0 MWI	\$134,804,9031	\$7,094,995	\$141 809 8081	S7 480 477
Stetson Wind II, LLC	Maine	East	Wind	\$19,328,865	5/27/2010	25.5 MW	\$64.429.550	\$3.391.029	\$67,820,579	\$2 659 631
Canandaigua Power Partners II, LLC	New York	East	Wind	\$22,296,494	9/1/2009	37.6 MW	\$74.321.647	\$3.911.666	\$78.233.312	\$2 078 775
Canandaigua Power Partners, LLC	New York	East	Wind	\$52,352,334	9/1/2009	88.4 MW	\$174,507,780	\$9,184,620	\$183,692,400	\$2.078.775
Noble Wethersfield Windpark, LLC	New York	East	Wind)	\$81,776,684	6/9/2010	126.0 MW	\$272,588,947	\$14,346,787	\$286,935,733	\$2.277.268
Noble Chateaugay Windpark, LLC	New York	East	Wind	\$71,840,780	6/9/2010	106.5 MW	\$239,469,267	\$12,603,646	\$252,072,912	\$2.366.882
Noble Altona Windpark, LLC	New York	East	Wind	\$67,804,589	6/7/2010	97.5 MW	\$226,015,297	\$11,895,542	\$237,910,839	\$2,440,111
Locust Ridge II, LLC	Pennsylvania	East	Wind	\$59,162,064	9/1/2009	102.0 MW	\$197,206,880	\$10,379,309	\$207,586,189	\$2,035,159
Stony Creek Wind Farm, LLC	Pennsylvania	East	Wind	\$33,918,368	6/9/2010	52.5 MW	\$113,061,227	\$5,950,591	\$119.011.818	\$2,266,892
Krayn Wind LLC	Pennsylvania	East	Wind	\$42,204,562	9/1/2009	62.5 MW	\$140,681,873	\$7,404,309	\$148,086,182	\$2,369,379
AES Armenia Mountain Wind, LLC	Pennsylvania	East	Wind	\$69,460,892	2/26/2010	100.5 MW	\$231,536,307	\$12,186,121	\$243.722.428	\$2,425,099
Beech Ridge Energy LLC	West Virginia	East	Wind	\$68,609,459	9/22/2010	100.5 MW	\$228,698,197	\$12,036,747	\$240,734,944	\$2,395,373
Blackstone Wind Farm, LLC	Illinois	Midwest	Wind	\$55,202,420	11/20/2009	102.0 MW	\$184,008,067	\$9,684,635	\$193,692,7021	\$1.898.948
Streator-Cayuga Ridge Wind	Illinois	Midwest	Wind	\$170,115,870	7/22/2010	300.0 MW	\$567,052,900	\$29,844,889	\$596,897,789	\$1.989.659
Rail Splitter Wind Farm, LLC	Illinois	Midwest		\$61,447,344	10/23/2009	100.5 MW	\$204,824,480	\$10,780,236	\$215,604,716	\$2,145,321
Grand Ridge Energy IV LLC	Illinois	Midwest		\$5,706,907	4/29/2010	9.1 MW	\$19,023,023	\$1,001,212	\$20,024,235	\$2.210.582
Grand Ridge Energy III LLC	Illinois	Midwest		\$32,094,053	2/19/2010	50.9 MW	\$106,980,177	\$5,630,536	\$112,610,712	\$2,210,582
Grand Ridge Energy II LLC	Illinois	Midwest		\$32,300,165	2/19/2010	51.0 MW	\$107,667,217	\$5,666,696	\$113,333,912	\$2,222,234
FPL Energy Illinois Wind, LLC	Illinois	Midwest		\$138,854,047	4/2/2010	217.5 MW	\$462,846,823	\$24,360,359	\$487,207,182	
EcoGrove Wind LLC	Illinois	Midwest	Wind	\$67,868,807	10/30/2009	100.5 MW	\$226,229,357	\$11,906,808	\$238,136,165	1
Meadow Lake Wind Farm II LLC	Indiana	Midwest		\$55,212,505	10/19/2010	WM 0.99	\$184,041,683	\$9,686,404	\$193,728,088	\$1,956,849
Meadow Lake Wind Farm LLC	Indiana	Midwest		\$113,181,518	11/20/2009	WM 7.991	\$377,271,727	\$19,856,407	\$397,128,133	\$1,989,122
Meadow Lake Wind Farm III LLC	Indiana	Midwest		\$58,886,968	11/3/2010	103.5 MW	\$196,289,893	\$10,331,047	\$206,620,940	\$1,996,338
Hoosier Wind Project, LLC	Indiana	Midwest		\$69,555,205	1/15/2010	106.0 MW	\$231,850,683	\$12,202,668	\$244,053,351	\$2,302,390
Garden Wind, LLC	Iowa	Midwest	Wind	\$83,576,778	4/14/2010	160.0 MW	\$278,589,260	\$14,662,593	\$293,251,853	\$1,832,824
Crystal Lake Wind III, LLC	Iowa	Midwest	Wind	\$36,267,267	3/31/2010	66.0 MW	\$120,890,890	\$6,362,678	\$127,253,568	\$1,928,084
Lost Lakes Wind Farm LLC	Iowa	Midwest		\$55,544,888	4/21/2010	100.7 MW	\$185,149,627	\$9,744,717	\$194,894,344	\$1,936,357
Barton Windpower LLC	lowa	Midwest		\$93,419,883	9/21/2009	160.0 MW	\$311,399,610	\$16,389,453	\$327,789,063	\$2,048,682
Heritage Stoney Comers	Michigan	Midwest		\$9,016,266	2/5/2010		\$30,054,220	\$1,581,801	\$31,636,021	\$2,259,716
Moraine Wind II LLC	Minnesota	Midwest	Wind	\$28,019,520	9/1/2009	49.5 MW	\$93,398,400	\$4,915,705	\$98,314,105	\$1,986,144
Farmers City Wind, LLC	Missouri	Midwest		\$84,959,857	9/21/2009	146.0 MW	\$283,199,523	\$14,905,238	\$298,104,761	\$2,041,813
Lost Creek Wind, LLC	Missouri	Midwest	Wind	\$107,685,043]	7/6/2010	148.5 MW	\$358,950,143	\$18,892,113	\$377,842,256	\$2,544,392
Rugby Wind LLC	North Dakota	Midwest	Wind	\$73,094,236	5/11/2010	149.0.MW	\$243,647,453	\$12,823,550	\$256,471,004	\$1,721,282
Otter Tail Power Company	North Dakota	Midwest		\$30,182,104	10/23/2009	49.5 MW	\$100,607,013	\$5,295,106	\$105,902,119	\$2,139,437
Elk City Wind	Oklahoma	Midwest		\$52,254,333	4	98.9 MW	\$174,181,110	\$9,167,427	S183,348,537	\$1,853,878
Day County Wind, LLC	South Dakota	Midwest		\$54,518,743		99.0 MW	\$181,729,143	\$9,564,692	\$191,293,835	\$1,932,261
Inadale Wind Farm, LLC	Texas	Texas		\$94,163,024	1/25/2010	WM 0'L61	\$313,876,747	\$16,519,829	\$330,396,575	\$1,677,140
Panther Creek Wind Farm, LLC	Texas	Texas	Wind	\$107,636,863	1/8/2010	WM 2.991	\$358,789,543	\$18,883,660	\$377,673,204	\$1,893,099


CapEx

	F		ć			1		Lapex		
Business	Propeny Location	Region	Property Tune	Amount Awarded	Award Date Project Size		S Van MACDS			
Penascal II Wind Project LLC	Texas	Texas	Wind	\$108.789.503	7/30/2010	1WM A 100	8367 631 6771	CUICI 010 010	~ L_	COSUM W
Goat Wind, LP	Texas	Texas	Wind	\$38 499 056	4/7/2010	1/MW 9 09	110,100,2000	0/0/07/20	PCC, 11, 10C0	\$1,693,44U
Langford Wind Power, LLC	Texas	Texas	Wind	\$84.201.645	2/24/2010	150 0 MW	\$220 673 150	01, 77, 710	0100,404,401	21,940,808
Penascal Wind Power LLC	Texas	Texas	Wind	\$114.071.646	0000/1/6	201 6 MW/	C160 738 070	810 012 570 012 500	\$400 \$\$1 200	\$1,509,029
South Trent Wind LLC	Texas	Texas	Wind	\$59.494.413	2/6/2010	WW C 101	C108 315 710	\$10,012,009	\$400,231,389	51,985,574
Notrees Windpower LP	Texas	Texas	Wind	\$90.354.625	0102/8/9	152 6 MW	\$301 182 082	010/12/010	07C'7C/ 0076	\$2,002,//0
Barton Chapel Wind, LLC	Texas	Texas	Wind	\$72.573.627	010200	120.0 MW	\$241 917 090	210 737 713	\$31/,U33,//2	214//0/20
E.ON Climate & Renewables	Texas	Texas	Wind	\$121.903 306	0/0/10/0	199 5 MW	5406 344 353	C17/7C/1718	000 024 044,000	92,122,U30
Pattern Gulf Wind Holdings LLC	Texas	Texas	Wind	\$178,004,264	0007/12//	WW C.521	5502 247,001	010 010 170	8674 872 365	52, 144, UID
Loraine Windpark Project, LLC	Texas	Texas	Wind	\$63.210.787	1010C/9C/9	1/2/1/2 2002	C 10 72 72 73	\$11,001,101	00010/0/01000	32,202,422
EC&R Papalote Creek L. L.C	Texas	Tevas	Wind	\$116 784 KKK	0100/107/2	MIN COOL	000,207,0120	161,160,116	\$100 500 500 500	\$2,207,202
Sunrav Wind H C	Tower		PHT A	000,70,0110	0107/47/0	1 / 2 / 2 / M M	077,282,28C4	\$20,488,238	\$409, ///0, /58	\$2,278,403
Rull Creek Wind 11 C	Taves	Tevec	DULW	1078,042,026	12/4/2009	100 MW	587,489,417	\$4,604,706	\$92,094,123	\$2,361,388
	1 CA45	I CVGS		1744,046,146	6007/17/6	18U.U M W	\$504,624,990	\$16,033,421	\$320,668,411	\$1,781,491
Ury Lake Wind Power LLC	Arizona	West	Wind	\$31,345,799	11/20/2009	63.0 MW	\$104,485,997	\$5,499,263	\$109,985,260	\$1.745.798
Northern Colorado Wind Energy, LLC	Colorado	West	Wind	\$99,900,326	11/20/2009	174.3 MW	\$333,001,087	\$17,526,373	\$350,527,460	\$2.011.058
Benentt Creek Windfarm, LLC	Idaho	West	Wind	\$9,762,704	6/21/2010	WM 0.12	\$32,542,347	\$1.712.755	\$34.255,102	\$1 631 195
Hot Springs Windfarm, LLC	Idaho	West	Wind	\$9,767,356	6/22/2010	21.0 MW	\$32,557,853	\$1,713,571	\$34 271 425	S1 631 973
Cassia Wind Farm LLC	Idaho	West	Wind	\$5,123,426	1/29/2010	10.5 MW	\$17,078,087	\$898,847	\$17 976 933	CI 710 046
Cassia Gulch Wind Park LLC	Idaho	West	Wind	\$9,212,592	1/29/2010	WM 6.81	\$30.708.640	S1.616.244	ST2 324 884	\$1 710 046
Tuana Springs Energy, LLC	Idaho	West	Wind	\$8.467.825	7/15/2010	1_	\$28,226,083	C3 285 585	820 711 667	\$1 769 557
NaturEner Glacier Wind Energy 2, LLC	Montana	West	Wind	\$62,249,825	11/20/2009		\$207.499.417	S10.921.022	\$218 420 439	\$2 110 347
High Lonesome Mesa, LLC	New Mexico	West	Wind	\$53,632,975	4/21/2010	:	\$178.776.583	\$9,409,294	\$188,185,877	\$1 881 850
Hay Canyon Wind LLC	Oregon	West	Wind	\$47,092,555	9/1/2009	I	\$156,975,183	\$8.261.852	\$165.237.035	\$1,630,756
Star Point Wind Project LLC	Oregon	West	Wind	\$46,454,062	6/7/2010	WM 7.86	\$154,846,873	58,149,835	\$162.996.709	\$1.651.436
Pebble Springs Wind LLC	Oregon	West	Wind	\$46,543,219	9/1/2009	98.7 MW	\$155,144,063	\$8,165,477	\$163,309,540	\$1,654,605
Wheat Field Wind Power Project LLC	Oregon	West	Wind	\$47,717,155	9/1/2009	96.6 MW	\$159,057,183	\$8,371,431	\$167,428,614	\$1,733,215
FPL Energy Stateline II, Inc	Oregon	West	Wind	\$55,386,898	1/25/2010	WW 6.86	\$184,622,993	\$9,717,000	\$194,339,993	\$1,965,015
Butter Creek Power, LLC	Oregon	West	Wind	\$3,216,739	5/11/2010	5.0 MW	\$10,722,463	\$564,340	\$11,286,804	\$2,166,154
Wagon Trail, LLC	Oregon	West	Wind	\$2,144,682	5/5/2010		\$7,148,940	\$376,260	\$7,525,200	\$2,166,345
Ward Futte Windfarm, LLC	Oregon	West	Wind	\$4,304,774	5/5/2010		\$14,349,247	\$755,224	\$15,104,470	\$2,174,128
Eurus Combine Hills II LLC	Oregon	West	Wind	\$39,133,973	6/7/2010	Ŷ	\$130,446,577	\$6,865,609	\$137,312,186	\$2,179,559
Oregon Trail Windfarm, LLC	Oregon	West	Wind	\$6,388,002	5/5/2010		\$21,293,340	\$1,120,702	\$22,414,042	\$2,264,045
Sand Kanch Windtarm, LLC	Oregon	West	Wind	\$6,393,713	5/5/2010		\$21,312,377	\$1,121,704	\$22,434,081	\$2,266,069
Pacific Canyon Windfarm, LLC	Oregon	West	Wind	\$5,338,964	5/5/2010		\$17,796,547	\$936,660	\$18,733,207	\$2,270,692
Big Top, LLC	Oregon	West	Wind	\$1,073,733	5/5/2010		\$3,579,110	\$188,374	\$3,767,484	\$2,283,324
Four Mile Canyon Windfarm, LLC	Oregon	West	Wind	\$6,766,453	5/5/2010		\$22,554,843	\$1,187,097	\$23,741,940	\$2,374,194
Four Corners Windfarm, LLC	Oregon	West	Wind	\$7,124,870	5/5/2010	10.0 MW	\$23,749,567	\$1,249,977	\$24,999,544	\$2,499,954
Threemile Canyon Wind I, LLC	Oregon	West	Wind	\$7,252,653	4/6/2010	WM 9.9	\$24,175,510	\$1,272,395	\$25,447,905	\$2,570,495
Milford Wind Corridor Phase I, LLC	Utah	West	Wind	\$120,147,810	3/10/2010	203.5 MW	\$400,492,700	\$21,078,563	\$421,571,263	\$2.071,603
Windy Flats Partners, LLC	Washington	West	Wind	\$218,482,326	6/2/2010	398.8 MW	\$728,274,420	\$38,330,233	\$766,604,653	\$1.922.278
Harvest Wind	Washington	West	Wind	\$60,755,706	4/2/2010		\$202,519,020	\$10,658,896	\$213,177,916	
Puget Sound Energy, Inc.	Washington	West	Wind	\$28,674,664	2/19/2010	44.0 MW	\$95,582,213	\$5,030,643	\$100,612,856	\$2,286,656

Total \$15,384,502,717 \$809,710,669 \$16,194,213,386

Schedule 2

Wyoming Capacity Factor Recommendations

For IRP modeling, we recommend that Pacificorp use a 43.6 percent or higher net capacity factor (NCF) for future Wyoming wind projects. One method Pacificorp should consider is the average of the predicted capacity factors and adjusted costs of the already built projects using more recent, next generation turbine performance and cost data.

GE 1.5 MW sle turbines where installed on all Pacificorp built sites from 2008 through 2010. The following chart illustrates the p50 capacity factor predicted for each of the sites according to various testimony in PUC dockets in Utah (10-035-23, 10-035-89) and in Oregon (UE200, 210).

Wind Projects Built by	Pacificorp (20	008 through 2010)		·····
Facility Name	MW	COD	NCF	Turbine Type
Glenrock Wind I	99	2008	37.40%	66 x 1.5MW x 77m rotor, GE SLE
Seven Mile Hill Wind	99	2008	41.00%	66 x 1.5MW x 77m rotor, GE SLE
Seven Mile Hill Wind II	19.5	2008	40.30%	66 x 1.5MW x 77m rotor, GE SLE
Glenrock Wind III	39	2009	36.4%	13 x 1.5MW x 77m rotor, GE SLE
Rolling Hills Wind	99	2009	33.80%	66 x 1.5MW x 77m rotor, GE SLE
High Plains	99	2009	35.30%	66 x 1.5MW x 77m rotor, GE SLE
McFadden Ridge	28.5	2009	34.50%	19 x 1.5MW x 77m rotor, GE SLE
Dunlap	111	2010	38.60%	74 x 1.5MW x 77m rotor, GE SLE
	Avg NCF wit	h Rolling Hills	37.2%	
		hout Rolling Hills	37.6%	

Table 1: NCFs of Wyoming Pacificorp Projects

We averaged the NCF with and without the Rolling Hills project to reflect the Oregon PUC disallowance of certain capital costs due to a lower than expected capacity factor. We did not average the capacity factors for projects in western Wyoming as those projects do not reflect the higher capacity factors experienced in the central Wyoming projects. Using the average NCF for existing Pacificorp projects is arguably a reasonable proxy for capacity factors if the GE SLE turbine were the most appropriate turbine going forward. However, this turbine has lower NCF than newer turbines now on the market (cost analyis is covered later). These advanced turbines with longer, more efficient blades for a given nameplate capacity came on the market in 2009 and are being supplied in commercial quantities to projects by established, credible suppliers. Therefore, we recommend the NCF be adjusted upward to reflect these advances as follows.

We selected the turbines in the below table for general wind suitability in Wyoming. To determine turbine potential improvements, in the below table we compared the NCF of three of the most prevalent "advanced" turbines with three "workhorse" turbines that have been supplied in the United States for several years. The advanced turbines have been erroniously classified by some as "low wind speed" turbines leading to inaccurate conclusions that they are not suitable in high wind speed areas. This generally is true at sea level but not at high altitude. In our experience, most sites above 7000 feet are suitable for these turbines as long as the average annual wind speeds do not exceed 9.3

m/s*. Increasing the 8.5 m/s sea level limit for Class 2 turbines is governed by the altitude derate ie. (alt density/sealevel density)^.33. We have found that many Wyoming sites also exhibit low turbulence and on a case by case basis the wind speed average upper limit can be even higher depending on turbine spacing and the wind rose. Competitive wind speeds in Wyoming generally average 8.5 to 9.5 m/s and while not definitive for the use of advanced turbine at all Wyoming sites, these turbines are suitable at most sites and should be modeled in the IRP. Of note, as further argument, GE has determined depending on final layouts and turbulence intensity that the xle model is meterologically suitable for some wind projects at 7500' altitude with annual average wind speeds of 8.5 m/s to over 10 m/s.

						Relative	Annual Ener	gy Yield		į
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Turbine	Nameplate	Rotor	Rotor Area/	for indicat	ed avg WS	(7000' alt)		
4444000 AND	**** ***** ***************************	Class	Size MW	Dia (m)	MW size	9 m/s	8 m/s	7 m/s		
	GE 1.5 sle	2	1.5	77	3104	100%	100%	100%		
Workhorse	Suzion S88	2	2.1	88	2896	97%	96%	95%		
	Clipper C96	2	2.5	96	2895	97%	96%	95%		
	GE 1.5 xle	2b	1.5	82.5	3564	111%	114%	1 1 6.4%		
Advanced	Vestas V90	2b	1.8	90	3534	110%	114%	115%		
	Siemens 2.3	2b	2.3	101	3483	109%	112%	114%	5	-
'For normal t	urbulence, the	advanced	turbines are	generally	suitable for sea nes. At 7000 fe	level sites	with less th	an an annual	avg wind :	speed

9.3 m/s and somewhat higher for lower turbulence intensity sites.

Table 2: Increase in Energy Yield using Advanced Turbines

Using the GE sle and xle power curves, we determined the increase in annual energy yield of the GE xle compared to the GE sle for a typical Wyoming wind distribution (Wiebull K=2) for three wind speeds. The capacity factor increase ranges from 111% to 116%. We ran Wk sensitivities of 1.8 to 2.2, which are the ranges of wind distributions in the NREL Western Wind and Solar Integration study for our random selection of commercially viable wind areas. The NCF increase for the advanced turbines across the expected Wk's and wind speeds was 111% to 118% (see table below).

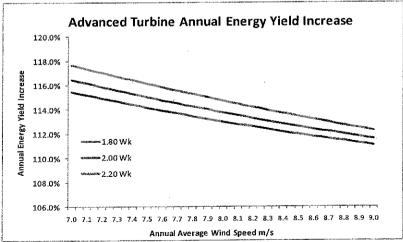


Chart 1: Energy Yield Improvement using Advanced Turbines

Back calculating from the average NCF at the Pacificorp projects, with a 15% gross to net energy loss, reveals annual wind speeds of 8.2 to 9.2 m/s. For this wind speed range and 1.8 to 2.2 Wk the range of NCF increases ranged from 111% to 114%. We recommend that a 8.6 m/s wind speed represents the average wind speed for the Pacificorp projects thus by selecting 112% and an expected minimum Wk of 1.8 from Chart 1 gives a minimum capacity factor for Wyoming as follows:

> Using 37.6% NCF as the average from table 1 Adjusted NCF = $37.6\% \times 112\% = 42.1\%$

Next, we wanted to determine the NCF improvement of other advanced turbines compared to the GE xle results. We compared the rotor area/mw size "rotor ratio" for each turbine and made scaling adjustments to match the power curves. Generally, the capacity factor change is directly proportional to the change in rotor ratio. Using this method, the Vestas V90-1.8 and the Siemens 2.3 improved the NCF by 109% to 115% greater than the GE sle and slightly lower than the GE xle. As expected, all three advanced turbines are in the same general range of performance improvement as all three turbines compete directly in the same markets. Therefore, for simplicity, we recommend using 112% NCF improvement for all three turbines over the older technology workhorse turbines. In summary, the evidence indicates a 42.1% NCF for Wyoming IRP modeling.

Also it could be argued that the capacity factor to model should be from the latest RFP benchmark (Dunlap) as this process reflects the most recent robust competitive environment. Consider the Testimony of Stefan A Bird, PacifiCorp, in Utah Public Service Commission Docket No. 10-035-89, Exhibit E, p. 11, lines 232-235 (citing Benchmark memo at p. 11-12): "Finally, the IE found that the estimated Benchmark capacity factor was within the range of capacity factors from proposals associated with potential resources in the nearby vicinity." Since the estimated capacity factor for Dunlap is 38.6% the adjusted NCF with the better turbines is:

Adjusted NCF = $38.6\% \times 112\% = 43.2\%$

Utah Capacity Factor Recommendations


For IRP modeling, we recommend that Pacificorp use a 34 percent or higher net capacity factor (NCF) for future Utah wind projects up to 1,000 MW's. See Exhibit B. The was determined by using the same rationale as used above.

Appendix A

1.5 MW Wind Turbine Brochure;

http://www.gepower.com/prod_serv/products/wind_turbines/en/15mw/index.htm

[Alternate website] <u>http://www.cems.uvm.edu/~phines/classes/ee113/2011-spring/ge-1.5MW-brochure.pdf</u>

http://site.ge-energy.com/prod_serv/products/wind_turbines/en/15mw/specs.htm

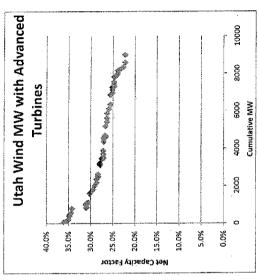
1.5 MW Wind Turbine Technical Specifications

		TC3+			TC2		TCI
		1.5-82.5	1.6-82.5	1.6-77	1.5-77	1.5-82.5	1.5-70
Rotor Diameter	m	82.5	82.5	77	77	82.5	70.5
Hub Heights	Μ	80/100	80/100	80	64.7, 80	80	64.7
Frequency	Hz	50/60	60	50/60	50/60	60	60
	Vavg; m/s	8.0	8.0	8.0	8.5	8.5	10.0
	Vref; m/s	37.1	40.0	39.1	39.1	40.0	50.0
	Ve50; m/s	52.5	56.0	55.0	55.0	56.0	70.0
	Cut-In; m/s	3.5	3.5	3.5	3.5	3.5	4.0
	Cut-Out; m/s	20	25	25	25	25	25
	IEC Wind Class	IEC TC III+	IEC TC III+	IEC TC III+	IEC TC IIA	IEC TC IIB	IEC TC lb

1.5 MW Wind Turbine Technical Specifications

Site Number Name County 17 Blue Min Plateau Uinteih 49 Biefers Lambing Ground Washington 1 Goose Creak Mitra Box Eler 14 Goose Creak Mitra Box Eler 13 Block Ridge Carbon 48 Beaver Dam Mitra Vashington 33 Milerel Mitra Box Eler 33 Binck Ridge Carbon 46 Harnony Mitra Beaver/Millard 10 Porcupine Ridge Summit 21 Wasatch Plateau Utah/Carbon 33 Milford Noth Beaver/Millard 11 Porcupine Ridge Summit 21 Wasatch Plateau Sanpete/Utah 7 Crawford Mitn Beaver/Millard 21 Wasatch Plateau Sanpete/Utah 21 Wasatch Plateau Sanpete/Utah 23 Milford Noth Beaver/Millard 23 Milford Noth Beaver/Millard 23 Milford Mitn Beaver/Millard 23 Wah Wah Valley Beaver/Millard 23 Pintura Washington 23 Pintura Washington 23 Beaver/Millard 24 Pintura Washington 25 Sand Mitn Mater Beaver/Millard 26 Beaver/Millard	Potential MM M MT M MT M MT M 150 N 70 N 200 M 200 M 200 M 200 Iard 500 Iard 200 Iard 150 Iard 120 Iard 500 Iard 500	Estimation Technique for Muke for Muke 6 MW/Rm 5 MW/Rm 5 MW/Rm 6 MW/Rm 5 MW/Rm 5 MW/Rm 6 MW/Rm 7 MW/Rm 8 MW/Rm 7 MW/Rm 8 MW/Rm	Estimated Long-Term Speed (mps) 7.4 7.4 7.4 7.4 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1		acitor	GE-1.5sle	-	GCF Welbull Ava Air at air)		1		
Name Blue Mth Plateau Blue Mth Plateau Bleves Eambing Ground Goose Creak Mths South Mth South Mth Black Rock Beaver Dam Mths Black Rock Beaver Dam Mths Black Rock Lewis Rock Lewis Flateau Lewis Flateau Crawford Mth Milford North Parrony Mths Monte Cristo Crawford Mth Monte Cristo Torrey Pithtura Pithtura Morgan Ridge Morgan Ridge	Pode In multities and and and and and	Technique for MW* 6 MW/Rm 6 MW/Rm 6 MW/Rm 5 MW/Rm 5 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 8 A 15 RD 5 MW/Rm 6 MW/Rm 6 MW/Rm 8 CM/Rm 8	80-m 80-m 60 7.2 7.2 7.4 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2				Alt A.F						1
Blue Mith Plateau Blue Mith Plateau Goose Creek Miths South Mith Ford Ridge Beaver Dam Miths Mineral Miths Mineral Miths Mineral Miths Mineral Miths Carkston Mith Lewis Peak Lewis Peak Lewis Peak Lewis Peak Annory Miths Mithord Morth Portupine Ridge Waaatch Plateau Waaatch Plateau Crawford Mith Monte Cristo Garrison Torrey Pithtura Monte Solint Ridge Morgen Ridge	ard ard ard	In MWW In MWW 6 MWU/km	Speed (mps) 6.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Uensity 30.3 23.5 23.5 23.5 28.3 28.9	CIEVALOR (11)	Gross Cap.	e		Avg A	Aìr	GUF atair Cum		NCF with 15%
Bieles Lembing Ground Bieles Lembing Ground Goose Creek Miths Fouth Mith Ford Bigge Beaver Pain Miths Mineral Miths Mineral Miths Mineral Miths Beaver Pain Miths Mineral Miths Beaver Round Beaver Round Beaver Round Brack Rock Clarkston Mith Lewis Peak Schoffeld Harmony Miths Milford North Porturbine Ridge Waastch Plateau Carvford Mith Crawford Mith Monte Cristo Garrison Torray Wah Wah Valley Sand Mith Mithure Monte Cristo Sand Mith	ard ard	6 MW/Rm 6 MW/Rm 5 MW/Rm 5 MW/Rm 5 MW/Rm 5 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 6 MW/Rm 8 15 RD 5 MW/Rm 6 MW/Rm 8 25 RD 5 MW/Rm 8 25 RD 8 25 R	7.4 7.4 7.4 7.4 7.1 7.1 7.0 7.1 7.1 7.1 7.1 7.1	23.5 23.5 28.3 28.9		Factor (%)**	WS m/s K	Le Le	I a		dens. M		SSO
Goose Creek Mitrs South Mitn Ford Ridge Beaver Dam Mitns Black Rock Clarkston Mitn Lewis Peak Schoffeld Harmony Mitns Milford North Porcupine Ridge Waastch Plateau Crawford Mitn Mindre Cristo Garrison Torrey Wah Wah Valley Sand Mitn Hartura Pintura Pintura Pintura Pintura	ard by and the ard	6 MW/Km 5 MW/Km 5 MW/Km 5 MW/Km 5 MW/Km 6 MW/Km 6 MW/Km 6 MW/Km 6 MW/Km 6 MW/Km 4 X 15 RD 5 MW/Km 6 MW/Km 6 MW/Km 6 MW/Km	7.4 7.4 7.1 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1	23.5 28.3 28.9		20.02	7.40	2.0	000	0.20	#N/A	Ċ	V/N#
South Mtn Ford Ridge Beard Ridge Bark Rock Allinereit Mtns Black Rock Lexisteon Mtn Lexis Paak Schoffeled Harmony Mtns Milford North Porcupine Ridge Waastch Plateuu Crawford Mtn Monte Cristo Garrison Crawford Mtn Monte Cristo Garrison Torrey Wah Wah Valley Sad Mtn Horse Point Ridge Morgan Ridge		5 MW/km 5 MW/km 5 MW/km 5 MW/km 4 x 15 RU, 6 MW/km 6 MW/km 6 MW/km 5 MW/km 6 MW/km 6 MW/km 4 x 15 RD, 4 x 15 RD, 3 ee remarks	71 7.4 7.2 7.2 7.1 7.1 7.1	28.3 28.9	8000	22:2	7 36	000	6 8	001	41.4%	175	50.1%
Ford Ridge Beaver Dam Mitnes Minetal Mina Black Rock Clarkston Mitn Lewis Peak Lewis Peak Schoffeid Harmony Mitns Milford North Porcupine Ridge Wasatch Plateau Crawford Mitn Monte Cristo Gartison Fintura Monte Point Ridge Mitn Hurse Pintura Morgan Ridge		6 MW/km 5 MW/km 5 MW/km 4 x 15 RD, 6 MW/km 6 MW/km 6 MW/km 6 MW/km 6 MW/km 4 x 15 RD 3 ee remarks	7.4 7.1 7.2 7.1 7.1 7.1	28.9	5500	28.5	1 29	00	85	701	701 17	210	24.00
Beaver Dam Muns Milneral Mtns Black Rock Clarkskon Mtn Lewis Peak Schofield Harmoryt Mtns Mildrod North Porcupine Ridge Wasatch Plateau Crawford Mtn Monte Cristo Garrison Torrys Man Wah Valley Sand Mtn Horse Point Ridge Morgan Ridge		5 MW/km 5 MW/km 5 MW/km 6 MW/km 6 MW/km 6 MW/km 6 MW/km 6 MW/km 4 X 15 RD 5 MW/km 6 MW/km 6 MW/km 6 MW/km 6 MW/km 8 et remarks	7.1 7.2 7.1 7.1 7.1 7.2	с Рс С	0006	26.6	7.27	2.0	8	10.0	40 0%	514	24.975
Mineral Mtns Black Rock Clarkshon Mtn Lewis Peak Schoffeld Harmony Mtns Milford Nutns Milford Mtn Portupine Ridge Wasatch Plateau Crawford Mtn Monte Cristo Garrison Torrey Wah Wah Valley Sand Mtn Horse Point Ridge Morgan Ridge		5 MW/km 6 MW/km 6 MW/km 6 MW/km 6 MW/km 6 MW/km 5 MW/km 6 MW/km 4 X 15 RD 5 MW/km 4 X 15 RD 5 MW/km 6 MW/km	7.2 7.0 7.1 7.1 7.1	7.47	5900	24.1	7.25	202	38	103	40.8%	275	201 21
Black Rock Clarkston Mth Lewis Peak Schofleid Harmony Mths Milford North Poroline Ridge Wasarch Pateau Crawford Mth Monte Cristo Garrison Torrey Pintura Pintura Pintura Pintura Pintura Morgan Ridge		4 x 15 RD, 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 6 M/W/Prm 7 x 15 RD, 4 x 15 RD 3 see remarks	7.0 7.1 7.1	25,8	7700	24.6	7.19	2.0	38	0.96	40.4%	565	
Clarkston Mtn Lewis Peak Schoffield Harmony Mtns Aniford North Porcupine Ridge Waaruch Plateau Crawford Mtn Monte Cristo Garrison Pintura Wah Wah Valley Sand Mtn Horse Point Ridge Morgan Ridge		6 MW//km 6 MW//km 6 MW//km 5 MW/km 5 MW/km 6 MW/km 6 MW/km 4 X15 RD, 4 X 15 RD, 3ee remarks	7.1 7.1 7.2	30.7	5600	30.8	7.18	20	8	102	40.2%	222	
Lewis Peak Schoffeld Harmory Miths Millford North Porrupine Ridge Wasatch Plateau Garrison Garrison Torrey Pinkura Wah Wah Valley Sand Mth Horse Point Ridge Morgan Ridge		6 MW///m 6 MW///m 6 MW///m 4 x 15 RD 5 MW//km 6 MW//km 4 x 15 RD, 4 x 15 RD, 3ee remarks	7.1	34.3	7500	32.9	112	00	88	100	701 72	220	10016
Schoffeld Harmony Miths Milford North Porrupine Ridge Wasatch Plateau Crawford Mth Monte Cristo Garrison Torrey Pintura Pintura Pintura Sand Mth Horse Point Ridge Morgan Ridge		6 MW/km 6 MW/km 4 x 15 RD 5 MW/km 6 MW/km 6 MW/km 4 x 15 RD, 4 x 15 RD, 3ee remarks	7.2	31.2	7500	29.9	7 11	0 C	38	0.97	36.402	200	2.4
Harmony Mitns Millord North Porcupine Ridge Wasarch Blaeuu Crawford Mitn Monte Cristo Garrison Garrison Torrey Pintura Wah Wah Valley Wah Wah Valley Morgan Ridge Morgan Ridge	σ	6 MW/km 4 x 15 RD 5 MW/km 6 MW/km 6 MW/km 4 MW/km 4 x 15 RD, 3ee remarks		26.6	8500	24.8	61.6	200	88	0.03	26.402	5201	21.007
Milford North Porcupine Ridge Wasatch Plateau Crawford Mtn Monte Cristo Garrison Torrey Pintura Wah Wah Valley Sand Mtn Horse Point Ridge Morgan Ridge		4 x 15 RD 5 MW/Rm 6 MW/Rm 6 MW/Rm 4 MW/Rm 4 x 15 RD, see remarks	2:0	24.2	7000	23.5	202	00	88	000	26.004	1006	102.02
Porcupine Ridge Wasarch Plateau Crawford Mtn Monte Cristo Garrison Torrey Pintura Wah Wah Valley Sand Mtn Horse Point Ridge Morgan Ridge		5 MW/km 6 MW/km 6 MW/km 4 MW/km 4 x 15 RD, see remarks	6.5	29.3	5300	24.6	00 2	00	8	1 05	202.25	1605	20.00
Wasatch Plateau Crawford Mtn Monte Cristo Garrison Torrey Pintura Wan Wah Valley Sand Mtn Horse Point Ridge Morgan Ridge		6 MW/km 6 MW/km 4 MW/km 4 x 15 RD, see remarks	69	32.0	7600	20.5	6 90	200	ŝ	000	107 YE	1705	107 OC
Crawford Mtn Monte Cristo Garrison Torrey Pintura Wah Wah Valley Wah Wah Valley Horse Point Ridge Morgan Ridge		6 MW/km 4 MW/km 4 × 15 RD, see remarks	7.0	28.0	0006	25.8	6.88	200	88	100	24.20/0	2100	20100
Monte Cristo Garrison Torrey Pintura Wah Wah Valley Sand Mth Horse Point Ridge Morgan Ridge		4.MW/km 4 x 15 RD, see remarks	6.8	32.9	7500	5 12	681		3 8	100	102 22	2010	2011-12-11 12-11-12-11
Garrison Torrey Pintura Wah Wah Valley Sand Mitn Horse Point Ridge Morgen Ridge		4 x 15 RD, see remarks	6.8	C 15	7600	8 BC	6.80	200	00	200	0/1.00	2112	00 00
Torrey Pintura Wah Wah Valley Send Mtn Horse Point Ridge Morgen Ridge		see remarks	6.6	27.8	5700	27.8	6.76	00	3	1 03	23 20/	5365	100
Pintura Wah Wah Valley Sand Mth Horse Point Ridge Morgan Ridge			6.7	26,3	6800	25.6	6.77	00	8	0 00	201 202	2120	102 00
Wah Wah Valley Sand Mtn Horse Point Ridge Morgan Ridge		4 x 15 RD	6.5	28.9	4600	29.6	6.75	00	38	1 08	702 22	2120	20 207 X
Sand Mtn Horse Point Ridge Morgan Ridge		4 x 15 RD	6.5	28.5	5100	28,9	6.71	2.0	8	106	32.8%	3115	
Horse Point Ridge Morgan Ridge		4-5 MW/km	6.4	21.4	3800	22.4	6.71	2:0	38		32.8%	3185	27.9%
Morgan Ridge	tah 250	5 MW/km	6.7	27.1	8100	25.6	6.66	2.0	38	0.94	32.4%	3435	65 12
	μ	5 MW/km	6.6	32.9	7200	31.7	6.63	2.0	38	0.98	31.9%	3485	27.19
	/Tooele 200	4-5 MW/km	6.6	28.8	7300	27.7	6.63	2.0	38	0.97	31.9%	3685	27.1%
Bad Land Cliffs	180	5 MW/km;	6.7	28.D	8500	26.1	6.62	2.0	38	0.93	31.9%	3865	27.1%
Sevier Desert		4 x 15 RD.	6.4	28.5	4800	29.1	6.63	2.0	38	1.07	31.9%	4365	27.1%
Black Mtns		5 MW/km	6.5	24.7	5800	24.6	6.65	2.0	38	1.03	31.9%	4525	27.1%
Junction Hills		5 MW/km	6,4	30.0	5600	30.1	6.56	2.0	88 88	1.04	31.4%	4595	26.7%
ge	2/ ·	5 MW/Km	6.5	32.0	2000	31.1	6.55	20	88	0.98	31.4%	4670	26.7%
44 INORICEIO SANJUAN 33 Unit Court Brownian III-16 Courts		4 × 15 KD	6.5	26.0	7000	25.2	6.55	2.0	38	0.98	31.4%	5170	Ā
Chinman Deck			0	20.3	8500	24./	6.54	2.0	38	0.94	31.0%	5420	ē,
	11 200	0 IVIV/KITI,	C.0	24.7	/600	23.0	0.50	2.0	88	0.96	31.0%	5620	ē,
		4 X 1.7 KU	00	202	8300	24.5 75.5	6.53	0.2	8	0.93	31.0%	5870	Ñ
Cedar Creek	020	A VIE DD	6.D	C:07	2000	9.02	0,40	0.7	8	5.1	30.5%	6100	<u>e</u> i -
t Milford South	2005	1 v 15 PD	5.7 L	6.00			0.41		ŝ	871	30.0%	0000	%C C7
Dog Vallev	120	5 MW/km	7 P 9	1 10	0029	23.0	6.41 £ 20	0.2	202	8	20.0%	06890	N
Argyle Ridge		5 MW/km	6.5	28.0	0006	25.8	6 30	000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100	202.00	0/40	47
Burrville Pass		4-6 MW/km.	6.4	25.1	2700	23.9	619	00	8	70.0	20 502	7750	4 6
Point Lookout	50	5 MW/km	6.2	32.0	6300	31.6	6.30	06	38	101	201.00	7300	17
16 Diamond Mtn Uintah	150	5 MW/km,	6.3	30.3	7500	29.1	6.31	2.0	98	0.97	29.1%	7450	74.70
Boulter Summit		4 x 15 RD	6.2	25.9	6200	25.6	6.31	2.0	38	1.02	29.1%	7550	24.7%
	250	5 MW/km,	6.3	29.5	7200	28.4	6.33	2.0	38	0.98	29.1%	7800	24.7%
Clay Hollow		4 x 15 RD,	6.1	32.2	5200	32.7	6.29	2.0	38	1.05	28.6%	7880	2
		6 MW/km	6.1	26.0	5900	25.9	6.23	2.0	38	1.03	28.1%	7990	23.9%
Little Creek Mtn		4 x 15 RD	6.1	23.4	5700	23.5	6.25	2.0	38	1.03	28.1%	8150	23.9%
Antelope Range		5 MW/km	6:1	25.5	7000	24.7	6,15	2.0	38	0.98	27.2%	8270	23.19
	75	4 MW/km	6.0	34.5	6600	33.8	6.08	2.0	38	1.00	26.7%	8345	22.7%
15 Grassy Mith Gap ooele	250	4 X 15 RD	5.8	31.1	4500	32.0	6.03	5.0	88	1.08	26.2%	8595	ř4

Appendix B


12945

TOTAL

* MW/km refers to ridgelines; 4 x 15 RD is for flat areas ** assuming each 0.01 kg/m ² change in air density is 0.8% change in energy production

Summary of Utah WREZ Prospects Drainage Canyon Sites

Name	County
Logan	Cache
Hyrum	Cache
Ogden	Weber
South Weber	Weber/Davis
Emigration	Salt Lake
Parleys	Sait Lake
Provo Canyon	Utah
Spanish Fork	Utah
Millsite Reservoir	Emery
Escalante	Garfield
Springdale	Washington

