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ABSTRACT 

  

    Considerable attention has recently been given to general equilibrium models of the pricing of 

capital assets. Of these, perhaps the best known is the mean-variance formulation originally 

developed by Sharpe (1964) and Treynor (1961), and extended and clarified by Lintner (1965a; 

1965b), Mossin (1966), Fama (1968a; 1968b), and Long (1972). In addition Treynor (1965), 

Sharpe (1966), and Jensen (1968; 1969) have developed portfolio evaluation models which are 

either based on this asset pricing model or bear a close relation to it. In the development of the 

asset pricing model it is assumed that (1) all investors are single period risk-averse utility of termi-

nal wealth maximizers and can choose among portfolios solely on the basis of mean and variance, 

(2) there are no taxes or transactions costs, (3) all investors have homogeneous views regarding 

the parameters of the joint probability distribution of all security returns, and (4) all investors can 

borrow and lend at a given riskless rate of interest. The main result of the model is a statement of 

the relation between the expected risk premiums on individual assets and their “systematic risk.”  

Our main purpose is to present some additional tests of this asset pricing model which avoid some 

of the problems of earlier studies and which, we believe, provide additional insights into the nature 

of the structure of security returns. 

    The evidence presented in Section II indicates the expected excess return on an asset is not 

strictly proportional to its , and we believe that this evidence, coupled with that given in Section 

IV, is sufficiently strong to warrant rejection of the traditional form of the model given by (1). We 

then show in Section III how the cross-sectional tests are subject to measurement error bias, 

provide a solution to this problem through grouping procedures, and show how cross-sectional 

methods are relevant to testing the expanded two-factor form of the model. We show in Section IV 

that the mean of the beta factor has had a positive trend over the period 1931-65 and was on the 

order of 1.0 to 1.3% per month in the two sample intervals we examined in the period 1948-65. 

This seems to have been significantly different from the average risk-free rate and indeed is 

roughly the same size as the average market return of 1.3 and 1.2% per month over the two sample 



intervals in this period. This evidence seems to be sufficiently strong enough to warrant rejection 

of the traditional form of the model given by (1). In addition, the standard deviation of the beta 

factor over these two sample intervals was 2.0 and 2.2% per month, as compared with the standard 

deviation of the market factor of 3.6 and 3.8% per month. Thus the beta factor seems to be an 

important determinant of security returns. 

 

Keywords:  capital asset pricing, measurements, Cross-sectional Tests, Two-Factor Model, 

aggregation problem 
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I. Introduction and Summary 

Considerable attention has recently been given to general equilibrium models of 

the pricing of capital assets. Of these, perhaps the best known is the mean-variance 

formulation originally developed by Sharpe (1964) and Treynor (1961), and extended and 

clarified by Lintner (1965a; 1965b), Mossin (1966), Fama (1968a; 1968b), and Long 

(1972). In addition Treynor (1965), Sharpe (1966), and Jensen (1968; 1969) have devel-

oped portfolio evaluation models which are either based on this asset pricing model or 

bear a close relation to it. In the development of the asset pricing model it is assumed that 

(1) all investors are single period risk-averse utility of terminal wealth maximizers and 

can choose among portfolios solely on the basis of mean and variance, (2) there are no 
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taxes or transactions costs, (3) all investors have homogeneous views regarding the 

parameters of the joint probability distribution of all security returns, and (4) all investors 

can borrow and lend at a given riskless rate of interest. The main result of the model is a 

statement of the relation between the expected risk premiums on individual assets and 

their “systematic risk.” The relationship is 

 E j˜ R ( ) = E M˜ R ( ) j   (1) 

where the tildes denote random variables and 

E j˜ R ( ) =
E t˜ P ( ) t 1P + E t˜ D ( )

t 1P
Ftr  =  expected excess returns on the jth asset 

t˜ D  = dividends paid on the jth security at time t  

Ftr  = the riskless rate of interest 

E M˜ R ( )  = expected excess returns on a “market portfolio” consisting of an 

investment in every asset outstanding in proportion to its value 

j =
cov j˜ R , M˜ R ( )

2
M˜ R ( )

 = the “systematic” risk of the jth asset. 

Relation 1 says that the expected excess return on any asset is directly 

proportional to its . If we define j  as 

 j = E j˜ R ( ) E M˜ R ( ) j  

then (1) implies that the a on every asset is zero. 

If empirically true, the relation given by (1) has wide-ranging implications for 

problems in capital budgeting, cost benefit analysis, portfolio selection, and for other 

economic problems requiring knowledge of the relation between risk and return. 

Evidence presented by Jensen (1968; 1969)  on the relationship between the expected 
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return and systematic risk of a large sample of mutual funds suggests that (1) might 

provide an adequate description of the relation between risk and return for securities. On 

the other hand, evidence presented by Douglas (1969), Lintner (1965a), and most 

recently Miller and Scholes (1972) seems to indicate the model does not provide a 

complete description of the structure of security returns. In particular, the work done by 

Miller and Scholes suggests that the ‘s on individual assets depend in a systematic way 

on their ‘s: that high-beta assets tend to have negative ‘s, and that low-beta stocks 

tend to have positive ‘s. 

Our main purpose is to present some additional tests of this asset pricing model 

which avoid some of the problems of earlier studies and which, we believe, provide 

additional insights into the nature of the structure of security returns. All previous direct 

tests of the model have been conducted using cross-sectional methods; primarily 

regression of jR , the mean excess return over a time interval for a set of securities on 

estimates of the systematic risk, 
j

ˆ  , of each of the securities. The equation 

 jR = 0 + 1 j
ˆ  + j˜ u  

was estimated, and contrary to the theory, 0 seemed to be significantly different from 

zero and 1 significantly different from MR , the slope predicted by the model. We shall 

show in Section III that, because of the structure of the process which appears to be 

generating the data, these cross-sectional tests of significance can be misleading and 

therefore do not provide direct tests of the validity of (1). In Section II we provide a more 

powerful time series test of the validity of the model, which is free of the difficulties 

associated with the cross-sectional tests. These results indicate that the usual form of the 

asset pricing model as given by (1) does not provide an accurate description of the 
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structure of security returns. The tests indicate that the expected excess returns on high-

beta assets are lower than (1) suggests and that the expected excess returns on low-beta 

assets are higher than (1) suggests. In other words, that high-beta stocks have negative 

‘s and low-beta stocks have positive ‘s. 

The data indicate that the expected return on a security can be represented by a 

two-factor model such as 

 E j˜ r ( ) = E z˜ r ( ) 1 j( ) + E M˜ r ( ) j   (2) 

where the r’s indicate total returns and E z˜ r ( )  is the expected return on a second factor, 

which we shall call the “beta factor,” since its coefficient is a function of the asset’s . 

After we had observed this phenomenon, Black (1970) was able to show that relaxing the 

assumption of the existence of riskless borrowing and lending opportunities provides an 

asset pricing model which implies that, in equilibrium, the expected return on an asset 

will be given by (2). His results furnish an explicit definition of the beta factor, z˜ r , as the 

return on a portfolio that has a zero covariance with the return on the market portfolio 

M˜ r . Although this model is entirely consistent with our empirical results (and provides a 

convenient interpretation of them), there are perhaps other plausible hypotheses 

consistent with the data (we shall briefly discuss several in Section V). We hasten to add 

that we have not attempted here to supply any direct tests of these alternative hypotheses. 

The evidence presented in Section II indicates the expected excess return on an 

asset is not strictly proportional to its , and we believe that this evidence, coupled with 

that given in Section IV, is sufficiently strong to warrant rejection of the traditional form 

of the model given by (1). We then show in Section III how the cross-sectional tests are 

subject to measurement error bias, provide a solution to this problem through grouping 
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procedures, and show how cross-sectional methods are relevant to testing the expanded 

two-factor form of the model. Here we find that the evidence indicates the existence of a 

linear relation between risk and return and is therefore consistent with a form of the two-

factor model which specifies the realized returns on each asset to be a linear function of 

the returns on the two factors z˜ r , and M˜ r , 

 j˜ r = z˜ r 1 j( ) + M˜ r j + j˜ w   (2) 

The fact that the ‘s of high-beta securities are negative and that the ‘s of low-

beta securities are positive implies that the mean of the beta factor is greater than Fr . The 

traditional form of the capital asset pricing model as expressed by (1), could hold exactly, 

even if asset returns were generated by  2 ( ) , if the mean of the beta factor were equal to 

the risk-free rate. We show in Section IV that the mean of the beta factor has had a 

positive trend over the period 1931-65 and was on the order of 1.0 to 1.3% per month in 

the two sample intervals we examined in the period 1948-65. This seems to have been 

significantly different from the average risk-free rate and indeed is roughly the same size 

as the average market return of 1.3 and 1.2% per month over the two sample intervals in 

this period. This evidence seems to be sufficiently strong enough to warrant rejection of 

the traditional form of the model given by (1). In addition, the standard deviation of the 

beta factor over these two sample intervals was 2.0 and 2.2% per month, as compared 

with the standard deviation of the market factor of 3.6 and 3.8% per month. Thus the beta 

factor seems to be an important determinant of security returns. 
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II. Time Series Tests of the Model 

A.  Specification of the Model.  

Although the model of (1) which we wish to test is stated in terms of expected 

returns, it is possible to use realized returns to test the theory. Let us represent the returns 

on any security by the “market model” originally proposed by Markowitz (1959) and 

extended by Sharpe (1963) and Fama (1968b) 

j˜ R = E j˜ R ( ) + j M ˜ R + j˜ e   (3) 

where M ˜ R = M˜ R E M˜ R ( ) = the “unexpected” excess market return, and M ˜ R  and j˜ e  are 

normally distributed random variables that satisfy: 

E M˜  R ( ) = 0   (4a) 

E j˜ e ( ) = 0   (4b) 

E j˜ e M ˜ R ( ) = 0   (4c) 

The specifications of the market model, extensively tested by Fama et al. (1969) 

and Blume (1968), are well satisfied by the data for a large number of securities on the 

New York Stock Exchange. The only assumption violated to any extent is the normality 

assumption1--the estimated residuals seem to conform to the infinite variance members of 

the stable class of distributions rather than the normal. There are those who would 

explain these discrepancies from normality by certain non-stationarities in the 

distributions (cf. Press (1967)), which still yield finite variances. However, Wise (1963) 

                                                 
1   Note that (4c) can be valid even though MR  is a weighted average of the jR  and therefore M R  contains 

je . This may be clarified as follows: taking the weighted sum of (3) using the weights, jX , of each security 

in the market portfolio we know by the definition of MR  that jXj jR = MR jXj j =1,  and jXj je = 0 . Thus 

by the last equality we know jX je = iXi j ie , and by substitution E jje X je( ) = je iXi j ie( )[ ] = jX
2

je( ) , and 

this implies condition (4c) since E je M R ( ) = jX
2

je( ) + E je iXi j ie[ ] = 0. 
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has shown that the least-squares estimate of j  in (3) is unbiased (although not efficient) 

even if the variance does not exist, and simulations by Blattberg and Sargent (1971) and 

Fama and Babiak (1967) also indicate that the least-squares procedures are not totally 

inappropriate in the presence of infinite variance stable distributions. For simplicity, 

therefore, we shall ignore the non-normality issues and continue to assume normally 

distributed random variables where relevant.2 However, because of these problems 

caution should be exercised in making literal interpretations of any significance tests. 

Substituting from (1) for E j˜ R ( ) in (3) we obtain 

j˜ R = M˜ R j + j˜ e   (5) 

where M˜ R  is the ex post excess return on the market portfolio over the holding period of 

interest. If assets are priced in the market such that (1) holds over each short time interval 

(say a month), then we can test the traditional form of the model by adding an intercept 

j  to (5) and subscripting each of the variables by t to obtain 

jt˜ R = j + j Mt˜ R + jt˜ e  (6) 

which, given the assumptions of the market model, is a regression equation. If the asset 

pricing and the market models given by (1), (3), and (4) are valid, then the intercept j  

in (6) will be zero. Thus a direct test of the model can be obtained by estimating (6) for a 

security over some time period and testing to see if j  is significantly different from 

zero.3
,4 

                                                 
2   We could develop the model and tests under the assumption of infinite variance stable distributions, but 

this would unnecessarily complicate some of the analysis. We shall take explicit account of these 

distributional problems in some of the crucial tests of significance in Section IV. 

3   Recall that the jtR  and MtR , are defined as excess returns. The model can be formulated with Ftr  

omitted from (6) and therefore assumed constant (then Fj=r 1 j( ) ) or included as a variable (as we 
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B.  An Aggregation Problem.  

The test just proposed is simple but inefficient, since it makes use of information 

on only a single security whereas data is available on a large number of securities. We 

would like to design a test that allows us to aggregate the data on a large number of 

securities in an efficient manner. If the estimates of the j ‘s were independent with 

normally distributed residuals, we could proceed along the lines outlined by Jensen 

(1968) and compare the frequency distributions of the “t” values for the intercepts with 

the theoretical distribution. However, the fact that the 
jt˜ e , are not cross-sectionally 

independent, (that is, E
jt˜ e it˜ e  

 
  

 
 0 for i j , cf. King (1966); makes this procedure much 

more difficult. 

One procedure for solving this problem which makes appropriate allowance for 

the effects of the non-independence of the residuals on the standard error of estimate of 

the average coefficient, ˜  ,  is to run the tests on grouped data. That is, we form 

portfolios (or groups) of the individual securities and estimate (6) defining Kt˜ R  to be the 

average return on all securities in the Kth portfolio for time t. Given this definition of 

Kt˜ R , 
K

ˆ   will be the average risk of the securities in the portfolio and Kˆ   will be the 

                                                                                                                                                 
have done), which strictly requires them to be known for all t. But experiments with estimates 

obtained with the inclusion of Ftr  as a variable in (6) yield results virtually identical to those obtained 

with the assumption of constant Fr  [and hence the exclusion of Ftr  as a variable in (6)], so we shall 

ignore this problem here. See also Roll (1969) and Miller and Scholes (1972) for a thorough discussion 

of the bias introduced through misspecification of the riskless rate. Miller and Scholes conclude as we 

do that these problems are not serious. 

4    Unbiased measurement errors in 
j

ˆ   cause severe difficulties with the cross-sectional tests of the 

model, and it is important to note that the time series form of the tests given by (6) are free of this 

source of bias. Unbiased measurement errors in 
j

ˆ  , which is estimated simultaneously with j  in the 

time series formulation, cause errors in the estimate of j  but no systematic bias. Measurement errors 

in MtR , may cause difficulties in both the cross-sectional and time series forms of the tests, but we 
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average intercept. Moreover, since the residual variance from this regression will 

incorporate the effects of any cross-sectional interdependencies in the jt˜ e  among the 

securities in each portfolio, the standard error of the intercept Kˆ   will appropriately 

incorporate the non-independence of jt˜ e . 

In addition, we wish to group our securities such that we obtain the maximum 

possible dispersion of the risk coefficients, K .  If we were to construct our portfolios by 

using the ranked values of the 
j

ˆ  , we would introduce a selection bias into the procedure. 

This would occur because those securities entering the first or high-beta portfolio would 

tend to have positive measurement errors in their 
j

ˆ  , and this would introduce positive 

bias in 
K

ˆ  , the estimated portfolio risk coefficient. This positive bias in 
K

ˆ   will, of 

course, introduce a negative bias in our estimate of the intercept, Kˆ  , for that portfolio. 

On the other hand, the opposite would occur for the lowest beta portfolio; its 
K

ˆ   would 

be negatively biased, and therefore our estimate of the intercept for this low-risk portfolio 

would be positively biased. Thus even if the traditional model were true, this selection 

bias would tend to cause the low-risk portfolios to exhibit positive intercepts and high-

risk portfolios to exhibit negative intercepts. To avoid this bias, we need to use an 

instrumental variable that is highly correlated with 
j

ˆ  , but that can be observed 

independently of 
j

ˆ  . The instrumental variable we have chosen is simply an independent 

estimate of the  of the security obtained from past data. Thus when we estimate the 

group risk parameter on sample data not used in the ranking procedures, the measurement 

                                                                                                                                                 
shall ignore this issue here. For an analysis of the problems associated with measurement errors in MtR , 

see Black and Jensen (1970), Miller and Scholes (1972), and Roll (1969). 
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errors in these estimates will be independent of the errors in the coefficients used in the 

ranking and we therefore obtain unbiased estimates of 
K

ˆ   and Kˆ  . 

C. The Data.  

The data used in the tests to be described were taken from the University of 

Chicago Center for Research in Security Prices Monthly Price Relative File, which 

contains monthly price, dividend, and adjusted price and dividend information for all 

securities listed on the New York Stock Exchange in the period January, 1926-March, 

1966. The monthly returns on the market portfolio MtR  were defined as the returns that 

would have been earned on a portfolio consisting of an equal investment in every security 

listed on the NYSE at the beginning of each month. The risk-free rate was defined as the 

30-day rate on U.S. Treasury Bills for the period 1948-66. For the period 1926-47 the 

dealer commercial paper rate5 was used because Treasury Bill rates were not available. 

D. The Grouping Procedure 

1. The ranking procedure.  

Ideally we would like to assign the individual securities to the various groups on 

the basis of the ranked j  (the true coefficients), but of course these are unobservable. In 

addition we cannot assign them on the basis of the 
j

ˆ  , since this would introduce the 

selection bias problems discussed previously. Therefore, we must use a ranking 

procedure that is independent of the measurement errors in the 
j

ˆ  . One way to do this is 

to use part of the data--in our case five years of previous monthly data--to obtain 
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estimates 
j0

ˆ  , of the risk measures for each security. The ranked values of the 
j0

ˆ   are 

used to assign membership to the groups. We then use data from a subsequent time 

period to estimate the group risk coefficients 
K

ˆ  , which then contain measurement errors 

for the individual securities, which are independent of the errors in 
j0

ˆ   and hence 

independent of the original ranking and independent among the securities in each group. 

2. The stationarity assumptions.  

The group assignment procedure just described will be satisfactory as long as the 

coefficients j  are stationary through time. Evidence presented by Blume (1968) 

indicates this assumption is not totally inappropriate, but we have used a somewhat more 

complicated procedure for grouping the firms which allows for any non-stationarity in the 

coefficients through time. 

We began by estimating the coefficient j , (call this estimate 
j0

ˆ  ) in (6) for the 

five-year period January, 1926-December, 1930 for all securities listed on the NYSE at 

the beginning of January 1931 for which at least 24 monthly returns were available. 

These securities were then ranked from high to low on the basis of the estimates 
j0

ˆ  , and 

were assigned to ten portfolios6--the 10% with the largest 
j0

ˆ   to the first portfolio, and so 

on. The return in each of the next 12 months for each of the ten portfolios was calculated. 

Then the entire process was repeated for all securities listed as of January 1932 (for 

                                                                                                                                                 
5   Treasury Bill rates were obtained from the Salomon Brothers & Hutzler quote sheets at the end of the 

previous month for the following month. Dealer commercial paper rates were obtained from Banking and 

Monetary Statistics, Board of Governors of the Federal Reserve System, Washington, D.C. 

6  The choice of the number of portfolios is somewhat arbitrary.  As we shall see below, we wanted 

enough portfolios to provide a continuum of observations across the risk spectrum to enable us to 

estimate the suspected relation between K  and K . 
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which at least 24 months of previous monthly returns were available) using the 

immediately preceding five years of data (if available) to estimate new coefficients to be 

used for ranking and assignment to the ten portfolios. The monthly portfolio returns were 

again calculated for the next year. This process was then repeated for January 1933, 

January 1934, and so on, through January 1965. 

 

TABLE 1  

Total Number of Securities  

Entering All Portfolios, by Year 
 

Year 

Number of 

Securities 

 

Year 

Number of 

Securities 

1931 582 1949 893 

1932 673 1950 928 

1933 688 1951 943 

1934 683 1952 966 

1935 676 1953 994 

1936 674 1954 1000 

1937 666 1955 1006 

1938 690 1956 994 

1939 718 1957 994 

1940 743 1958 1000 

1941 741 1959 995 

1942 757 1960 1021 

1943 772 1961 1014 

1944 778 1962 1024 

1945 773 1963 1056 

1946 791 1964 1081 

1947 812 1965 1094 

1948 842   

 

In this way we obtained 35 years of monthly returns on ten portfolios from the 

1,952 securities in the data file. Since at each stage we used all listed securities for which 

at least 24 months of data were available in the immediately preceding five-year period, 

the total number of securities used in the analysis varied through time ranging from 582 

to 1,094, and thus the number of securities contained in each portfolio changed from year 
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to year.7 The total number of securities from which the portfolios were formed at the 

beginning of each year is given in Table 1. Each of the portfolios may be thought of as a 

mutual fund portfolio, which has an identity of its own, even though the stocks it contains 

change over time. 

E. The Empirical Results 

1. The entire period.  

Given the 35 years of monthly returns on each of the ten portfolios calculated as 

explained previously, we then calculated the least-squares estimates of the parameters K  

and K  in (6) for each of the ten portfolios (K = 1, . . ., 10) using all 35 years of monthly 

data (420 observations). The results are summarized in Table 2. Portfolio number 1 

contains the highest-risk securities and portfolio number 10 contains the lowest-risk 

securities. The estimated risk coefficients range from 1.561 for portfolio 1 to 0.499 for 

portfolio 10. The critical intercepts, the Kˆ  , are given in the second line of Table 2 and 

the Student “t” values are given directly below them. The correlation between the 

portfolio returns and the market returns, r K˜ R , M˜ R ( ), and the autocorrelation of the 

residuals, r t˜ e , t 1˜ e ( ), are also given in Table 2. The autocorrelation appears to be quite 

small and the correlation between the portfolio and market returns are, as expected, quite 

high. The standard deviation- of the residuals K˜ e ( ) , the average monthly excess return 

KR , and the standard deviation of the monthly excess return, , are also given for each 

of the portfolios. 

                                                 
7  Note that in order for the risk parameters of the groups K , to be stationary through time, our 

procedures require that firms leave and enter the sample symmetrically across the entire risk spectrum. 
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Note first that the intercepts ˆ   are consistently negative for the high-risk 

portfolios ˆ  >1( ) and consistently positive for the low-risk portfolios ˆ  >1( ). Thus the 

high-risk securities earned less on average over this 35-year period than the amount 

predicted by the traditional form of the asset pricing model. At the same time, the low-

risk securities earned more than the amount predicted by the model. 

Table 2 

Summary of Statistics for Time Series Tests, Entire Period (January, 1931-December, 1965) 

(Sample Size for Each Regression =420) 
 Portfolio Number 

Item* 1 2 3 4 5 6 7 8 9 10 MR  

ˆ   1.5614 1.3838 1.2483 1.1625 1.0572 0.9229 0.8531 0.7534 0.6291 0.4992 1.0000 

ˆ  • 210  -0.0829 -0.1938 -0.0649 -0.0167 -0.0543 0.0593 0.0462 0.0812 0.1968 0.2012  

t ˆ  ( )  -0.4274 -1.9935 -0.7597 -0.2468 -0.8869 0.7878 0.7050 1.1837 2.3126 1.8684  
            

r ,˜ R M˜ R ( )  0.9625 0.9875 0.9882 0.9914 0.9915 0.9833 0.9851 0.9793 0.9560 0.8981  

r t˜ e , t 1˜ e ( )  0.0549 -0.0638 0.0366 0.0073 -0.0708 -0.1248 0.1294 0.1041 0.0444 0.0992  
            

˜ e ( )  0.0393 0.0197 0.0173 0.0137 0.0124 0.0152 0.0133 0.0139 0.0172 0.0218  

R  0.0213 0.0177 0.0171 0.0163 0.0145 0.0137 0.0126 0.0115 0.0109 0.0091 0.0142 
 

0.1445 0.1248 0.1126 0.1045 0.0950 0.0836 0.0772 0.0685 0.0586 0.0495 0.0891 

* MR = average monthly excess returns,  = standard deviation of the monthly excess returns, r  = correlation 

coefficient. 

 

 

The significance tests given by the “t” values in Table 2 are somewhat 

inconclusive, since only 3 of the 10 coefficients have “t” values greater than 1.85 and, as 

we pointed out earlier, we should use some caution in interpreting these “t” values since 

the normality assumptions can be questioned. We shall see, however, that due to the 

existence of some nonstationarity in the relations and to the lack of more complete 

aggregation, these results vastly understate the significance of the departures from the 

traditional model. 
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2. The subperiods.  

In order to test the stationarity of the empirical relations, we divided the 35-year 

interval into four equal subperiods each containing 105 months. Table 3 presents a 

summary of the regression statistics of (6) calculated using the data for each of these 

periods for each of the ten portfolios. Note that the data for ˆ   in Table 3 indicate that, 

except for portfolios 1 and 10, the risk coefficients 
K

ˆ   were fairly stationary. 

Note, however, in the sections for  and t ˆ  ( )  that the critical intercepts Kˆ  , were 

most definitely non-stationary throughout this period. The positive ‘s for the high-risk 

portfolios in the first sub period (January, 1931-September, 1939) indicate that these 

securities earned more than the amount predicted by the model, and the negative ‘s for 

the low-risk portfolios indicate they earned less than what the model predicted. In the 

three succeeding subperiods (October, 1939-June, 1948; July, 1948-March, 1957, and 

April, 1957-December, 1965) this pattern was reversed and the departures from the 

model seemed to become progressively larger; so much larger that six of the ten 

coefficients in the last subperiod seem significant. (Note that all six coefficients are those 

with ‘s most different from unity--a point we shall return to. Thus it seems unlikely that 

these changes were the result of chance; they most probably reflect changes in the Kˆ  ‘s). 

Note that the correlation coefficients between Kt˜ R  and Mt˜ R  given in Table 2 for 

each of the portfolios are all greater than 0.95 except for portfolio number 10. The lowest 

of the 40 coefficients in the subperiods (not shown) was 0.87, and all but two were 

greater than 0.90. A  result, the standard deviation of the residuals from each regression 

is quite small and hence so is the standard error of estimate of , and this provides the 

main advantage of grouping in these tests. 
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III. Cross-sectional Tests of the Model 

A.  Tests of the Two-Factor Model.  

Although the time series tests discussed in Section II provide a test of the 

traditional form of the asset pricing model, they cannot be used to test the two-factor 

model directly. The cross-sectional tests, however, do furnish an opportunity to test the 

linearity of the relation between returns and risk implied by 2( ) or  2 ( )  without making 

any explicit specification of the intercept. Recall that the traditional form of the model 

implies 0 = 0  and 1 = M˜ R . The two factor model merely requires the linearity of (2) to 

hold for any specific cross section and allows the intercept to be nonzero. At this level of 

specification we shall not specify the size or even the sign of 0. We shall be able to 

make some statements on this point after a closer examination of the theory. However, 

we shall first examine the empirical evidence to motivate that discussion. 

B. Measurement Errors and Bias in Cross-sectional Tests.  

We consider here the problems caused in cross-sectional tests of the model by 

measurement errors in the estimation of the security risk measures.8 Let j  represent the 

true (and unobservable) systematic risk of firm j and 
j

ˆ  = j + j˜   be the measured value 

of the systematic risk of firm j where we assume that j˜  , the measurement error, is 

normally distributed and for all j satisfies 

  E j˜  ( ) = 0  ( 7a )  

                                                 
8   See also Miller and Scholes (1972), who provide a careful analysis (using procedures that are 

complementary to but much different from those suggested here) of many of these problems with cross-

sectional tests and their implications for the interpretation of previous empirical work. 
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 E j˜  j( ) = 0  ( 7b )  

  E j˜  i˜  ( ) =
0               i j

2 ˜  ( )      i = j

 
 
 

  ( 7c )  

The traditional form of the asset pricing model and the assumptions of the market 

model imply that the mean excess return on a security 

  jR =
jt˜ R 

t=1

T

T
  (8) 

observed over T periods can be written as 

jR = E jR MR ( ) + je = MR j + je  (9) 

where MR = Mt ˜ R Tt=1
T ,  je =  jte Tt=1

T
. Now an obvious test of the traditional form of 

the asset pricing model is to fit 

    
  

j˜ R = 0 + 1 j
ˆ  + j

oe  (10) 

to a cross section of firms (where 
j

ˆ   is the estimated risk coefficient for each firm and 

j
°e = je 1 j˜  ) and test to see if, as implied by the theory 

   0 = 0    and    1 = M˜ R  

There are two major difficulties with this procedure; the first involves bias due to 

the measurement errors in 
j

ˆ  , and the second involves the apparent inadequacy of (9) as 

a specification of the process generating the data. The two-factor asset pricing model 

given by '2( ) implies that 0 and 1 are random coefficients-that is, in addition to the 

theoretical values above, they involve a variable that is random through time. If the two-

factor model is the true model, the usual significance tests on 0 and 1 are misleading, 

since the data from a given cross section cannot provide any evidence on the standard 
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deviation of Z˜ r  and hence results in a serious underestimate of the sampling error of 0
ˆ   

and 1
ˆ  . Ignoring this second difficulty for the moment, we shall first consider the 

measurement error problems and the cross-sectional empirical evidence. The random 

coefficients issue and appropriate significance tests in the context of the two-factor model 

are discussed in more detail in Section IV. 

As long as the 
j

ˆ   contain the measurement errors j˜  , the least-squares estimates 

0
ˆ   and 1

ˆ   in (10) will be subject to the well-known errors in variables bias and will be 

inconsistent, (cf. Johnston (1963, Chap. VI)). That is, assuming that j˜ e  and j˜   are 

independent and are independent of the j  in the cross-sectional sample, 

p lim 1
ˆ  = 1

1+ 2 ˜  ( ) 2S j( )
  (11) 

where 2S j( ) is the cross-sectional sample variance of the true risk parameters j . Even 

for large samples, then, as long as the variance of the errors in the risk measure 2 ˜  ( ) is 

positive, the estimated coefficient 1
ˆ   will be biased toward zero and 0

ˆ   will therefore be 

biased away from zero. Hence tests of the significance of the differences 0
ˆ  0  and 

1
ˆ  M˜ R  will be misleading. 

C. The Grouping Solution to the Measurement Error Problem.  

We show in the Appendix that by appropriate grouping of the data to be used in 

estimating (10) one can substantially reduce the bias introduced through the existence of 

measurement errors in the 
j

ˆ  . In essence the procedure amounts to systematically 

ordering the firms into groups (in fact by the same procedure that formed the ten 



Jensen et. al. 20 1972 

portfolios used in the time series tests in Section II) and then calculating the risk 

measures ˆ   for each portfolio using the time series of portfolio returns. This procedure 

can greatly reduce the sampling error in the estimated risk measures; indeed, for large 

samples and independent errors, the sampling error is virtually eliminated. We then 

estimate the cross-sectional parameters of (10) using the portfolio mean returns over the 

relevant holding period and the risk coefficients obtained from estimation of (6) from the 

time series of portfolio returns. If appropriate grouping procedures are employed, this 

procedure will yield consistent estimates of the parameters 0 and 1 and thus will yield 

virtually unbiased estimates for samples in which the number of securities entering each 

group is large. Thus, by applying the cross-sectional test to our ten portfolios rather than 

to the underlying individual securities, we can virtually eliminate the measurement error 

problem.9 

D. The Cross-sectional Empirical Results.  

Given the 35 years of monthly returns on each of the ten portfolios calculated as 

explained in Section II, we then estimated 
K

ˆ   and KR (K =  1, 2, . . .,  10)  for each 

portfolio, using all 35 years of monthly data. These estimates (see Table 2) were then 

used in estimating the cross-sectional relation given by (10) for various holding periods. 

                                                 
9   Intuitively one can see that the measurement error problem is virtually eliminated by these 

procedures because the errors in 
K

ˆ   become extremely small. Since the correlations r K
˜ R , M

˜ R ( )  are so 

high in Table 2, the standard errors of estimate of the coefficients K  are all less than 0.022, and nine 

of them are less than 0.012. The average standard error of estimate for the ten 
K

ˆ   coefficients given in 

Table 2 for the entire period was 0.0101 and the cross-sectional variance of the 
K

ˆ  , 2
S

K
ˆ  ( )  was 0.1144. 

Hence, assuming 2
S

K
ˆ  ( ) = 2

S K( ) , squaring 0.0101, and using (11), we see that our estimate of 1  will be 

greater than 99.9% of its true value. 
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Figure 1  Average excess monthly returns versus systematic risk for the 35-year 

period 1931-65 for each of ten portfolios (denoted by ) and the market portfolio 

(denoted by ). 



Jensen et. al. 22 1972 

Figure 1 is a plot of KR  versus 
K

ˆ   for the 35-year holding period January, 1931-

December, 1965. The symbol  denotes the average monthly excess return and risk of  

each of the ten portfolios. The symbol � denotes the average excess return and risk of 

the market portfolio (which by the definition of  is equal to unity). The line 

represents the least squares estimate of the relation between KR  and 
K

ˆ  . The 

“intercept” and “slope” (with their respective standard errors given in parentheses) 

in the upper portion of the figure are the coefficients 0 and 1 of (10). 

The traditional form of the asset pricing model implies that the intercept 0 

in (10) should be equal to zero and the slope 1 should be equal to MR , the mean 

excess return on the market portfolio. Over this 35-year period, the average 

monthly excess return on the market portfolio MR , was 0.0142, and the theoretical 

values of the intercept and slope in Figure 1 are  

 0 = 0       and        1 = 0.0142  

The “t” values  

 t 0
ˆ  ( ) = 0

ˆ  

s 0
ˆ  ( )

=
0.00359

0.00055
= 6.52 

 t 1
ˆ  ( ) = 11

ˆ  

s 1
ˆ  ( )

=
0.0142 0.0108

0.00052
= 6.53 

seem to indicate the observed relation is significantly different from the theoretical 

one. However, as we shall see, because (9) is a misspecification of the process 

generating the data, these tests vastly overstate the significance of the results. 

We also divided the 35-year interval into four equal subperiods, and 

Figures 2 through 5 present the plots of the KR  versus the 
K

ˆ   for each of these 
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intervals. In order to obtain better estimates of the risk coefficients for each of the 

subperiods, we used the coefficients previously estimated over the entire 35-year  

period.10 The graphs indicate that the relation between return and risk is linear but 

that the slope is related in a non-stationary way to the theoretical slope for each 

period. Note that the traditional model implies that the theoretical relationship (not 

drawn) always passes through the two points given by the origin (0, 0) and the 

average market excess returns represented by � in each figure. In the first sub-

period (see Fig. 2) the empirical slope is steeper than the theoretical slope and then 

becomes successively flatter in each of the following three periods. In the last 

subperiod (see Fig. 5) the slope 1
ˆ   even has the “wrong” sign. 

TABLE 4 

Summary of Cross-sectional Regression Coefficients and Their t Values 

  Time Period 

 Total Period Subperiods 

 1/31-12/65 1/31-9/39 10/39-6/48 7/48-3/57 4/57-12/65 

0
ˆ   0.00359 -0.00801 0.00439  0.00777 0.01020 

1
ˆ   0.0108 0.0304 0.0107  0.0033 -0.0012 

1 = MR  0.0142 0.0220 0.0149  0.0112 0.0088 

t 0
ˆ  ( )  6.52 -4.45 3.20  7.40 18.89 

t 11
ˆ  ( ) 6.53  -4.91  3.23  7.98  19.61 

 

                                                 
10 The analysis was also performed where the coefficients were estimated for each subperiod, and the 

results were very similar because the 
K

ˆ   were quite stable over time. We report these results since this 

estimation procedure seemed to result in a slightly larger spread of the 
K

ˆ   and since the increased sample 

sizes tends to further reduce the bias caused by the variance of the measurement error in 
K

ˆ  . 
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The coefficients 0
ˆ  , 1

ˆ  , 1 and the “t” values of 0
ˆ   and 11

ˆ   are summarized in 

Table 4 for the entire period and for each of the four subperiods. The smallest “t” value  

given there is 3.20, and all seem to be “significantly” different from their theoretical 

values. However, as we have already maintained, these “t” values are somewhat  

misleading because the estimated coefficients fluctuate far more in the subperiods than 

the estimated sampling errors indicate. This evidence suggests that the model given by 

(9) is misspecified. We shall now attempt to deal with this specification problem and to 

furnish an alternative formulation of the model. 

IV. A Two-Factor Model 

A.  Form of the Model.  

As mentioned in the introduction, Black [1970] has shown under assumptions 

identical to that of the asset pricing model that, if riskless borrowing opportunities do not 

exist, the expected return on any asset j will be given by 

E j˜ r ( ) = E z˜ r ( ) 1 j( ) + E M˜ r ( ) j   (12) 

where z˜ r  represents the return on a “zero beta” portfolio--a portfolio whose covariance 

with the returns on the market portfolio M˜ r  is zero.11 

Close examination of the empirical evidence from both the cross-sectional and the 

time series tests indicates that the results are consistent with a model that expresses the 

return on a security as a linear function of the market factor Mr , (with a coefficient of 

j) and a second factor zr , (with a coefficient of 1 j ) The function is 

                                                 
11   In fact, there is an infinite number of such zero  portfolios. Of all such portfolios. however,  Zr  

is the return on the one with minimum variance. (We are indebted to John Long for the proof of this 

point.) 
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jt˜ r = Zt˜ r 1 j( ) + Mt˜ r j + jt˜ w   (13) 

Because the coefficient of the second factor is a function of the security’s , we 

call this factor the beta factor. For a given holding period T, the average value of Zt˜ r  will 

determine the relation between ˆ   and ˆ   for different securities or portfolios. If the data 

are being generated by the process given by (13) and if we estimate the single variable 

time series regression given by (6), then the intercept ˆ   in that regression will be 

ˆ  = Zr Fr ( ) 1 j
ˆ  ( ) = ZR 1 j

ˆ  ( )  (14) 

where Zr = Zt˜ r Tt=1
T

 is the mean return on the beta factor over the period, Fr  is the 

mean risk-free rate over the period, and ZR  is the difference between the two. Thus if 

ZR  is positive, high-beta securities will tend to have negative ˆ  ‘s, and low-beta 

securities will tend to have positive ˆ  ‘s. If ZR  is negative, high-beta securities will tend 

to have positive ˆ  ‘s, and low-beta securities will tend to have negative ˆ  ‘s. 

In addition, if we estimate the cross-sectional regression given by (10), the 

expanded two-factor model implies that the true values of the parameters 0 and 1 will 

not be equal to zero and MR  but instead will be given by 

0 = ZR        and        1 = MR ZR  

Hence if ZR  is positive, 0 will be positive and 1 will be less than MR . If ZR  is 

negative, 0 will be negative and 1 will be greater than MR . 

Thus we can interpret Table 3 and Figures 2 through 5 as indicating that ZR  was 

negative in the first subperiod and became positive and successively larger in each of the 

following subperiods. 
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Examining (12), we see that the traditional form of the capital asset pricing 

model, as expressed in (1), is consistent with the present two-factor model if 

    E Z˜ R ( ) = 0  (15)  

and (questions of statistical efficiency aside) any test for whether K  for a portfolio is 

zero is equivalent to a test for whether E Z˜ R ( ) is zero. The results in Table 3 suggest that 

E Z˜ R ( ) is not stationary through time. For example, K  for the lowest risk portfolio 

(number 10) is negative in the first subperiod and positive in the last subperiod, with a “t” 

value of 8. Thus it is unlikely that the true values of K  were the same in the two 

subperiods (each of which contains 105 observations) and thus unlikely that the 

true values of E ZR( ) were the same in the two subperiods, and we shall derive 

formal tests of this proposition below. 

The existence of a factor ZR  with a weight proportional to 1 j  in most 

securities is also suggested by the unreasonably high “t” values12 obtained in the 

cross-sectional regressions, as given in Table 4. Since 0 and 1 involve ZR , which 

is a random variable from cross section to cross section, and since no single cross-

sectional run can provide any information whatsoever on the variability of ZR , this 

element is totally ignored in the usual calculation of the standard errors of 0 and 

1.  It is not surprising, therefore, that each individual cross-sectional result seems 

so highly significant but so totally different from any other cross-sectional 

relationship. Of course the presence of infinite-variance stable distributions will 

also contribute to this type of phenomenon. 
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In addition, in an attempt to determine whether the linearity observed in 

Figures 1 through 5 was in some way due to the averaging involved in the long 

periods presented there, we replicated those plots for our ten portfolios for 17 

separate two-year periods from 1932 to 1965. These results, which also exhibit a 

remarkable linearity, are presented in Figures 6a and 6b. Since the evidence seems 

to indicate that the all-risky asset model describes the data better than the 

traditional model, and since the definition of our “riskless” interest rate was 

somewhat arbitrary in any case, these plots were derived from calculations on the 

raw return data with no reference whatsoever to the “risk-free” rate defined earlier 

(including the recalculation of the ten portfolios and the estimation of the j). 

Figures 7 through 11 contain a replication of Figures 1 through 5 calculated on the 

same basis. These results indicate that the basic findings summarized previously 

cannot be attributed to misspecification of the riskless rate. 

In summary, then, the empirical results suggest that the returns on different 

securities can be written as a linear function of two factors as given in (13), that 

the expected excess return on the beta factor Z˜ R  has in general been positive, and 

that the expected return on the beta factor has been higher in more recent 

subperiods than in earlier subperiods. 

                                                                                                                                                 
12  We say unreasonably high because the coefficients change from period to period by amounts ranging 

up to almost seven times their estimated standard errors. 
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Figure 6 Average monthly returns versus systematic risk for 17 non-overlapping 

two-year periods from 1932 to 1965
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Figure 6 Continued
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Figure 6 Continued
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B. Explicit Estimation of the Beta Factor and a Crucial Test of the Model.  

Since the traditional form of the asset pricing model is consistent with the 

existence of the beta factor as long as the excess returns on the beta factor have 

zero mean,13 our purpose here is to provide a procedure for explicit estimation of 

the time series of the factor. Given such a time series, we can then make explicit 

estimates of the significance of its mean excess return rather than depending 

mainly on an examination of the jˆ   for high- and low-beta securities. Solving (13) 

for Zt˜ r  plus the error term, we have an estimate Zjtˆ r , of Zt˜ r  

Zjtˆ r =
1

1 j( )
j˜ r j Mt˜ r [ ] = Zt˜ r + jt˜ u   (16) 

where jt˜ u = jt˜ w 1 j( ) . We subscript Zjtˆ r  by j to denote that this is an estimate of 

Zt˜ r  obtained from the jth asset or portfolio. Now, since we can obtain as many 

separate estimates of Zt˜ r  as we have securities or portfolios, we can formulate a 

combined estimate 

Ztr = jh Zjtˆ r 
j

  (17) 

which is a linear combination of the Zjtˆ r , to provide a much more efficient estimate 

of Zt˜ r . The problem is to find that linear combination of the Zjtˆ r  which minimizes 

the error variance in the estimate of Zt˜ r . That is, we want to 

                                                 
13   Although the traditional form of the model is consistent with the existence of the  factor if its 

excess return had a zero mean, clearly it would not provide as complete an explanation of the structure 

of asset returns as a model that explicitly incorporated such a factor. In particular, under these 

circumstances the traditional form would provide an adequate description of security returns over 

fairly lengthy periods of time, say three years or more, but it would probably not furnish an adequate 

description of security returns over much shorter intervals. 
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jh
min

2
E Ztr Zt˜ r ( ) =

jh
min

2

E jh Zjtˆ r 
j

Zt˜ r 
 

 
 

 

 
  

subject to jh =1
j

, since we want an unbiased estimate. From the Lagrangian we 

obtain the first-order conditions 

jh 2
j˜ u ( ) = 0     j =  1, 2, . . .,  N   (18) 

where  is the Lagrangian multiplier and N is the total number of securities or 

non-overlapping portfolios. These conditions imply that 

    
jh

ih
=

2
i˜ u ( )

2
j˜ u ( )

  for all i and j   (19) 

which implies that the optimal weights jh  are proportional to 1 2
j˜ u ( ). That is, 

jh =
K

2
j˜ u ( )

     j =  1, 2, . . .,  N   (20) 

where K =1 1 2
j˜ u ( )[ ]j  is a normalizing constant. But from the definition of j˜ u  we 

know that 2
j˜ u ( ) = 2

j˜ w ( )
2

1 j( ) , so 

jh =
K

2

1 j( )
2

j˜ w ( )
  (21) 

Equation (21) makes sense, for we are then weighting the estimates in proportion 

to 
2

1 j( )  and inversely proportional to 2
j˜ w ( ) . However, since we cannot observe 

2
j˜ w ( )  directly,14 we are forced, for lack of explicit estimates, to assume that the 2

j˜ w ( )  

are all identical and to use as our weights 

                                                 
14   We only observe the residual variance from the single variable regression, and, as we can see from 

(13), this will be equal to 
2

1 j( ) 2

Z˜ r ( ) + 2
j˜ w ( ) . However, there are more general procedures for estimating 
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jh =  K 
2

1 j( )  (22) 

where  K =1
2

1 j( )j . 

Equations (17) and (22) thus provide an unbiased and (approximately) efficient 

procedure for estimating Zt˜ r  utilizing all available information. However, there is a 

problem of bias involved in actually applying this procedure to the security data. The 

coefficient j  is of course unobservable, and in general if we use our estimates 
j

ˆ   in the 

weighting procedure we will introduce bias into our estimate of Zt˜ r . To understand this, 

recall that 
j

ˆ  = j + j , substitute this into (13) with the necessary additions and 

subtractions, and solve for the estimate 

Zjtˆ r =
jt˜ r j

ˆ  Mt˜ r 

1
j

ˆ  ( )
=

Zt˜ r 1 j( ) + j˜ w j Mt˜ r 

1
j

ˆ  ( )
 

Substituting this into (17), using (22), rearranging terms, and taking the probability limit, 

we have 

N
p lim Ztr =

tC 2S ( ) +
2

1  ( )[ ] + 2 ˜  ( ) Mtr

2S ( ) +
2

1  ( )[ ] + 2 ˜  ( )
  (23) 

where 2S ( )  is the cross-sectional variance of the j  and   is the mean. However, the 

average standard deviation of the measurement error j˜  ( )  for our portfolios is only 

                                                                                                                                                 
Zt˜ r , in the situation of non identical 2

j˜ w ( )  and cov j˜ w , i˜ w ( ) = 0  for j i . But we leave an investigation 

of the properties of these estimates and some additional tests of the two-factor model for a future 

paper. If the assumption of identical 2
j˜ w ( )  made here is inappropriate, we still obtain an unbiased 

estimate of the Z
˜ R . However, the estimated variance of Z

˜ R , which is of some interest, will be 

greater than the true variance. 
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0.0101 (implying an average variance on the order of 0.0001), and since 2S ( )  for our 

ten portfolios is 0.1144 and   = 1.007, this bias will be negligible and we shall ignore it. 

To begin, let us apply the foregoing procedures to the excess return data to obtain 

an estimate of Zt˜ R = Zt˜ r Ftr , the excess return on the beta factor. Substituting jtR  for jtr  

and MtR  for Mtr  in (16), the Zjt
ˆ R  were estimated for each of our ten log portfolios. These 

were then averaged to obtain the estimate 

ZtR = jh Zjt
ˆ R 

j

=  K 
2

1 j( )
jt˜ R j

ˆ  MtR

1
j

ˆ  

 

 

 
 

 

 

 
 j

 

for each month t. The average of the ZtR  for the entire period and for each of the four 

subperiods are given in Table 5, along with their t values. Table 5 also presents the serial 

correlation coefficients r ZtR , Z , t 1R( ).15  Note that the mean value ZR  of the beta factor 

TABLE 5 

Estimated Mean Values and Serial Correlation of the Excess Returns on the 

Beta Factor over the Entire Periods and the Four Subperiods•  

Period ZR  ZR( )  t ZR ( )  r ZtR , Z , t 1R( )  t r( ) 

1/31-12/65 0.00338 0.0436 1.62 0.113 2.33 

1/31-9/39 -0.00849 0.0641 -1.35 0.194 1.49 

10/39-6/48 0.00420 0.0455 0.946 0.208 2.19 

7/48-3/57 0.00782 0.0199 4.03 -0.181 -1.87 

4/57-12/65 0.00997 0.0228 4.49 0.414 4.60 

•The values of t ZR ( ) were calculated under the assumption of normal distributions. 

                                                 
15  The serial correlation for the entire period appears significant. Indeed, the serial correlation in the last 

period,  0.414, seems very large and even highly significant, with a t value of 4.6. However, the coefficients 

in the earlier periods seem to border on significance but show an inordinately large amount of variability, 

thus indicating substantial nonstationarity. 



Jensen et. al. 39 1972 

over the whole period has a “t” value of only 1.64. However, as hypothesized earlier, it 

was negative in the first subperiod and positive and successively larger in each of the 

following subperiods. Moreover, in the last two subperiods its “t” values were 4.03 and 

4.49, respectively. These results seem to us to be strong evidence favoring rejection of 

the traditional form of the asset pricing model which says that ZR  should be 

insignificantly different from zero. 

In order to be sure that the significance levels reported in Table 5 are not spurious 

and due only to the misapplication of normal distribution theory to a situation in which 

the variables may actually be distributed according to the infinite variance members of 

the stable class of distributions. We have performed the significance tests using the stable 

distribution theory outlined by Fama and Roll (1968). Table 6 presents the standardized 

variates (i.e., the “t” values) for ZR  for each of the sample periods given in Table 5 along  

 

Table 6 

Normalized Variate [i.e., t  Value t ZR ,( ) = ZR ZR ,( )] of the Excess Return on the Beta 

Factor Under the Assumption of Infinite Variance Symmetric Stable Distributions 

  

Period 1.5 1.6 1.7 1.8 1.9 2.0 

1/31-12/65 1.33 1.71 2.14 2.61 3.11° 3.65° 

1/31-9/39 -1.11 -1.44 -1.71 -2.00 -2.29 -2.58 

10/39-6/48 0.82 1.00 1.18 1.38 1.58 1.79 

7/48-3/57 2.60 3.16 3.75° 4.37° 5.00° 5.66° 

4/57-12/65 3.05 3.70 4.40° 5.11° 5.86° 6.63° 

t Value at the 5% 

level of significance  

(two-tail)† 

4.49 3.90 3.48 3.16 2.93 2.77 

Note: = characteristic exponent, 
ZR ,( )  = dispersion parameter of the distribution. 

†Cf. Fama and Roll (1968). 
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with the “t” values at the 5% level of significance (two-tail) under alternative 

assumptions regarding the value of , the characteristic exponent of the distribution. The 

smaller is , the higher are the extreme tails of the probability distribution;  = 2 

corresponds to the normal distribution and  = 1 to the Cauchy distribution. Evidence 

presented by Fama [1965] seems to indicate that  is probably in the range 1.7 to 1.9 for 

common stocks.  We have not attempted to obtain explicit estimates of  for our data, 

since currently known estimation procedures are quite imprecise and require extremely 

large samples (up to 2,000 observations).  Therefore we have simply presented the “t” 

values calculated according to the procedures suggested by Fama and Roll (1968) for six 

values of  ranging from 1.5 to 2.0.  The coefficients in Table 6 that are significant at the 

5% level are noted with an asterisk.  Clearly, if  is greater than 1.7, the results confirm 

the impression gained from the normal tests given in Table 5. 

Note that the estimates in Table 5 and 6 were obtained from the excess return 

data; therefore, although the figures are of interest for testing traditional form of the 

model, they do not give the appropriate level of the mean value of Z˜ r .  The estimates Zr  

and Mr  obtained from the total return data used in Figures 6 through 11 appear in Table7, 

along with Z˜ r ( )  and M˜ r ( )  and the estimated values of 0 and 1 for the cross-sectional 

regressions [given by (10)] for each of the various sample periods portrayed in Figures 6 

through 11. (Recall that the two-factor model implies 0 = Zr  and 1 = Mr Zr .)  One 

additional item of interest in judging the importance of the beta factor in the 

determination of security returns is its standard deviation relative to that of the market 

returns. As Table 7 reveals, Z˜ r ( )  is roughly 50% as large as M˜ r ( ) .  Comparison of Zr  

and Mr  in Table 7 for the four 105-month subperiods indicates that the mean returns on 
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the beta factor were approximately equal to the average market returns in the last two 

periods covering the interval July, 1948-December, 1965. Apparently, then, the relative 

magnitudes of Zr  and Mr  indicate that the beta factor is economically as well as 

statistically significant. 

 

TABLE 7 

Mean and Standard Deviation of Returns on the Zero Beta and Market Portfolios and the  

Cross-sectional Regression Coefficients [from (10)] for Various Sample Periods 

Time Period Zr  Mr  Mr Zr  Z˜ r ( )  M˜ r ( )  
0

a
 1

 a
 

1931-1965 0.004980 0.015800 0.010820 0.042584 0.089054 0.005190 0.010807 

1/31-9/39 -0.007393 0.023067 0.030459 0.063927 0.158707 -0.006913 0.030429 

10/39-6/48 0.004833 0.015487 0.010665 0.045520 0.062414 0.005021 0.010652 

7/48-3157 0.009591 0.012915 0.003324 0.019895 0.036204 0.009537 0.003327 

4/57-12/65 0.012889 0.011723 -0.001167 0.022631 0.038470 0.013115 -0.001181 

1931 -0.047243 -0.037573 0.009669 0.040827 0.152924 -0.045492 0.009557 

1932-1933 -0.009180 0.065574 0.074754 0.059741 0.245281 -0.008286 0.074696 

1934-1935 0.015549 0.031250 0.015701 0.048551 0.097739 0.015542 0.015702 

1936-1937 -0.007749 -0.004538 0.005211 0.032589 0.084786 -0.007336 0.003194 

1938-1939 0.001919 0.024436 0.022517 0.100490 0.147129 0.001514 0.022543 

1940-1941 -0.001308 -0.003902 -0.002596 0.043481 0.072454 -0.000646 -0.002638 

1942-1943 -0.009898 0.035782 0.036780 0.066552 0.066451 -0.001069 0.036784 

1944-1945 0.004511 0.036117 0.031507 0.032522 0.043560 0.004451 0.031517 

1946-1947 0.010153 -0.002357 -0.013010 0.033074 0.056139 0.010946 -0.013061 

1948-1949 0.009721 0.008529 -0.001192 0.019590 0.051471 0.009709 -0.001191 

1950-1951 0.007163 0.020253 0.013090 0.028656 0.039764 0.007215 0.013087 

1952-1953 0.012258 0.003054 -0.009204 0.014559 0.026896 0.012050 -0.009191 

1954-1955 0.007432 0.027266 0.019834 0.019232 0.030804 0.007392 0.019836 

1956-1957 0.010463 -0.003097 -0.013559 0.017638 0.032340 0.010555 -0.013565 

1958-1959 0.014582 0.025060 0.011478 0.019982 0.028261 0.014205 0.011502 

1960-1961 0.026825 0.010867 -0.015958 0.023178 0.036505 0.026753 -0.015953 

1962-1963 0.004300 0.002728 -0.001571 0.026231 0.052144 0.005054 -0.001620 

1964-1965 0.005032 0.017771 0.012738 0.014433 0.026761 0.005519 0.012707 

a
Cf. eq. (10). 
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V. Conclusion 

The traditional form of the capital asset pricing model states that the expected 

excess return on a security is equal to its level of systematic risk, , times the expected 

excess return on the market portfolio. That is, in capital market equilibrium, prices of 

assets adjust such that 

E j˜ R ( ) = 1 j  (24) 

where 1 = E M˜ R ( ) , the expected excess return on the market portfolio. 

An alternative hypothesis of the pricing of capital assets arises from the relaxation 

of one of the assumptions of the traditional form of the capital asset pricing model. 

Relaxation of the assumption that riskless borrowing and lending opportunities are 

available leads to the formulation of the two-factor model. In equilibrium, the expected 

returns E j˜ r ( )  on an asset will be given by 

E j˜ R ( ) = E Z˜ r ( ) + E M˜ r ( ) E Z˜ r ( )[ ] j  (25) 

where E Z˜ r ( )  is the expected return on a portfolio that has a zero covariance (and thus 

Z = 0) with the return on the market portfolio M˜ r . In the context of this model, the 

return on 30-day Treasury Bills (which we have used as a proxy for a “riskless” rate) 

simply represents the return on a particular asset in the system. Thus, subtracting Fr  from 

both sides of (25), we can rewrite (25) in terms of “excess” returns as 

E j˜ R ( ) = 0 + 1 j  (26) 

where 0 = E Z˜ R ( )  and 1 = E M˜ R ( ) E Z˜ R ( ). 

The traditional form of the asset pricing model implies that 0 = 0  and 1 = E M˜ R ( )  

and the two-factor model implies that 0 = E Z˜ R ( ) , which is not necessarily zero and that 
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1 = E M˜ R ( ) E Z˜ R ( ). In addition, several other models arise from relaxing some of the 

assumptions of the traditional asset pricing model which imply 0 0  and 1 E MR( ) . 

These models involve explicit consideration of the problems of measuring MR , the 

existence of nonmarketable assets, and the existence of differential taxes on capital gains 

and dividends, and we shall briefly outline them. Our main emphasis has been to test the 

strict traditional form of the asset pricing model; that is, 0 0? We have made no 

attempt to provide direct tests of these other alternative hypotheses. 

To test the traditional model, we used all securities listed on the New York Stock 

Exchange at any time in the interval between 1926 and 1966. The problem we faced was 

to obtain efficient estimates of the mean of the beta factor and its variance. It would be 

possible to test the alternative hypotheses by selecting one security at random and 

estimating its beta from the time series and ascertaining whether its mean return was 

significantly different from that predicted by the traditional form of the capital asset 

pricing model. However, this would be a very inefficient test procedure. 

To gain efficiency, we grouped the securities into ten portfolios in such a way that 

the portfolios had a large spread in their ‘s. However, we knew that grouping the 

securities on the basis of their estimated ‘s would not give unbiased estimates of the 

portfolio “Beta,” since the ‘s used to select the portfolios would contain measurement 

error. Such a procedure would introduce a selection bias into the tests. To eliminate this 

bias we used an instrumental variable, the previous period’s estimated beta, to select a 

security’s portfolio grouping for the next year. Using these procedures, we constructed 

ten portfolios whose estimated ‘s were unbiased estimates of the portfolio “Beta.” We 

found that much of the sampling variability of the ‘s estimated for individual securities 
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was eliminated by using the portfolio groupings. The ‘s of the portfolios constructed in 

this manner ranged from 0.49 to 1.5, and the estimates of the portfolio ‘s for the 

subperiods exhibited considerable stationarity. 

The time series regressions of the portfolio excess returns on the market portfolio 

excess returns indicated that high-beta securities had significantly negative intercepts and 

low-beta securities had significantly positive intercepts, contrary to the predictions of the 

traditional form of the model. There was also considerable evidence that this effect 

became stronger through time, being strongest in the 1947-65 period. The cross-sectional 

plots of the mean excess returns on the portfolios against the estimated ‘s indicated that 

the relation between mean excess return and  was linear. However, the intercept and 

slope of the cross-sectional relation varied in different subperiods and were not consistent 

with the traditional form of the capital asset pricing model. In the two prewar 105-month 

subperiods examined, the slope was steeper in the first period than that predicted by the 

traditional form of the model, and it was flatter in the second period. In each of the two 

105-month postwar periods it was considerably flatter than predicted. From the evidence 

of both the time series and cross-sectional runs, we were led to reject the hypothesis that 

0 in (26) was equal to zero; we therefore concluded that the traditional form of the asset 

pricing model is not consistent with the data. 

We also attempted to make explicit estimates of the time series of returns on the 

beta factor in order to obtain a more efficient estimate of its mean and variance and 

thereby enable ourselves to directly test whether or not the mean excess return on the beta 

factor was zero. We derived a minimum-variance, unbiased linear estimator of the returns 

on the  factor using our portfolio return data. We showed that, given the independence 
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of the residuals the optimum estimator requires knowledge of the unobservable residual 

variances of each of the portfolios but that this problem could be avoided if they were 

equal. Under this assumption of equal residual variances, we estimated the time series of 

returns on the beta factor. However, if these assumptions (i.e., the independence of the 

residuals and equality of their variances) are not valid--and there is reason to believe they 

are not--more complicated procedures are necessary to obtain minimum-variance esti-

mates. Such estimators, which use the complete covariance structure of the portfolio 

returns are available (although not derived here). However, we feel that a straightforward 

application of these procedures to the return data would result in the introduction of 

serious ex post bias in the estimates. Thus we have left a complete investigation of these 

problems, as well as more detailed tests of the two-factor model, to a future paper. In 

order to fully utilize the properties of the two-factor model in a number of applied 

problems (such as portfolio evaluation, see Jensen (1971) and various issues in valuation 

theory), it will be necessary to have minimum-variance unbiased estimates of the time 

series of returns on the beta factor, and we hope to provide such estimates in the not-too--

distant future. 

The evidence obtained from the time series of returns on the beta factor indicated 

that the beta factor had a nonzero mean and that the mean was non-stationary over time. 

It seems to us that we have established the presence and significance of the beta factor in 

explaining security returns but, as mentioned earlier, we have not provided any direct 

tests aimed at explaining the existence of the beta factor. We have, however, suggested 

an economic rationale for why capital market equilibrium is consistent with the finding of 

this second factor. Black (1970) has shown that if riskless borrowing opportunities are 
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not available, the equilibrium expected returns on an asset will be a linear function of two 

factors, one the  factor, the other the market factor. 

In addition, Black and Jensen (1970) have demonstrated that if assets are omitted 

from the estimated market return, a model similar in some ways to the two-factor model 

would result. (Roll’s analysis (1969) is relevant to this issue as well.) That is, it yields a 

model similar in structure to (26) and implies that 0 0 . However, it is clear from 

Figures 6a and 6b and Table 7 that the beta factor (the intercept in the figures and 0 in 

Table 7) is highly variable and any alternative hypothesis must be consistent with this 

phenomenon. In other words, it is not sufficient for an alternative model to simply imply 

a nonzero but constant intercept in (26). 

Others have provided alternative models that are similar in structure to the Black-

Jensen results. For example, Mayers (1972) has developed an equilibrium model 

incorporating the existence of nonmarketable assets and has shown that the basic linear 

relation of the traditional model is unaltered, but the constant term 0 will be nonzero and 

1 will not equal E MR( ) . The implications of his model for the structure of asset returns 

are virtually identical to those of the omitted assets model. Brennan [1970] has derived 

the equilibrium structure of security returns when the effects of a differential tax on 

dividends and capital gains are considered. He also concludes that the basic linearity of 

the traditional model is unchanged, but a nonzero constant term must be included and 1 

will not equal E MR( ) . Black and Scholes (1970), however, have tested for the existence 

of dividend effects and have found that the differential tax on dividends and capital gains 

does not affect the structure of security returns and hence cannot explain the 

results reported here. 
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There are undoubtedly other economic hypotheses that are consistent with 

the findings of the existence of a second factor and consistent also with capital 

market equilibrium. Each hypothesis must be tested directly to determine whether 

it can account for the presence of the  factor. The Black Scholes investigation of 

dividend effects is an example of such a test. 

Appendix: The Grouping Solution to the Measurement Error Problem 

Consider first the estimate 
j

ˆ   of the risk parameter in more detail. We will 

want to test (10) over some holding period, but we must first obtain the estimates 

of the risk parameter 
j

ˆ  , from the time series equation given by (6). For 

simplicity, we shall assume that the jt˜ e  are independently distributed and have 

constant variance for all j and t. The least-squares estimate of j  in (6), 
j

ˆ  , is thus 

unbiased but subject to a sampling error j  as in (7), and the variance of the 

sampling error of the estimate 
j

ˆ   is 

var
j

ˆ  j( ) = 2
j˜  ( ) =

2
j˜ e ( )

=
2 ˜ e ( )

      (A.1)  

since 2
j˜ e ( )  was assumed equal for all j, and where 

 =
2

MtR MR( )
t=1

T

         (A.2) 

is the sample sum of squared deviations of the independent variable over the T 

observations used in the time series estimating equation. Hence using (11) we see 

that 

p lim ˆ  = 1

1+ 2 ˜ e ( ) 2S j( )
        (A.3) 
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Let us assume that we can order the firms on the basis of j  or on the basis 

of some instrumental variable highly correlated with j  but independent of j˜  . 

Given the N ordered firms, we group them into M equal-size contiguous 

subgroups, represented by K = 1, 2, . . ., M and calculate the average return for 

each group for each month t according to  

 K˜ R =
1

L Kjt˜ R 
j=1

L

       K = 1, 2, . . ., M   (A.4)  

 L =
N

M
  (assumed to be integer)    (A.5) 

where Kjt˜ R  is the return for month t for security j in group K. We then estimate the 

systematic risk of the group by applying least squares to 

Kt˜ R = K + K Mt˜ R + Kt˜ e    
K =  1,  2,  . . .,  M

t =  1,  2,  . . .,  T

 
 
 

    (A.6) 

where 

Kt˜ e =
1

L
Kjt˜ e 

j=1

L

     (A.7) 

and 

 2
Kt˜ e ( ) =

2 ˜ e ( )
L

      (A.8)  

Equation (A.8) holds, since, by assumption, the Kjt˜ e  are independently 

distributed with equal variance. The least squares estimate of K  in (A.6) is 

K
ˆ  = K + K˜   and its variance is 

var
K

ˆ  K( ) = 2
K˜  ( ) =

2 ˜ e ( )
L

   (A.9) 
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Now if we estimate the cross-sectional relation (10) using our M 

observations on  KR = KtR Tt=1
T

 and 
K

ˆ   for some holding period, we have 

KR = 0 + 1 K
ˆ  + K

°e      (A.10) 

where   

K
°e =

Kt
°e 

Tt=1

T

= Ke 1 K˜      (A.11) 

Now the large sample estimate of y, in (A.10)   

 p lim 1
ˆ  = 1

1+
p lim 2

K˜  ( )
p lim 2S K( )

= 1

1+
p lim

1
L

2 ˜ e ( )
2S K( )

= 1  (A.12) 

since p lim 2 ˜ e ( ) L = 0 as long as L  as N ,  and this is true as long as we 

hold the number of groups constant. Thus these grouping procedures will result in 

unbiased estimates of the parameters of (10) for large samples. Note that 2S K( ) , the 

cross-sectional sample variance of the true group risk coefficients, is constant with 

increasing L so long as securities are assigned to groups on the basis of the ranked j . 

Note also, however, that if we randomly assigned securities to the M groups we would 

have 
2plimS K( ) = plim 2S j( ) L  and (A.12) would thus be identical to (A.3). 

Therefore, random grouping would be of no help in eliminating the bias. As can be seen, 

the grouping procedures we have already described in the time series tests accomplish 

these results. While we expect these procedures to substantially reduce the bias16 they 

                                                 
16   As mentioned earlier, the choice of the number of groups is somewhat arbitrary and, for any given 

sample size, involves a tradeoff between the bias and the degree of sampling error in the estimates of the 

parameters in (10). In an unpublished study of the properties of the grouping procedures by simulation 

techniques,  Jensen and Mendu Rao have found that, when 2

j˜  ( ) = 2
S j( ) , the use of ten groups with a total 

sample size of  N= 400, yields estimates of the coefficient 1  in (10) which, on the average, are biased 
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cannot completely eliminate it in our case because the j˜ e  and therefore the j˜   are not 

independent across firms. However, as discussed in Section III, we expect the remaining 

bias to be trivially small. 
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