

2013 Asset Management Distribution Program Update

Amber Fowler, Rodney Pickett, Doug Forkner, and Thomas Morrell 02-17-2013

This is a review of all the Asset Management Programs evaluated by Asset Management. While many AM plans have been created and reviewed, only a portion of the plans discussed have been implemented.

Table of Contents

Introduction	1
Purpose	1
Data Sources	1
Standard Calculations	2
Review of OMT Data and Trends	2
OMT Events per Year	2
SAIFI Trends by OMT Sub-Reasons	8
OMT Sub-Reason Events High Limit	10
Specific Distribution Programs and Assets	17
Distribution Wood Pole Management (WPM)	17
Selected KPIs and Metrics	17
WPM Metric Performance	20
WPM Model Performance	20
WPM Summary	21
Wildlife Guards	27
Selected KPIs and Metrics	27
WILDLIFE GUARDS KPI Performance	28
WILDLIFE GUARDS Metric Performance	28
WILDLIFE GUARDS Model Performance	29
WILDLIFE GUARDS Summary	29
URD Primary Cable	32
Selected KPIs and Metrics	32
URD PRIMARY CABLE KPI Performance	33
URD PRIMARY CABLE Metric Performance	34
URD PRIMARY CABLE Model Performance	34
URD PRIMARY CABLE Summary	35
URD Secondary Cable	35
Open Wire Secondary	35
Distribution Cutouts	35
Distribution Air Switches	35
Distribution Mid-Line Reclosers	35

Distribution Mid-Line Voltage Regulators	36
Primary Conductors	36
Primary Connections	37
Secondary Conductors	37
Secondary Connectors	37
Distribution Transformers	37
Selected Metrics	37
Metric Performance	38
Summary	38
Area and Street Lights	38
Riser Terminations	38
Dead End Insulators	38
Distribution Capacitors	39
9CE12F4 Partial Feeder Rebuild	39
Selected KPIs and Metrics	39
Partial Feeder Rebuild KPI Performance	39
Partial Feeder Rebuild Metric Performance	39
Partial Feeder Rebuild Model Performance	41
Partial Feeder Rebuild Summary	41
Chance Cutouts	42
Selected KPIs and Metrics	42
Chance Cutouts KPI and Metric Performance	42
Chance Cutouts Model Performance	44
Chance Cutouts Summary	44
Distribution Vegetation Management (VM)	44
Selected KPIs and Metrics	44
VM KPI Performance	46
VM Metric Performance	48
VM Model Performance	49
VM Summary	49
Distribution Grid Modernization Program	49
Selected Metrics	50

Metric Performance	54
Summary	54
Asset Management Area Work plans for Electric Distribution Error! Bookmark not	defined.
Spokane Area Work Plans Error! Bookmark not	defined.
Conclusion	54
Figure 1, OMT Annual Number of Events and AM Related Event Trends and Trend Lines	7
Figure 2, OMT Events with and without Planned Maintenance or Upgrades	8
Figure 3, Individual Sub-Reasons exceeding Quarterly High Limits	12
Figure 4, Top 10 Sub-Reasons with the Value of SAIFI Rising over Time	13
Figure 5, 2013 OMT SAIFI Contribution by Sub-Reason	14
Figure 6, 2012 OMT Sustained Outage Comparisons	15
Figure 7, Customers Affected Per Event Exceeding Risk Action Levels	16
Figure 8, WPM OMT Event Trends	22
Figure 9, WPM Contribution to Annual SAIFI value by Sub-Reason and Year	23
Figure 10, Wood Pole Used by Summarized Activity	24
Figure 11, Distribution Wood Pole Age Profile	25
Figure 12, WPM Model Projections vs Actual Usage for 2013	26
Figure 13, Wildlife Guards Installed by Year and Expenditure Request	30
Figure 14, Wildlife Guards Usage by MAC for 2009-2013	31
Figure 15, URD Primary Cable OMT Events by Year	34
Figure 16, All OMT Sub-Reasons except Maint/Upgrade for Feeder 9CE12F4 2002-2013	40
Figure 17, Selected OMT Trends for AM Related Events with Upward Trends for Feeder 9CE12F4	41
Figure 18, Cutout/Fuse OMT Event Comparison between Actual, Projected without Action, and	
Projected with Action	43
Figure 19, OMT Events Data Trends for Tree-Weather, Tree Growth, and Tree Fell Sub-Reasons	47
Figure 20, OMT Outage and Partial Outage Data Trends for Tree-Weather, Tree Growth, and Tre	e Fell
Sub-Reasons	48
Figure 21, OMT Sustained Outages related to Grid Modernization	53
Table 1, OMT Events by Sub-Reason and Year	2
Table 2, OMT Outages and Partial Outages by Sub-Reason and Year	4
Table 3, Top Ten Trends Upward in OMT Data by Sub-Reason based on 2007-2013 data	5
Table 4, Top Ten Trends Downward in OMT Data by Sub-Reason based on 2007-2013 data	6
Table 5, SAIFI Trends by OMT Sub-Reason Average per Outage	
Table 6, OMT Sub-Reasons Exceeding Annual High Limit	
Table 7, WPM KPI Goals by Year	
Table 8, WPM Metric Goals by Year	
Table 9, Wildlife KPI Goals for 2010 - 2015	28

Table 10, Wildlife Metric Goals for 2010 - 2015	28
Table 11, Worst Feeders for Squirrel related Events for 2010 - 2012	29
Table 12, URD Cable - Pri KPI Goals	33
Table 13, URD Cable - Pri Metric Goals	33
Table 14, TCOP Metrics	38
Table 15, Chance Cutout Replacement KPI and Metric Goals	42
Table 16, Chance Cutout KPI and Metric Performance	43
Table 17, Vegetation Management KPI Goals	45
Table 18, Vegetation Management Metric Goals	45
Table 19, VM KPI Performance	46
Table 20, Tree-Weather OMT Events Metric for Vegetation Management	49
Table 21, VM Cost per Mile and All Vegetation Management Work Metric	49
Table 22, Grid Modernization Program Objectives	50
Table 23, Energy Savings based on 2013 Integrated Resource Plan Error! Bookmarl	c not defined
Table 24, OMT Sub-Reasons impacted by Grid Modernization	52
Table 25. Metric Performance for Grid Modernization Program	54

Introduction

As Avista incorporates more work and Asset Management (AM) Plans each year, Asset Management is committed to monitor how these activities impact our systems and document the value created by the programs. Reviewing the results of AM activities and system responses provides us with the feedback necessary to learn and improve our plans and processes. These outcomes also help drive future work when actions don't yield the desired results or we find there is even more value of further work. In the end, our commitment to continuous improvement require us to examine how we have impacted our systems and learn from what has happened to make tomorrow's plans work better.

Purpose

This report documents the KPIs and metrics AM uses for the Distribution system and provides the results for 2013. Some of the metrics provide a basis for comparing how an asset performed with a program and how it would have performed without a program. The difference in performance provides an estimate of the cost saving of the program. The estimated savings is only a snapshot in time and may not represent the exact savings; it provides a relative comparison and supporting justification for AM decisions made in the past. Other KPIs and metrics provide indications of how well an asset is performing and helps determine when further work is required. KPIs and metrics tracking also help evaluate the accuracy of different AM models and determine when or if a model should be revised.

Data Sources

Information used in this report's metrics comes from three sources: Annual Sustained and Momentary outage data; Outage Management Tool (OMT) events; and Discoverer. The annual Sustained and Momentary outage data is generated by the Distribution Dispatch Engineer each month in a spreadsheet. The Sustained and Momentary outage data for years 2001 – 2007 was modified by AM to align the reasons and sub-reasons to coincide with the current descriptions. While the Sustained and Momentary outage data comes from OMT data and is a subset of OMT data, this data has been scrubbed by the Distribution Dispatch Engineer to improve its accuracy.

The OMT tracks outages and customer reports of problems on the Distribution system, Substations, and Transmission events that cause outages on the Distribution system. This data includes sustained outages, momentary outages, and events without outages. Events that only cause a partial outage or no outage at all do not show up in the Sustained and Momentary outage data, because the data does not fit the definition of a sustained outage or a momentary outage. However, the OMT data is subject to reporting an event more than once. The Distribution Dispatch Engineer reviews the data and strives to prevent duplication by rolling events up and editing the data. However, some duplication still occurs. OMT data is used to calculate number of outages, number of OMT events (outages, partial outages, and non-outage events), outage duration, number of customers impacted, response times, System Average

Interruption Frequency Index (SAIFI) impacts, and System Average Interruption Duration Index (SAIDI) impacts.

Discoverer provides financial, customer information, and material usage information from our warehouse and financial systems. Spending and material can be tracked to the ER and BI level for capital work and the MAC and Task for Operations and Maintenance (O&M) work.

Standard Calculations

See reference the "2013 General Metrics Data Collection and Analysis for System Reviews" for the details and examples of how different measures and metrics are calculated.

Review of OMT Data and Trends

Examining the data in OMT reveals a lot of information which helps Avista understand the condition of our assets and shows some trends we can address. Below, we will examine various trends within OMT Events per Year, SAIFI trends by OMT Sub-Reasons, and other measures.

OMT Events per Year

Table 1 shows the past seven years of data out of OMT by Sub-Reason and allows trend analysis. OMT Events represents cost and action for Avista, so it was selected as a basis for much of our trending. However, OMT Outage data (shown in Table 2) can have a different trend than OMT Events. Since the SAIFI analysis already includes outage data, AM selected to trend OMT Events and SAIFI contribution. Based on Table 1, we identified the top 10 increasing and decreasing trends in OMT Sub-Reasons. The Top 10 increasing trends in the number of OMT events by year is shown in Table 3 and the Top 10 decreasing trends in the number of OMT events by year is shown in Table 4.

Table 1, OMT Events by Sub-Reason and Year

OMT SUB-REASON	2007	2008	2009	2010	2011	2012	2013
Arrester	26	26	19	32	30	36	24
Bird	220	187	218	179	332	231	270
Bus Insulator					2	1	1
Capacitor	6	4	4	2		4	4
Car Hit Pad	88	129	139	105	98	105	117
Car Hit Pole	231	202	217	298	339	355	369
Conductor - Pri	59	51	42	64	81	110	142
Conductor - Sec	231	252	286	273	310	286	331
Connector - Pri	89	99	111	101	100	79	85
Connector - Sec	340	395	429	410	408	390	336
Crossarm-rotten	46	38	23	25	28	19	18
Customer Equipment	1182	1475	1626	1458	1384	1434	1368
Cutout/Fuse	272	234	197	217	176	209	171
Dig In	132	152	164	149	123	109	103

OMT SUB-REASON	2007	2008	2009	2010	2011	2012	2013
Elbow	5	8	7	5	8	2	10
Fire	135	182	157	203	234	230	282
Forced	52	62	51	63	67	33	63
Foreign Utility	455	856	724	894	720	734	720
Highside Breaker	1			2			
Highside Fuse	2	4					
Highside Swt/Disconnect		4					
Insulator	25	37	32	49	36	32	47
Insulator Pin	18	17	28	24	30	25	23
Junctions	1		2	2	1	4	6
Lightning	333	335	598	163	179	635	453
Lowside OCB/Recloser	1	2	6	8	4		
Lowside Swt/Disconnect			2				1
Maint/Upgrade	331	350	539	1571	3334	2589	1840
Other	409	434	394	414	426	483	472
Pole Fire	116	157	116	102	117	113	152
Pole-rotten	25	44	44	37	35	52	34
Primary Splice	3	1		1	1		
Protected	10	23	18	10	4	5	5
Recloser	4	2	4	11	3	2	3
Regulator	8	13	14	20	17	13	17
Relay Misoperation	1	1	5	7			5
SEE REMARKS	747	849	821	892	543	487	463
Service	113	144	123	188	197	230	191
Snow/Ice	249	2093	988	565	167	352	122
Squirrel	801	747	700	390	395	358	215
Switch/Disconnect	1	15	9	3		3	6
Termination	9	18	7	7	9	12	21
Transformer	5	5		3		9	2
Transformer - OH	179	211	158	128	156	167	132
Transformer UG	47	46	57	53	51	50	71
Tree	92	66	55	53	51	56	46
Tree Fell	315	470	390	506	392	377	298
Tree Growth	273	443	375	330	335	335	349
Underground	5	2		3	1	3	2
Undetermined	1014	1116	1145	948	861	783	765
URD Cable - Pri	198	176	136	93	95	72	93
URD Cable - Sec	185	212	212	190	248	219	208
Weather	251	564	357	895	325	314	216
Wildlife Guard			3		1	2	

OMT SUB-REASON	2007	2008	2009	2010	2011	2012	2013
Wind	953	822	294	1309	256	1042	1126

Table 2, OMT Outages and Partial Outages by Sub-Reason and Year

Table 2, OMT Outages and Partial Outages by Sub-Reason and Year							
OMT SUB-REASON	2007	2008	2009	2010	2011	2012	2013
Arrester	25	22	18	31	30	32	21
Bird	215	178	213	175	322	225	259
Bus Insulator	0	0	0	0	2	1	1
Capacitor	3	2	4	1	0	3	2
Car Hit Pad	46	47	41	30	31	45	36
Car Hit Pole	133	104	104	135	131	158	152
Conductor - Pri	42	26	31	49	61	70	113
Conductor - Sec	102	107	117	104	126	124	147
Connector - Pri	71	88	102	84	82	59	68
Connector - Sec	224	246	272	263	270	267	227
Crossarm-rotten	38	28	11	20	24	17	15
Customer Equipment	897	1040	1205	1121	1034	1099	1037
Cutout/Fuse	238	207	175	194	161	185	155
Dig In	99	103	104	88	75	64	62
Elbow	5	7	7	5	7	2	10
Fire	68	31	8	69	72	82	102
Forced	52	61	51	63	67	33	63
Foreign Utility	63	110	78	103	61	62	90
Highside Breaker	1	0	0	1	0	0	0
Highside Fuse	2	4	0	0	0	0	0
Highside Swt/Disconnect	0	0	0	0	0	0	0
Insulator	13	25	23	31	26	19	27
Insulator Pin	16	15	16	15	18	19	13
Junctions	1	0	0	1	0	2	2
Lightning	323	320	572	159	174	562	417
Lowside OCB/Recloser	1	2	6	8	3	0	0
Lowside Swt/Disconnect	0	0	2	0	0	0	1
Maint/Upgrade	331	342	534	1566	3331	2587	1834
Other	301	252	247	275	261	282	282
Pole Fire	108	130	101	87	93	95	128
Pole-rotten	5	7	14	11	10	9	7
Primary Splice	3	1	0	1	1	0	0
Protected	9	16	17	7	4	5	5
Recloser	4	2	3	9	1	2	3
Regulator	8	11	10	16	14	10	10
Relay Misoperation	1	1	5	7	0	0	5

OMT SUB-REASON	2007	2008	2009	2010	2011	2012	2013
SEE REMARKS	406	318	420	443	286	255	262
Service	80	92	59	89	86	59	55
Snow/Ice	225	1176	592	347	135	291	103
Squirrel	786	725	694	380	389	351	210
Switch/Disconnect	1	6	7	3	0	1	5
Termination	9	16	7	6	8	12	18
Transformer	5	5	0	3	0	9	2
Transformer - OH	164	193	143	107	138	150	117
Transformer UG	45	38	42	44	36	42	59
Tree	71	46	42	39	36	39	35
Tree Fell	176	255	186	234	215	229	183
Tree Growth	107	101	101	77	71	93	90
Underground	5	2	0	1	1	3	2
Undetermined	914	956	1023	855	799	684	669
URD Cable - Pri	197	153	132	89	92	71	89
URD Cable - Sec	168	194	201	175	227	202	190
Weather	192	358	273	620	178	170	137
Wildlife Guard	0	0	3	0	0	2	0
Wind	737	553	229	982	195	802	840

Table 3, Top Ten Trends Upward in OMT Data by Sub-Reason based on 2007-2013 data

Top Ten Upward Trends					
OMT Sub-Reason	Slope Change per Year				
Maint/Upgrade	421				
Wind	28				
Lightning	13				
Customer Equipment	13				
Bird	12				
Conductor - Pri	12				
Fire	10				
Car Hit Pole	7				
Conductor - Sec	6				
URD Cable - Sec	4				

The largest upward trend continues to be our increase in maintenance and upgrade outages. We have implemented many programs that increase our outages due to maintenance but decrease the number of outages due to failures. It appears that Planned Work has had an impact on our outages. Nearly all of the Outage Sub-Reasons that are directly and indirectly affected by the Vegetation program, Wood

Pole Management, and other planned work are not represented on this list. The only outage Sub-Reason on the list that is affected by an Asset Management program is the Bird outage. This could be due to variables outside of our control and will need to be evaluated if this behavior continues. All of the remaining outage Sub-Reasons in Table 3 are at a level that a program is probably not needed or outside the scope of an Asset Management Program.

Table 4 shows the Top 10 OMT Sub-Reasons with a downward trend. The largest downward trend is in Squirrel event driven largely by the results of adding Wildlife Guards (WLG) on new installs and adding them to existing transformers as part of Wood Pole Management and Grid Modernization. Our Cutout Replacement programs for Chance cutouts and bad cutouts identified by Wood Pole Management have made a great impact on the number of cutout events. The URD cable Replacement program for the first generation of unjacketed cable has paid great dividends when compared to where it could have been without taking action at reducing URD Cable – Pri events. The Tree events listed in Table 4 are for tree events caused by the public and are outside of our control. The remaining Sub Reasons in the table have trend downward but the changes are not material at this point in time.

Table 4, Top Ten Trends Downward in OMT Data by Sub-Reason based on 2007-2013 data

Top Ten Downward Trends				
OMT Sub-Reason	Slope Change per Year			
Squirrel	-99			
Snow/Ice	-93			
Undetermined	-54			
SEE REMARKS	-25			
Weather	-23			
URD Cable - Pri	-19			
Cutout/Fuse	-11			
Transformer - OH	-8			
Dig In	-8			
Tree	-5			

The overall trends in OMT Events are shown in Figure 1 along with the trends in AM related OMT Events (see Appendix A of the "2013 Asset Management Electrical Distribution Program Review and Metrics" and the table titled "List of AM Related OMT Sub-Reasons" to see which OMT Sub-Reasons are considered AM Related). Based on Figure 1, Avista sees the number of events decreasing over the past 6 years. Figure 2 also shows that the number of OMT events representing failures is on a downward trend over the past 6 years (see OMT Events w/o Maint/Upgrades for this trend).

AM related OMT events are actually decreasing at a rate around 5%. Since the regional growth rates are less than 2%, the decrease is most probably due to the increase in maintenance in the system and replacement of aged infrastructure.

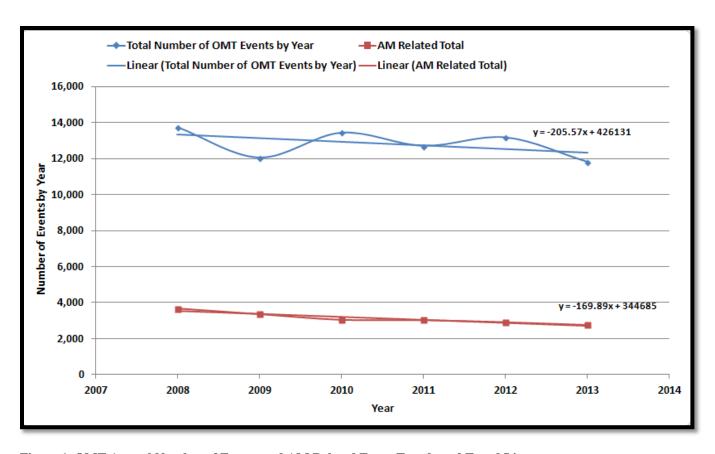


Figure 1, OMT Annual Number of Events and AM Related Event Trends and Trend Lines

Total of Outage Management Tool Events vs Year

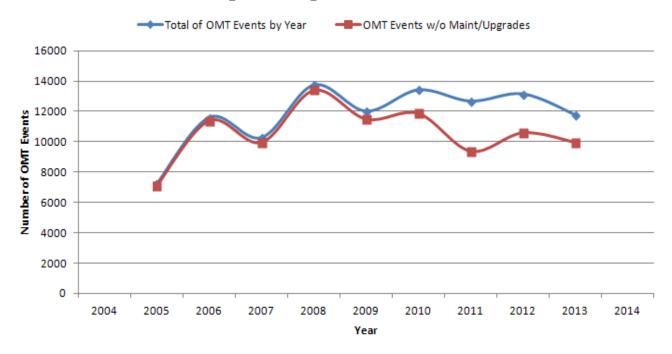


Figure 2, OMT Events with and without Planned Maintenance or Upgrades

SAIFI Trends by OMT Sub-Reasons

Examining how SAIFI changes each year is shown in Table 5. SAIFI values in Table 5 represent the annual value each event contributes to the overall SAIFI number. For example, in 2010, the average Arrester event in OMT added 0.0023076 to the overall SAIFI number for the year. While the number of electrical customers does grow each year, the main driver for changes in the average SAIFI number per event comes from the average numbers of customers affected by the event. Continuing our example with Arresters, in 2009 Avista had 356,777 electrical customers and the average Arrester outage event affected 111 customers, so the average SAIFI impact per event was 0.0023076. In 2011, our electrical customer count increased to 358,443 and the average number of customers affected by an Arrester related outage dropped to 40, and the average SAIFI impact due to Arrester events dropped to 0.0008451. The result for SAIFI was an increase in the average impact to SAIFI in 2010 compared to 2011.

While most Sub-Reasons in OMT have fluctuating value around an average value over the past five years, some Sub-Reasons have demonstrated a definite trend upward as shown in Figure 4. Figure 4 shows the top 10 Sub-Reasons based on the percentage change in 2013. Some of the items in Figure 4 had small numerical changes but the percentage change was significant. The Car Hit Pole Sub-Reason is an example of this, because the number of OMT events was less than 300 between the years 2007-2010 and the SAIFI value in 2009 was 5.6*10⁻² but moved steadily to 6.2*10⁻² in 2013.

Figure 5 and Figure 6 illustrate the makeup of the overall SAIFI value and overall OMT Sustained Outages. Figure 6 and Figure 5 show a different result because the number of customers impacted by

each Sub-Reason is different. For example, we have very few Lightning caused outages, but they affect a large number of customers. So, Lightning shows a significant impact to SAIFI in Figure 5 but is insignificant on Figure 6.

Table 5, SAIFI Trends by OMT Sub-Reason Average per Outage

Average SAIFI Trends by OMT Sub-Reason Average per Outage Average SAIFI by Sub-Reason Event									
OMT Sub-									
Reason	2007	2008	2009	2010	2011	2012	2013		
Arrester	0.01336324	0.011896617	0.008745915	0.009230266	0.003380523	0.015245676	0.003562297		
Bird	0.015658058	0.016111406	0.051184585	0.026835343	0.050143556	0.015659978	0.064285794		
Bus Insulator	0	0	0	0	0.009016775	0.000463618	0.00165077		
Capacitor	0.000954613	0.002953837	0.002533353	0.002842798	0	0.006147101	8.27074E-06		
Car Hit Pad	0.004577603	0.003859152	0.003022983	0.001972404	0.00315424	0.004171572	0.004940524		
Car Hit Pole	0.082729511	0.056285174	0.05623644	0.055741604	0.034563763	0.078829605	0.061689509		
Conductor - Pri	0.021600264	0.011489151	0.025289327	0.013459389	0.025213018	0.024181701	0.036457655		
Conductor - Sec	0.001383003	0.001479731	0.001086872	0.001923463	0.001952154	0.003857768	0.002491023		
Connector - Pri	0.019175112	0.044761723	0.036707546	0.029390854	0.022841718	0.023941651	0.01912657		
Connector - Sec	0.002766032	0.002171923	0.00158371	0.001764569	0.001927718	0.002095065	0.001612901		
Crossarm-rotten	0.050334458	0.0252873	0.001820303	0.010791352	0.017452881	0.004106797	0.001059746		
Customer									
Equipment	7.49088E-05	0.000124802	8.77548E-05	8.43629E-05	4.18879E-05	0	4.96037E-05		
Cutout/Fuse	0.015844599	0.024630616	0.020002232	0.029472485	0.014918168	0.027484801	0.01707108		
Dig In	0.011935045	0.017879617	0.017426241	0.002911047	0.007751271	0.001543001	0.001766282		
Elbow	0.000175223	0.001148975	0.001834192	9.54113E-05	0.000737521	2.50685E-05	0.001158911		
Fire	0.017648049	0.001552322	0.000963714	0.000916016	0.001765849	0.004579849	0.012299424		
Forced	0.022935126	0.037704074	0.041119919	0.026724006	0.011341762	0.01007956	0.035479695		
Foreign Utility	4.62462E-05	0.000104966	9.67203E-06	0.06415389	1.9551E-05	1.10385E-05	3.04099E-05		
Highside Breaker	0.005624164	0	0	0.001809346	0	0	0		
Highside Fuse	5.79715E-06	0.003370373	0	0	0	0	0		
Highside									
Swt/Disconnect	0	0	0	0	0	0	0		
Insulator	0.006320321	0.005329816	0.032674813	0.00947135	0.00767475	0.001619894	0.018937297		
Insulator Pin	0.015949133	0.002512396	0.00073663	0.00609977	0.012718209	0.002646432	0.004556295		
Junctions	0.000127537	0	0	5.63488E-06	0	0.002791077	0.000475014		
Lightning	0.128468634	0.083469701	0.093833897	0.05153771	0.029986357	0.107700751	0.152792603		
Lowside OCB/Recloser	0.002156231	0.00501564	0.032172584	0.02327413	0.013159376	0	0		
Lowside Swt/Disconnect	0	0	0.001932028	0	0	0	2.75588E-06		
Maint/Upgrade	0.056121124	0.073959603	0.146879337	0.115272977	0.131045664	0.093958391	0.118799625		
Other	0.139200478	0.087814989	0.158240122	0.177318475	0.156583826	0.114257941	0.085502603		
Pole Fire	0.071639978	0.085131634	0.056866386	0.108242728	0.087722138	0.058825288	0.078650039		
Pole-rotten	0.000430513	0.000936218	0.001111959	0.002027401	0.002475849	0.001111378	0.002186058		

OMT Sub-							
Reason	2007	2008	2009	2010	2011	2012	2013
Primary Splice	8.94841E-05	2.81903E-06	0	1.40872E-05	0.000227493	0	0
Protected	0.009257534	0.013300204	0.006434116	0.005438117	0.000105902	0.000523814	0.000524546
Recloser	0.001297214	0.001916203	0.003492427	0.002520587	0.000212125	8.36386E-06	0.001310323
Regulator	0.005390496	0.024938242	0.011105746	0.019517299	0.003012273	0.020486437	0.010292094
Relay Misoperation	0.008228451	0.005720398	0.01961408	0.026993562	0	0	0.008117153
SEE REMARKS	0.015994757	0.032649991	0.017553605	0.0263254	0.022946333	0.024001629	0.035782952
Service	0.000501324	0.00054765	0.000382684	0.001512913	0.001254413	0.001425234	0.001116933
Snow/Ice	0.081725352	0.264038325	0.133791974	0.091003627	0.039682871	0.109703932	0.035007006
Squirrel	0.023857822	0.08015205	0.056647666	0.021425719	0.039013725	0.050207568	0.026293232
Switch/Disconnect	5.79715E-06	0.002055625	0.0165265	0.004582077	0	4.14971E-05	0.020930465
Termination	0.000467243	0.000867328	0.000227232	0.000152009	0.000173439	0.000637191	0.003063515
Transformer	0.009703026	0.023561073	0	0.002368376	0	0.026729531	0.00246343
Transformer - OH	0.007052431	0.01118744	0.00773242	0.002407314	0.017106495	0.004874802	0.004093373
Transformer UG	0.002360207	0.002263655	0.001051355	0.001704189	0.001165537	0.001438726	0.006231495
Tree	0.013180035	0.004975592	0.005575766	0.013288743	0.000938339	0.011356792	0.002750215
Tree Fell	0.076230149	0.057889379	0.048048112	0.092136448	0.062998204	0.067319172	0.054556299
Tree Growth	0.012134005	0.010881641	0.004394705	0.007012046	0.003838547	0.005569335	0.005691876
Underground	8.34231E-05	3.4203E-05	0	2.81744E-06	2.80426E-06	3.87453E-05	5.48895E-06
Undetermined	0.168118512	0.29086705	0.286489483	0.110134471	0.234672203	0.177748096	0.157264023
URD Cable - Pri	0.017483349	0.022121806	0.009632032	0.005903606	0.008770789	0.002422167	0.006080464
URD Cable - Sec	0.000815417	0.001058763	0.000945651	0.000953008	0.001467391	0.001544569	0.001409578
Weather	0.078263003	0.115917398	0.097935383	0.195547002	0.051231256	0.053674679	0.033680951
Wildlife Guard	0	0	8.47553E-06	0	0	8.35232E-06	0
Wind	0.232776552	0.220754073	0.115850205	0.291134088	0.089836161	0.195492335	0.209669949

OMT Sub-Reason Events High Limit

The second metric used to determine if we must examine a problem is the deviation from the established mean discussed above for each OMT Sub-Reason. If the number of OMT events for a specific Sub-Reason exceeds the OMT Sub-Reason Events High Limit (High Limit) AM will conduct an investigation and try to explain why the annual values are exceeding the limit (see Appendix D of the "2013 Asset Management Electrical Distribution Program Review and Metrics"). The High Limit is based on the average of annual values for each Sub-Reason plus two standard deviations. This method is also used to calculate the quarterly High Limit as well. The data for the average is the OMT Data for 2006 through 2010. For 2013, the following OMT Sub-Reasons exceeded their High Limit are shown in Table 6. We anticipated that Avista would exceed these limits due to natural deviations for events outside our control and due to some cyclical nature we observe in our data. Our goal here is to help identify trends in time to potentially address them if possible.

Table 6, OMT Sub-Reasons Exceeding Annual High Limit

OMT Sub-Reasons Exceeding their associated OMT High Limit	Number of Years High Limit Exceeded
Bird	1
Car Hit Pole	4
Conductor - Pri	3
Elbow	1
Fire	3
Highside Breaker	1
Junctions	1
Maint/Upgrade	4
Regulator	1
Service	4
Termination	1

Based on Table 6, we currently don't see any issues requiring changes to our current plans. Most of the issues identified above are outside our control. We will continue to monitor Fire, Service, Car Hit Pole and Conductor – Pri, as these may call for some kind of action in the future. Car Hit Pole is currently being analyzed by another group. If a program is implemented from this analysis then we should see this issue drop off the High Limit Exceeded chart. We will continue to monitor this issue.

Figure 3 shows the quarterly trends that feed into the annual trends for the OMT High Limit. For all OMT Sub-Reasons, only three Sub-Reasons have had more than three quarters where they exceeded the High Limit, Car Hit Pole with 9 quarters above the limit, Maint/Upgrades, and Service with 6 quarters above the limit. This information is consistent with Table 6 above. We will continue to monitor Service for potential future action, but it currently does not warrant a maintenance or replacement strategy.

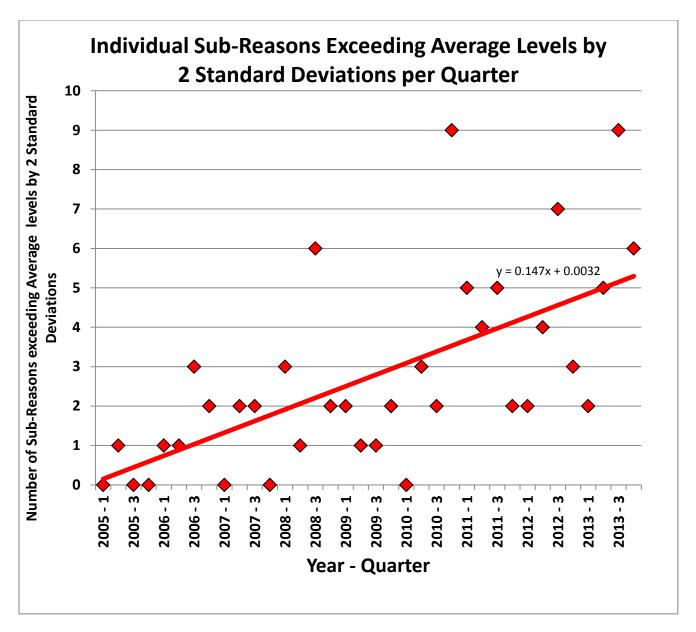


Figure 3, Individual Sub-Reasons exceeding Quarterly High Limits

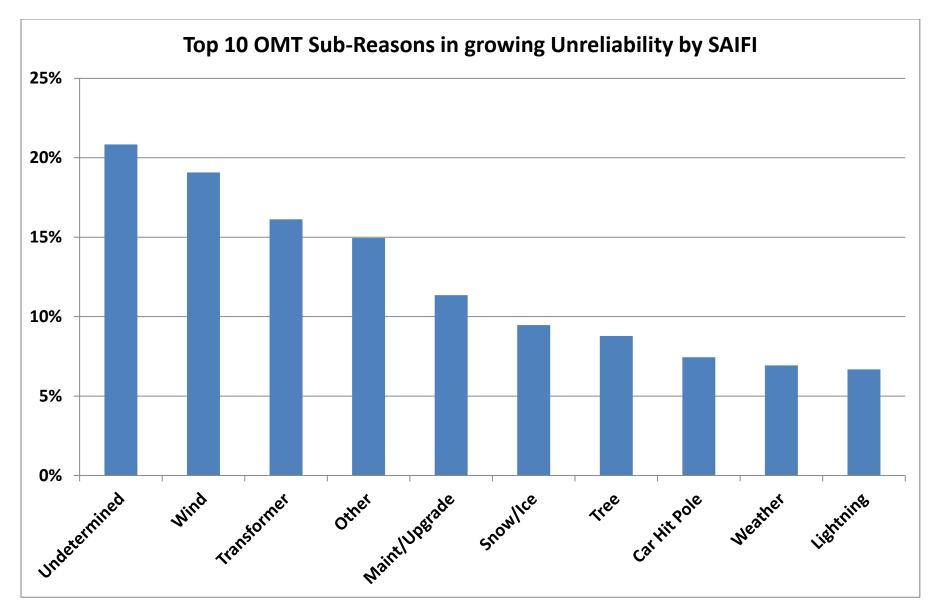


Figure 4, Top 10 Sub-Reasons with the Value of SAIFI Rising over Time

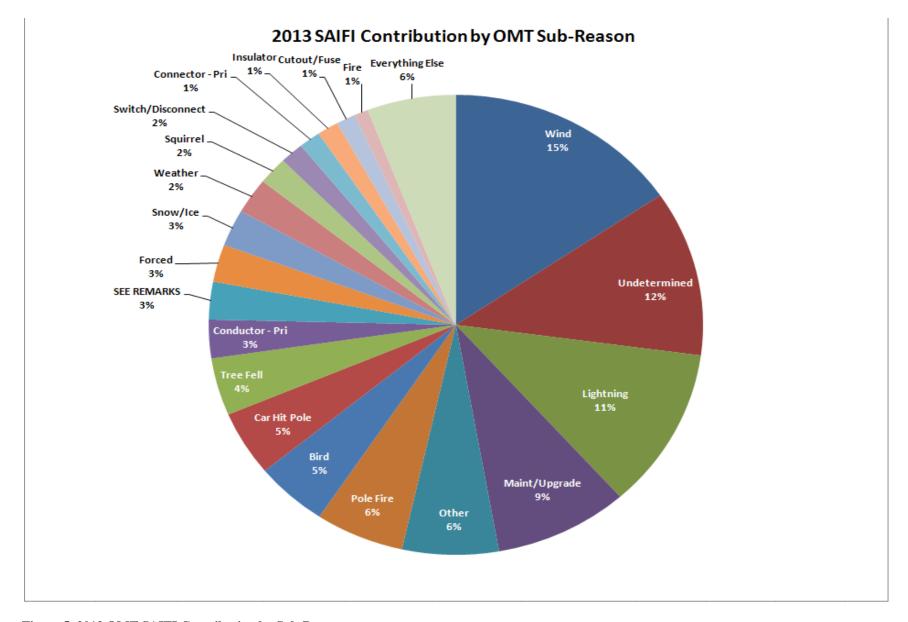


Figure 5, 2013 OMT SAIFI Contribution by Sub-Reason

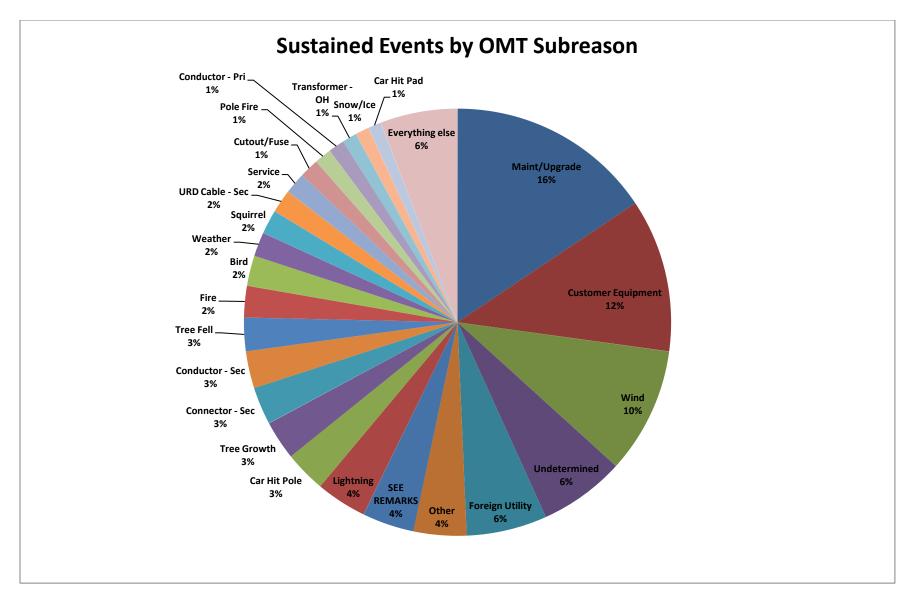


Figure 6, 2012 OMT Sustained Outage Comparisons

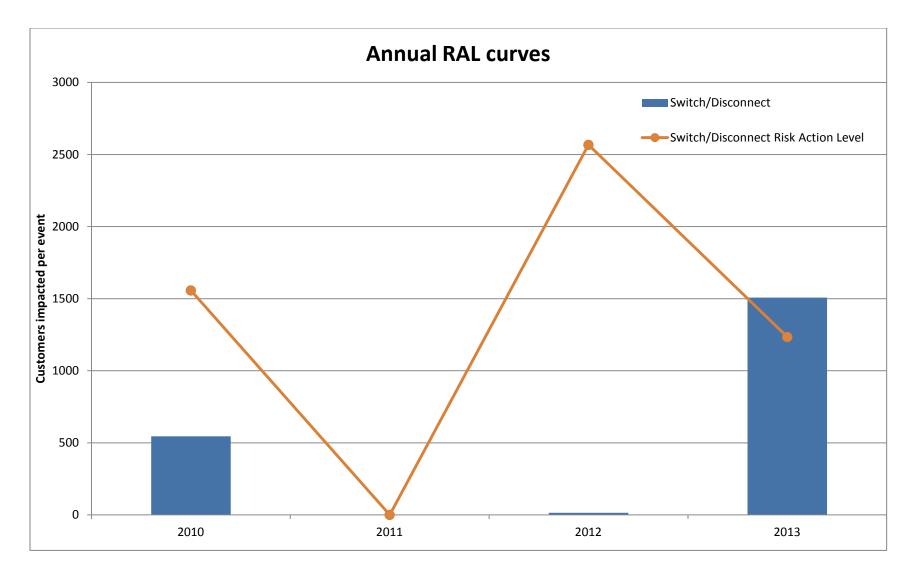


Figure 7, Customers Affected Per Event Exceeding Risk Action Levels

Specific Distribution Programs and Assets

In the following sections, AM reviews the different programs and work done to determine an AM action plan for particular assets. Some plans indicated the current case or no action was the best approach and others indicated there was an appropriate action for managing an asset. If a plan was implemented, then the available information will be reviewed to determine how the plan has impacted the system.

Distribution Wood Pole Management (WPM)

The current WPM program inspects and maintains the existing distribution wood poles on a 20 year cycle. Avista has 7,793 circuit miles of Distribution lines that are predominately overhead. The average age of a wood pole is 28 years with a standard deviation of 21 years. Nearly 20% of all poles are over 50 years old and we have an estimated 240,000 Distribution poles in the system. This means that about 48,000 poles are currently over 50 years old. Our inspection cycle allows us to reach approximately 12,000 poles each year. Along with inspecting the poles, we inspect distribution transformers, cutouts, insulators, wildlife guards, lightning arresters, crossarms, pole guying, and pole grounds. The inspection of these other components on a pole drives additional action to replace bad or failed equipment along with replacing known problematic components. These additional inspection items have expanded the current program beyond the original scope, but have proven to be a cost effective way of addressing more than just wood pole issues.

Selected KPIs and Metrics

AM selected the number of OMT Events by Year related to WPM work and feeder miles of follow-up work completed verses miles of feeders inspected as KPIs to monitor WPM. These KPI relate to reliability performance, cost performance, and customer impacts. Our goal is to maintain or reduce the number of OMT events related to WPM. The current plan optimized the inspection cycle based on cost, so the impacts to reliability were addressed only as they relate to costs. The goal for these KPI is to stay below the number of events averaged over 2006 – 2010 for WPM Related OMT Events. See Table 7 for the goal and for the actual value for 2013. The Goal for the KPI is the 5 year average value using 2006-2010. The OMT Events KPI is a lagging KPI and an indication of how well past work has impacted outages. The feeder miles of follow-up work completed verses miles of feeders inspected KPI is a leading indicator and reflects how outages in the future will be impacted by the work. The number of miles inspected is shown in Table 7 for the goal and actual values.

The feeder miles of follow-up work completed verses miles of feeders inspected KPI comes from the annual Distribution WPM inspection plan and is the sum of all miles of the feeders completed in that year. The completed number of miles for follow-up work on feeders comes from Asset Maintenance based on their tracking of the work as it is completed The purpose of this metric is to evaluate how much backlog work is created each year in order to adjust future year's budgets. Asset Management has been working to increase the budget each year, with the goal of having no back log, by budgeting enough to inspect and follow up on a 20 year cycle.

Table 7, WPM KPI Goals by Year

KPI Description	WPM Goal Related number of OMT Events	Actual WPM Related number of OMT Events	Projected Miles Follow-up Work	Actual Miles Follow- up Work Completed
2009	1460	1320	500	372
2010	1460	1004	450	435
2011	1460	1004	459	333
2012	1460	1013	416	435
2013	1460	816	445	280
2014	1460		412	
2015	1460		446	

^{*}Note: Beginning with 2012, the Actual Miles Follow-up Work Completed will include WPM and Distribution Grid Modernization miles.

Metrics provide a more detailed review of WPM. WPM metrics involve more information and calculations than the KPIs and include: WPM contribution to the annual SAIFI number; number of distribution wood poles inspected; material usage for WPM by Electric Distribution Minor Blanket and Storms; number of Pole-Rotten OMT Events; Crossarms-Rotten OMT Events; and actual material use verses model predicted material use for WPM follow-up work (see Table 8). The WPM contribution to the annual SAIFI number metric comes from data pulled out of OMT by Cognos and calculates the average impact to SAIFI per event by Sub-Reason.

The average impact to SAIFI per WPM event is the sum of the average impact to SAIFI for Arresters, Cutouts/Fuses, Crossarms, Insulators, Insulator Pins, Pole Fires, Poles – Rotten, Squirrels, Transformers-OH, and Wildlife Guards. The average impact to SAIFI for WPM events is then multiplied by the number of event causing an outage or partial outage (this is the sum of OMT events causing an outage or partial outage for Arresters, Cutouts/Fuses, Crossarms, Insulators, Insulator Pins, Pole Fires, Poles – Rotten, Squirrels, Transformers-OH, and Wildlife Guards). The goal for this metric is the five year average for 2005-2009. The purpose of this metric is to ensure WPM maintains the current reliability.

The number of Distribution System poles inspected metric measures the annual plan for inspecting wood poles against how much work was actually completed. The AM plan calls for a 20 year inspection cycle which was originally estimated to be ~12,000 poles per year. The AM plan also represents inspecting 17.5 feeders a year. This metric ensures the WPM program meets the AM plan for Distribution Wood Poles.

Material Usage for WPM by Electric Distribution Minor Blanket and Storms metric monitors other areas outside of AM that may reflect trends for WPM. However, this metric is outdated and no longer useful. New stock items are being tracked under this blanket and the 2012 and 2013 numbers are higher than previous years because of this. The number of stock items used is tracked and compared to the average used in 2006-2010 as a baseline. The purpose was to monitor for asset failures not indicated by OMT data, since not all failure information is captured by OMT. Some other form of tracking may need to be implemented in future years to monitor for asset failures not indicated by OMT data.

The final metric, material use verses model predicted material use, tracks the actual number of key stock numbers (see Figure 12 for assets monitored) against what the AM model predicted. Discoverer is used to pull stock number usage out for the applicable stock numbers and then they are compared to the AM model predictions. The purpose of this metric is to measure the performance of the model to predict the future outcomes. If the difference between the model predictions and actual values becomes more than 30%, the model should be revised.

Table 8, WPM Metric Goals by Year

Metric Description	Projected WPM Contribution To The Annual SAIFI Number	Actual WPM Contribution To The Annual SAIFI Number	Projected Number of Dist Poles Inspected	Actual Number of Dist Poles Inspected	Projected Material Usage For WPM By Elec Dist Minor Blanket and Storms	Actual Material Usage For WPM By Elec Dist Minor Blanket and Storms
2009	0.214024996	0.1863468	12600	13,161	14,391	18524
2010	0.208489356	0.19916836	12600	15,553	14,391	10266
2011	0.211022023	0.202462739	12600	13,324	14,391	12176
2012	0.211022023	0.16613099	12600	17,318	14,391	22202
2013	0.211022023	0.15640942	12600	14,364	14,391	23356
2014	0.211022023		12600		14,391	
2015	0.211022023		12600		14,391	
Metric Description	Model Predicted Material Use for WPM Follow-up Work	Actual Material Use for WPM Follow-up Work	Projected Number of Pole Rotten OMT Events	Actual Number of Pole Rotten OMT Events	Projected Number of Crossarm OMT Events	Actual Number of Crossarm OMT Events
2009	4792	7538	137	44	32	25
2010	4932	7904	137	37	32	23
2011	5010	28011	137	35	32	28
2012	6770	28120	137	52	32	19
2013	8592	15214	137	34	32	18
2014	10566		137		32	
2015	12606		137		32	

Figure 8 shows the trends in OMT events for the Sub-Reasons associated with WPM and generally the trend in OMT events is downward. The major contributors (Cutouts/Fuses, Squirrel, and Transformer – OH) all showed a level trend or a general trend downward over the past 5 years. Three of the four major contributors showed improvements from 2009 (Transformer - OH, Squirrel, and Cutouts) with the Squirrel sub-reason dropping drastically in the last year. Overall, WPM is controlling the number of OMT events. The leading indicator, Miles Follow-up Work Completed, shows we were falling behind in addressing issues identified during the inspection. If this backlog continues to grow, it will begin to impact the number of OMT events into the future. We plan to address the backlog by completing more Distribution Grid Modernization work, increasing funding for the follow-up work and reducing the number of inspections in 2015.

The KPI "Actual Miles Follow-up Work Completed" provides an indication of what could happen to the other metrics (see Table 7). Simply inspecting the poles does not improve the systems performance. The follow-up work to the inspection needs to be completed. This metric shows follow-up work carrying over into 2013. The driver for WPM is a 20 year inspection cycle and if allowed to fall behind, the WPM follow-up work could become a major financial issue and reliability risk for future years

Grid Modernization, discussed later in this document, also impacts the same metrics as WPM. In 2012, we revised the metrics and now include the miles of completed Grid Modernization work in the Table 7since the work is coordinated with WPM and intended to help address the backlog in WPM.

WPM Metric Performance

The annual contribution to SAIFI trend improved in 2013 even further and remains below the five year average value as shown in Table 8 and Figure 9. Overall, WPM has been effective at maintaining the current level of reliability to our customers.

The number of Distribution poles inspected measures how well the program is performing against a 20 year inspection cycle. The goal is to inspect every feeder once every 20 years. The work to perform the wood pole inspections is tracked based on the number of poles inspected. Using miles works, but different feeders have different pole densities per mile and the way the contractor bills for the inspection work makes using the number of poles inspected easier. The results of the work exceeded the planned number of inspections shown in Table 8. The completed inspections are following the AM plan for WPM very nicely. Other work besides WPM has contributed significantly to the number of poles inspected annually over the past two years. The Smart Grid project worked on a lot of poles in 2012 that were not part of WPM along with the Transformer Change Out Program.

Figure 10 shows how Avista's use of Distribution Wood Poles changed with time. This graph supports a growing number of pole and WPM related issues. Based on poles lasting 74 years before they will be replaced on a planned basis, Avista would need to replace 3,200 poles per year at equilibrium. We finally reached and exceeded 3,200 poles per year in 2012, but failed to reach 3,200 poles in 2013. Figure 11 shows how an increasing number of poles are reaching 74 years. As shown in Table 8, we are using more material in WPM and the Electric Distribution Minor Blankets to address our aging and failing equipment. We expect this trend to continue for another 10 years before it stabilizes based on a model developed in 2012.

WPM Model Performance

The AM model for WPM provided a baseline for estimating the future costs of the follow-up work, but it under predicted the number of components for Lightning Arresters and Wildlife Guards (see Figure 12). For our WPM, Lightning Arresters and Wildlife Guards are minor components compared to poles, Crossarms, and Transformers, so when you ignore these two items, the model performed within the 30% margin. Currently, we don't plan on updating the model until we have a few more years of data since this model was completed in 2012.

WPM Summary

The main message from the KPI and metrics for WPM is that we are moving in the right direction, but we are falling behind and will need to complete work on more feeder miles to control the impact on future reliability.

■ 2009 ■ 2010 ■ 2011 ■ 2012 ■ 2013 700 600 OMT Events by Sub Reason 500 400 300 200 100 Arrester Crossarn-rotten Cutoutly Fuse Insulator Insulator Pin **OMT Sub Reason**

WPM OMT Events by Sub Reason and Year

Figure 8, WPM OMT Event Trends

■ 2009 ■ 2010 ■ 2011 ■ 2012 ■ 2013 0.12 0.1 0.08 0.06 0.04 0.02 Pole fire Pole rotten

Annual SAIFI Contribution by Sub Reason

Figure 9, WPM Contribution to Annual SAIFI value by Sub-Reason and Year

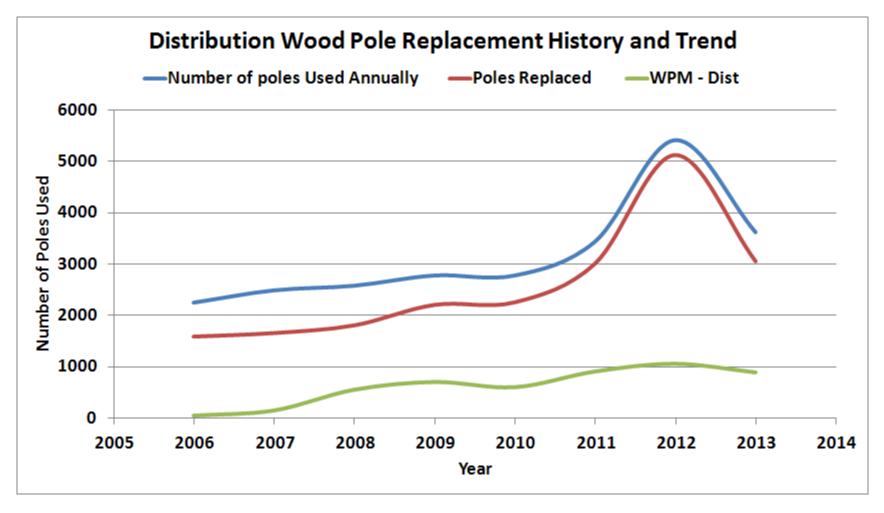


Figure 10, Wood Pole Used by Summarized Activity

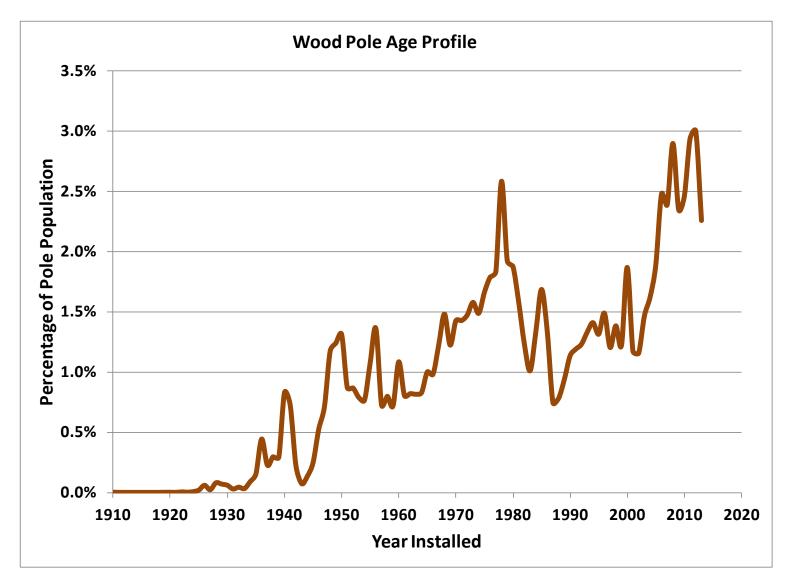


Figure 11, Distribution Wood Pole Age Profile

Actual vs. Model Projected Usage for WPM

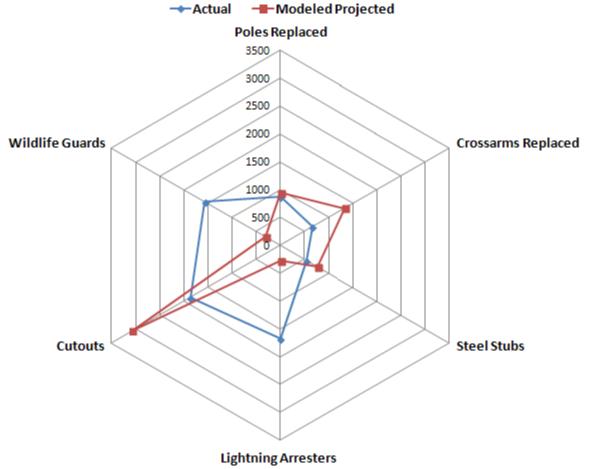


Figure 12, WPM Model Projections vs Actual Usage for 2013

Wildlife Guards

Wildlife caused outages have a significant impact on electric service reliability to customers. The improved outage tracking implemented in 2001 has consistently shown, within a percent or two either way, that animal's cause 19% of outages experienced by electric customers. While generally short in duration, labor impacts to respond are significant. In 2010, Squirrels accounted for only 6% of all sustained outages (see Table 9) which is a significant drop from 2009 value of 12%. This trend downward has continued so in 2013 only 2% of sustained outages were caused by Squirrels.

Selected KPIs and Metrics

The goal of the Wildlife Guards program is to reduce the number of Animal caused outages on the distribution system. More specifically, the program targets reducing the number of squirrel caused outages. The plan estimates that installing guards on the worst 60 feeders will reduce the number of Squirrel caused outages by 50%. 2006 was selected as the starting point, because the work performed that year was not influenced by the current AM plan as seen in Figure 13. The final goal was a 50% reduction from the 2006 value of 902; however, this year's value of 215 already exceeds the final goal and has for the past four years.

The second KPI is the number of Distribution Feeders completed for the Wildlife Guard Installation program. This KPI measures how effective we were at following the plan. The annual goal for the five year program was 12 feeders a year but was modified each of the previous years based on available budget. WPM is also installing wildlife guards as well and is on top of the number included here. The WPM program does address some of these worst 60 feeders, but is not driven by this program. WPM's role in Wildlife Guards is to install them on the remainder of the Distribution system over the next 15 years on transformers or poles they work on for other reasons. Since the number of feeders completed has nearly reached 60 feeders, Avista will drop this KPI in the near future.

The third KPI used is the percentage of sustained outages caused by Squirrels. This KPI provides a relative impact that squirrel related outages are having on the system and represents the future value of installing Wildlife Guards on Distribution Transformers.

The only metric for Wildlife Guards is the annual avoided outage benefit from Squirrel related outages. We estimate approximately \$82 in benefit for every outage avoided starting in 2011. Using this benefit per event, the projected avoided outage benefit by year is the difference between the projected number of events and the actual number of events for that year multiplied by the calculated cost per event for that year (approximately \$83). The goals by year for the next two years are shown in Table 10.

Table 9, Wildlife KPI Goals for 2010 - 2015

KPI Description	Projected Number of Squirrel OMT Events	Actual Number of Squirrel OMT Events	Projected Number of Feeders Completed via Program	Actual Number of Feeders Completed via Program	Percentage of sustained outages caused by Squirrels
2009	810	700	12	17	12.2%
2010	720	390	4	23	5.62%
2011	630	395	12	7	3.11%
2012	540	358	8	8	2.71%
2013	450	215	0	0	1.63%
2014	450		0		
2015	450		0		

Table 10, Wildlife Metric Goals for 2010 - 2015

Metric Description	Projected Avoided Outage Benefit due to Squirrel Caused Outages	Actual Avoided Outage Benefit due to Squirrel Caused Outages
2009	\$36,000	\$47,190
2010	\$71,000	\$157,466
2011	\$22,000	\$34,696
2012	\$30,000	\$37,935
2013	\$37,000	\$49,916
2014	\$37,000	
2015	\$37,000	

^{*}Note: Avoided costs were revised from \$390 per event to \$82 for 2011 and 2012 values. This change was based on a review of costs.

WILDLIFE GUARDS KPI Performance

Installing Wildlife Guards has exceeded expectations so far and has decreased the number of OMT events for Squirrels. The original model estimated costs were higher than actual costs because the model assumed more guards would be needed. So, the saved money has been used to work on more feeders than originally anticipated. Based on Figure 13 and Figure 14, Wildlife Guard installations made a big jump driven largely by work in Moscow to install the guards on the worst feeders in Avista's system for squirrel related outages in 2007. This work had an immediate impact on the number of events in 2008 and 2009. In 2010, the program was funded along with WPM work to install 1017 wildlife guards.

WILDLIFE GUARDS Metric Performance

The main purpose of the Avoided costs metric shown in Table 10 is to demonstrate the savings associated with the work from the original model. In 2010, Avista saw savings nearly triple the projected amount. Other work such as Electric Distribution Minor Blanket and WPM continue to install Wildlife Guards on Distribution Transformers. However, the large increase in savings is most likely due to the increase in the number of feeders completed in 2010.

WILDLIFE GUARDS Model Performance

The Wildlife Guard model over estimated the impact of the work performed (see Table 9), so our performance has exceeded our expectations. This exceeds the goal of being within +/- 30% of the actual value. However, since the program has accomplished its purpose, no further work is planned.

WILDLIFE GUARDS Summary

The Wildlife Guard program shows real cost savings over time. The work in WPM and other efforts to install wildlife guards on Distribution Transformers will create even more savings into the future. However, continuing a Wildlife Guard installation program is no longer justified. Examining Table 11 shows the current top 10 worst feeders represent 159 outages but only provides an opportunity to save $^{\circ}$ 3,500 annually (159 outages * 80% effectiveness * \$82/3 years \approx \$3,500 annually). At a cost of $^{\circ}$ 360,000 to install Wildlife Guards on ten feeders, we estimate the time to payback the cost of installation at 100 years. Continuing the program as a separate program no longer justifies future costs except in localized areas which are identified as having a high concentration of squirrel caused outages.

Table 11, Worst Feeders for Squirrel related Events for 2010 - 2012

Feeder	Sustained Outages	Momentary Outages	Combined Outages	Percentage of all Squirrel related Outages	Running Percentage
WAK12F2	19	0	19	1.79%	1.79%
SLW1358	18	0	18	1.70%	3.49%
WAK12F1	17	1	18	1.70%	5.18%
PDL1203	17	0	17	1.60%	6.79%
CFD1210	15	1	16	1.51%	8.29%
CLV34F1	16	0	16	1.51%	9.80%
VAL12F1	14	1	15	1.41%	11.22%
OGA611	14	0	14	1.32%	12.54%
CHE12F1	13	0	13	1.23%	13.76%
CHW12F2	13	0	13	1.23%	14.99%

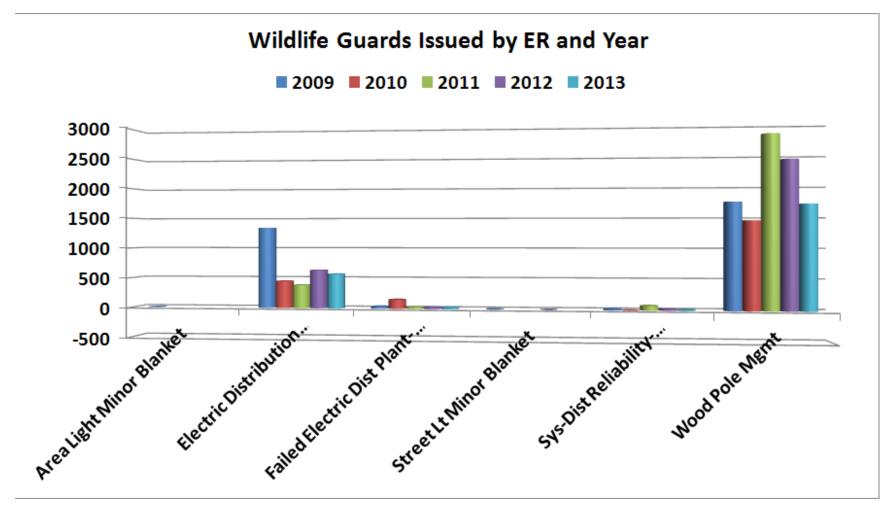


Figure 13, Wildlife Guards Installed by Year and Expenditure Request

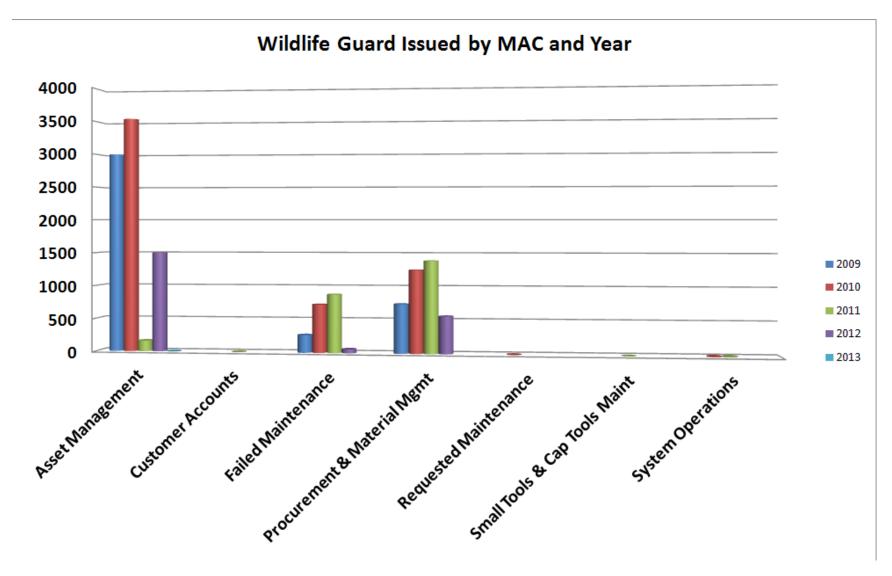


Figure 14, Wildlife Guards Usage by MAC for 2009-2013

URD Primary Cable

URD Primary Cable replacement addresses aging underground primary distribution cable, commonly referred to as URD (Underground Residential District). URD installation began in 1971. Over 6,000,000 feet of URD was installed before 1982. Outage problems exist on cable installed before 1982, cable installed after 1982 has not shown the high failure rate of the pre-1982 cable. Programmed replacement of the problem cable has been on-going at varying levels of funding since 1984. Emphasis is on the original vintage of URD. That cable was not jacketed with a protective layer of insulating material, neutral conductor was bare tinned copper concentric type construction on the outside of the cable. Insulating material was vulnerable to water intrusion. Based on the historical data, we estimated that approximately 72,000 feet of the pre-1982 cable remains in service as of January, 2013.

Historically, over 200 faults of primary cable happen annually. There have been as many as 264 primary cable faults in 2003. During 2007 there were 168 primary faults. From 1992 faults increased from 2 per 10 miles of cable to 8 per 10 miles in 2005. The number of faults per mile has stabilized between 2005 – 2007 after steadily climbing between 1992 and 2005.

Funding for URD Primary Cable replacement was significantly increased in 2007 and began the current program. The program had an original estimate of 5 years to complete but the funding has not matched the original plan, but almost all of the work was accomplished over six years. The year 2012 represents the last year of major funding for the program since the number of outages has significantly dropped and the worst feeder for URD Cable – Pri failures only had two outages. We anticipate some low level of funding for the remaining cable sections as they fail.

Selected KPIs and Metrics

We selected two KPIs to track for URD Primary Cable replacement, URD Primary OMT Events and number of feet replaced each year. The goals for each of these KPIs came from the trends observed over the past few years and set a goal to complete the replacement of URD Primary cable in 2012. The program continued into 2013 with a smaller budget of \$800,000 to help complete the replacement of all the first generation URD. Table 12 shows the goals for each KPI by year. The OMT events reflect the impact to our system of past work. The number of feet of URD Primary Cable replaced acts as a precursor to future OMT performance. After the first generation of URD Primary Cable has been replaced, the second generation will need to be monitored and plan established for addressing this vintage of cable.

Table 12, URD Cable - Pri KPI Goals

KPI Description	Projected URD Cable - Primary OMT Events	Actual URD Cable - Primary OMT Events	Projected Number of Feet Replaced	Actual Number of Feet Replaced
2009	143	136	178000	213,000
2010	119	93	178000	217,883
2011	94	95	178000	225,823
2012	70	72	178000	117,247
2013	45	93	0	35,874
2014	45		0	
2015	45		0	

The selected metric for URD Primary Cable is the avoided costs due to cable faults. The benefits are based on a projected number of failures without the program of around 600 events per year. Each event on average costs ~\$2,680 due to the duration of the outage and the number of people involved in correcting the fault. While this indicator is based on a projection, it provides a reasonable estimate of the return on investment for the money spent to replace this vintage of cable. Table 13 projects the anticipated avoided outage benefit by year for the estimated number of avoided outages.

Table 13, URD Cable - Pri Metric Goals

Metric Description	Projected Avoided Outage Benefit due to URD Cable - Pri Caused Outages	Actual Avoided Outage Benefit due to URD Cable - Pri Outages
2009	\$1,038,613	\$1,056,113
2010	\$1,228,275	\$1,295,225
2011	\$1,368,561	\$1,352,648
2012	\$1,516,159	\$1,481,504
2013	\$1,744,539	\$1,494,738
2014	\$1,898,311	
2015	\$1,997,052	

URD PRIMARY CABLE KPI Performance

For 2012, the performance for URD Primary Cable met expectations and performed well. Table 12 shows that URD Cable – Pri events exceeded expectations. Figure 15 shows a declining trend in the number of events for the previous four years. Unfortunately, 2013 saw an increase in URD Primary related OMT events. If this trend continues more analysis will need to be done. The second generation of URD Primary Cable is also being analyzed. If it begins failing at an increasing rate, it would signal the next round of cable replacements. We do have some faults in newer cables and anticipate that this will

be true for several years to come. If these faults begin to significantly increase over time, we will have to begin replacement of this cable since the earliest of the second generation cable is now approaching 30 years old.

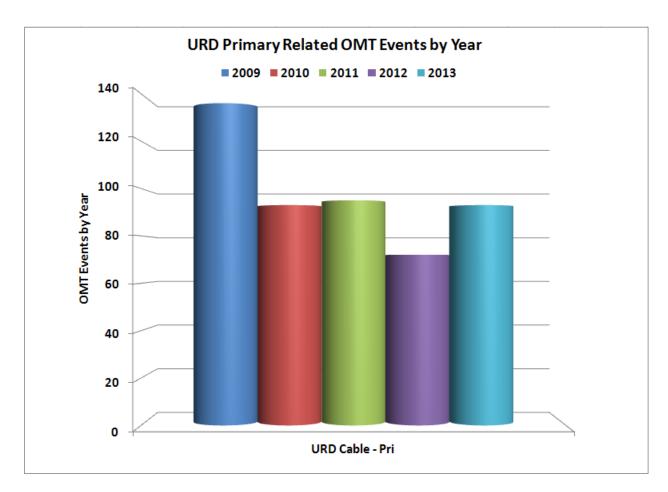


Figure 15, URD Primary Cable OMT Events by Year

URD PRIMARY CABLE Metric Performance

The projected savings and estimated savings due to avoided outage costs for Avista has typically come in very close as seen in Table 13. The avoided outage cost for this last year did not perform as well as year past but overall the current program is performing as expected.

URD PRIMARY CABLE Model Performance

This AM model is an early vintage model and given the cash flow, did not match the model; but it has generally predicted performance reasonably well. Because of the good performance and limited remaining time for the program, the model will be retained as is and the program allowed to expire once all of the first generation URD Primary Cable has been replaced.

URD PRIMARY CABLE Summary

Several people have worked hard on this program and it is now nearing completion. We anticipate another round of URD Cable replacements in the future, but we don't have any evidence indicating that we have reached the end of life on the second generation of URD Cable. The program has succeeded in reducing O&M costs by avoiding long and costly outages. Since all of the work to replace the cable comes from capital spending, the program is a great example of how capital spending can reduce O&M. However, operations continue to find more cable than estimated remaining, so future funding is recommended to only cover planned work on known cable.

URD Secondary Cable

URD Secondary Cable does not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Open Wire Secondary

Open Wire Secondary does not have a planned AM program, so no specific metrics or KPIs have been identified. While this area covers secondary conductors and connections, OMT does not provide any direct link to Open Wire Secondary. Previous analysis indicated that this program was not financially justified. However, future indication may drive us to re-evaluate the situation. We do anticipate that the Distribution Grid Modernization Program will address many of the Open Wire Secondary OMT issues. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Distribution Cutouts

Distribution Cutouts are addressed by the WPM program discussed above.

Distribution Air Switches

Distribution Air Switches do not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Distribution Mid-Line Reclosers

For the Mid-Line Reclosers, no maintenance or planned replacement is recommended over the next 10 years. Feeder Reclosers are not easily accessible as they are in a substation, so any maintenance on them is equivalent to a planned replacement. Our analysis indicates that any planned replacement program is not cost effective for our customers. Further analysis will be performed to ensure this is the

correct approach, but until more information is available, no change in our current approach is recommended.

The Smart Grid work has replaced and installed new Mid-Line Reclosers and switches that now provide monitoring and remote operations. We have plans to analyze these new devices to determine a maintenance and replacement strategy specifically for Smart Grid devices.

The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Distribution Mid-Line Voltage Regulators

Avista's distribution system includes 1,171 Voltage Regulators located in substations and out on the distribution feeders. The age profile has a large portion of regulators around 30 years old with ~38% of all voltage regulators being over 30 years old but only 1% greater than 40 years old. When regulators fail, they will cause an outage 81% of the time and add 0.005 to the overall SAIFI value per event. The average outage duration for regulator failures is 2.7 hours. On average, 30 to 40 regulators per year come to the shops for repair, refurbishment, or replacement for a variety of reasons. Some come in because of failures, but many are brought in because of changes and other work to be refurbished and re-used. On older voltage regulators, we have also seen that they have higher losses. By replacing them, Avista could save an estimated \$138,000 in energy savings.

AM analyzed four cases in detail in 2010 to find the best program for managing the voltage regulators. We examined the current case, replacing all the regulators with new regulators at a specific interval, refurbishing/rebuilding all regulators, and finally replacing the older regulators and refurbishing the newer regulators. The analysis identified a program that replaces the oldest regulators and refurbishing the new ones as the best approach to manage the regulators. The replace/rebuild program provides an 8.37% IRR compared to a 5.00% IRR for the base case. The plan will replace an average of 50 Voltage Regulators per year in the near term, with the newer Voltage Regulators being refurbished when they reach 35 years old or come in from the field.

Due to a lack of craft resources, this program has not been implemented and remains in a monitoring state. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine if and when the plan will be implemented or modified.

Primary Conductors

Primary Conductors do not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Primary Connections

Primary Connections do not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Secondary Conductors

Secondary Conductors do not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Secondary Connectors

Secondary Connectors do not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Distribution Transformers

In 2011, Avista implemented the Transformer Change Out Program (TCOP) to replace all Distribution Transformers containing PCB's followed by replacing all pre-1981 transformers. The driver for the program is to reduce the environmental risks associated with PCB's in transformers and improve the overall electric distribution system by eliminating higher loss transformers.

The program has two strategies associated with it. The first strategy is to eliminate all transformers containing or potentially containing PCB's. The initial focus was on areas near water sources and has now moved to all transformers containing PCB's as the water regions are done. These transformers have specific work plans for removing them from the system. The second strategy uses the Wood Pole Management program to remove all pre-1981 transformers as part of their follow-up work on a feeder. The first strategy work should be completed in 2016 and the Wood Pole Management work should have all the pre-1981 transformers replaced by 2036.

Selected Metrics

Table 14 shows the metrics selected for TCOP. The number of transformers changed out represents the reduction of future risk from PCB's. It also provides a leading indicator of how many future transformer failures we may experience. The energy savings represents the value of changing out the less efficient transformers and quantifies the approximate amount of energy saved each year by replacing less efficient transformers with more efficient ones.

Table 14, TCOP Metrics

Year	Planned Number of Transformers Changed Out	Actual Number of Transformers Changed Out	Planned Energy Savings from Transformers (MWh)	Actual Energy Savings from Transformers (MWh)
2012	2,687	2,529	2,304	2,430
2013	2,555	2,599	2,304	2,671
2014	2,930		2,304	
2015	305			
2015 - Pad/Subm	2,030		1,447	
2016 - Pad/Subm	2,335			

• Note: values in red have negatively missed the goal.

Metric Performance

In 2013, we changed out more transformers than planned and exceeded our planned energy savings. TCOP is providing the anticipated benefit.

Summary

The TCOP is accomplishing it objectives and reducing Avista's and customer's risks associated with Distribution transformers containing PCB's and providing energy savings.

Area and Street Lights

Asset Management converted the existing area and street light data into our Geographical Information System (GIS) in 2012 and will continue the work through 2014. This work will update and correct the existing information and provide a platform to convert our High Pressure Sodium (HPS) lights to Light Emitting Diode (LED) fixtures in the future. The recent cost and reliability improvements in LED lights have made converting lights to LED fixtures cost effective. We anticipate replacing the 100 watt HPS street lights to LED fixtures starting in 2015. The rate schedule was recently approved for the state of Washington.

Until a conversion program is implemented, no KPI's or metrics have been established to monitor area or street lights.

Riser Terminations

Riser Terminations do not have a planned AM program, so no specific metrics or KPIs have been identified. The general metrics discussed above for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Dead End Insulators

Dead end Insulators do not have a planned AM program outside of work identified as part of Wood Pole Management, so no specific metrics or KPIs have been identified. The general metrics discussed above

for number of OMT Events (Table 1) and the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plan will be developed or if action is needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

Distribution Capacitors

Distribution Capacitors do not have a planned AM program, so no specific metrics or KPIs have been identified. Smart Grid work has added switch capacitors to our system but our initial analysis did not indicate any maintenance or replacement strategy was justified. The general metrics discussed above for number of OMT Events (Table 1) along with the associated action level; Risk Action Curve limits; and requests by responsible parties will determine in the future if a plans are needed. In summary, this asset will be monitored to determine if and when planned actions are needed.

9CE12F4 Partial Feeder Rebuild

This program was created to integrate several AM programs into a comprehensive program to address feeder's issues at one time and then not have to return to the feeder for several years. This program combined WPM, re-conductoring, transformer replacement and reconfiguration, Wildlife Guards, Vegetation Management, and other work that fit. While the project created a list of feeders along with a priority ranking, the only work funded was on Ninth and Central Substation feeder 12F4 in Spokane. The main drivers for the project were energy savings efficiency for the redesign portion of the work and integrated AM work to gain labor efficiency.

In 2011, Avista implemented a Feeder Upgrade Program based on this work that will be discussed below. We retained this program here to provide a place to document the results of the work competed in 2009.

Selected KPIs and Metrics

Since the program was a one year project, the only metric selected is the number of OMT events associated with the feeder. No KPI was selected since there are no further actions planned or anticipated on this feeder. We did not develop an OMT performance metric when the model was created, but we will monitor the OMT results to see how the work impacted the feeder's reliability. Avista's crews completed the work on the feeder at the end of 2009 along with the WPM inspection and Vegetation Management work.

Partial Feeder Rebuild KPI Performance

No KPI's were selected nor tracked for this program.

Partial Feeder Rebuild Metric Performance

Since the work on Feeder 9CE12F4 was completed in 2009, we monitor the OMT data for the feeder to see how reliability is impacted. Figure 16 shows the trends and shows that the work has made a significant impact on the feeder's performance driving the number of OMT events to their lowest levels in recent records. Along with Figure 16, Figure 17 provides a baseline and trends on specific measures we anticipated the work would impact. Based on the available OMT data for 2013, the work did impact

performance but the real benefit took three years to realize. While weather does impact these numbers, the impact on equipment failures is clearly improved.

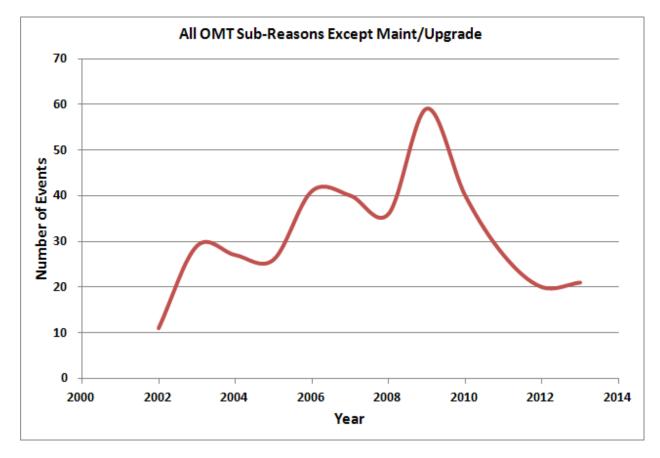


Figure 16, All OMT Sub-Reasons except Maint/Upgrade for Feeder 9CE12F4 2002-2013

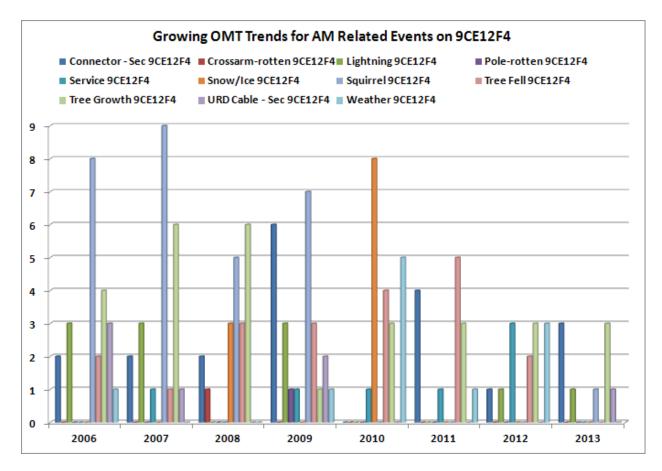


Figure 17, Selected OMT Trends for AM Related Events with Upward Trends for Feeder 9CE12F4

Partial Feeder Rebuild Model Performance

The model did include some projections for future performance, but we have selected not to evaluate this model. The actual work performed exceeded the scope of the model, since it included Open Wire Secondary work. The AM model had predicted a work cost of \$1.1 million excluding the following: WPM inspection costs, Vegetation Management, and Open Wire Secondary work. The total cost of modeled portion of the project came in at \$1.1 million and an additional \$1 million of work was added on top of this. In future models, all of the work will need to factor the lessons learned into the model to improve costs projections.

Partial Feeder Rebuild Summary

The 9CE12F4 feeder performed very well in 2013, but we anticipate 2014 and 2015 will see more Vegetation Management issues as the feeder approaches its five year cycle for Vegetation Management work. Based on previous work on Vegetation Management models, the first year after clearing a feeder results in some early growth vegetation issues. When a line is cleared, some of the remaining vegetation is weaker because it no longer has the other branches or vegetation that provided additional support. This results in some vegetation issues the first year after clearing when the weaker structures fail under windy or other loading conditions. Usually years 2 and3 between clearings have the lowest number of vegetation issues and then years 4-5 see a buildup of issues as the next clearing approaches.

This will be the last year we report out on this project as it will be included in the Grid Modernization data going forward.

Chance Cutouts

This program focused on replacing a particular brand of cutout showing signs of premature failure. The bulk of the work was completed in 2007 and 2008. However, some outlying areas did not participate as planned with some remaining into 2012. The program and associated funding was spent on replacing several cutouts in the system and did replace the anticipated number of cutouts. However, an initial assumption of how many cutouts remain was too low, so the actual number in the field was higher. The work of WPM and other types of work has effectively eliminated the remaining Chance cutouts. The future cutout failures will come from all the non-Chance cutouts and should normalize around 150 events per year.

Selected KPIs and Metrics

The goal of the Chance Cutouts was to save money. The KPI selected is the annual projected avoided outage benefit shown in Table 15. The estimated benefits are quite substantial and anticipated making a large impact on cutting the number of failures. The only action that can be taken in the future is through the WPM program, so the KPI and Metrics will be lagging indicators.

The selected metric is the number of OMT events. While normally OMT events are the KPI, it was selected as the metric since the project was funded with Productivity money and is reported quarterly as an estimate of the cost savings. Table 15 shows the goals for the number of OMT events under the "Projected OMT Events w/ Action" column.

Table 15, Chan	ce Cutout Repla	acement KPI an	d Metric Goals
----------------	-----------------	----------------	----------------

Year	Projected OMT Events w/o Action	Projected OMT Events w/ Action	Projected Annual Avoided Outage Benefit
2009	380	91	\$654,000
2010	430	78	\$671,000
2011	480	106	\$665,000
2012	510	80	\$640,000
2013	550	152	\$579,000
2014	560	152	\$524,000
2015	560	152	\$524,000

Chance Cutouts KPI and Metric Performance

Although, the number of outages negatively exceeded our goal the annual avoided outage benefit met the projected benefit. The avoided outage costs were recently updated to current values which explains how one KPI/metric can be met while the other is not. Two factors appear to be contributing to the lower than expected results. While the Chance cutouts did remain in the system, a larger portion of the failures came from all the other cutouts than anticipated. The model appears not to have accurately

predicted the number of failures due to other types of cutouts in the early phases of the work. However, we appear on track to achieve 150 failures a year based on WPM work and Feeder Upgrade work addressing other issues with cutouts.

Table 16, Chance Cutout KPI and Metric Performance

Year	Projected OMT Events w/o Action	Projected OMT Events w/ Action	Actual Number of OMT Events	Projected Annual Avoided Outage Benefit	Measured Annual Avoided Outage Benefit	Percent Model Error
2009	380	91	197	\$654,000	\$ 366,000	216%
2010	430	78	217	\$671,000	\$ 438,780	278%
2011	480	106	176	\$665,000	\$577,600	166%
2012	510	80	209	\$640,000	\$583,338	261%
2013	550	152	171	\$579,000	\$749,192	113%
2014	560	152		\$524,000		
2015	570	152		\$524,000		

• Note: values in red have negatively exceeded the goal.

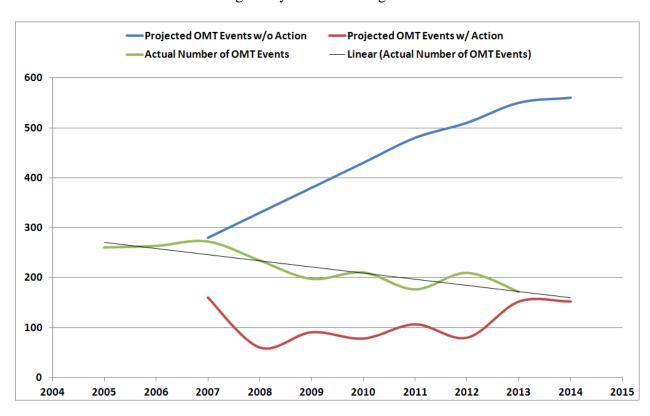


Figure 18, Cutout/Fuse OMT Event Comparison between Actual, Projected without Action, and Projected with Action

Chance Cutouts Model Performance

The model performance for Chance Cutouts provided a good indication of the trends but failed to accurately predict the trends. The model for future cutout analysis will need to be updated and improved to better predict future trends. The method of completing the work also caused the actual values to deviate from the model. The differences in actual work compared to projected mainly comes from the number of Chance Cutouts remaining in the system was more than anticipated as an assumption. Another contributing factor comes from the worse than expected performance of other cutouts. The model, however, for Chance Cutouts will not be changed since the bulk of the work is complete and any remaining work is to be picked up by WPM.

Chance Cutouts Summary

In summary, the Chance Cutout replacement program has succeeded in reducing the number of failures due to this type of cutout. While it has not created the savings originally hoped for, the program continues to save Avista a significant amount of money each year.

Distribution Vegetation Management (VM)

Our Vegetation Management program maintains the distribution system clear of trees and other vegetation. This reduces outages caused by trees and to a lesser extent squirrel caused outages. Our Distribution System runs for 7,793 circuit miles in Washington, Idaho, and Montana. The Vegetation Management program does cover work on the Transmission System and the High Pressure Gas Pipeline system, the purpose here is to only look at the Distribution System.

For the Distribution System, our analysis has shown that a pro-active maintenance program provides the best value to our customers. While our past practices were a four and seven year cycle based on vegetation type and had a reduced clearing diameter, our analysis has indicated a five year clearing cycle at a normal clearing distance has advantages.

The purpose of Vegetation Management is to meet regulatory compliance, provide the best value to our customers, and maintain current reliability. The Vegetation Management program continues herbicide spraying and enlarged the risk tree programs to further improve vegetation management. Both of these additions strive to improve the performance of the system by reducing vegetation related events.

Selected KPIs and Metrics

For Vegetation Management (VM), we selected one leading KPI and a lagging KPI. The leading KPI is the number of Distribution Feeders miles managed each year. This indicates how well the actual work matches the planned work and the model. The results of the work in VM should directly impact the number of Tree Growth and Tree Fell events in OMT which is the lagging KPI. The number of Tree Growth events and Tree Fell events are summed for each year and compared to the AM models predictions if the plan is followed. The goals for each KPI by year are shown in Table 17. The AM model for Tree Growth events and Tree Fell events shows varying KPI's for each year due to the strict following of the 5 year cycle based on when the feeder was last done. For a VM metric, we selected the number of Tree-Weather OMT events by year and SAIFI impacts. As seen in Figure 19, there is a relationship

between weather events and VM. We assume that improvements in VM results should impact the number of Tree-Weather OMT events and set a goal shown in

Table 18. The goal for Tree-Weather events is based on the AM models average value over a 10 year period. This metric was not included as a KPI, because weather events are very unpredictable and random in nature. Once the relationship has been better established, it may become a KPI.

Another metric selected for monitoring is the cost per mile for VM on the distribution feeders. While no goals have been established, this will measure how effective our AM spending gets the work done and how much work is required to clear the lines. The costs per mile should drop in future years, because the amount of work required to clear them should drop after reaching a 5 year cycle. Inflation and other escalators will drive costs up in the future to counter the reduced workload, but the net effect remains undetermined. The total number of miles of all planned work was modified in 2011. Beginning in 2011, the costs per mile calculation includes all planned work and not just the miles cleared. So, the total number of miles for all planned work was included in the metrics.

Table 17, Vegetation Management KPI Goals

KPI Description	Miles of Vegetation Management Completed	OMT Events due to Tree Fell + Tree Grow
2009	1,560	556
2010	1,560	540
2011	1,560	500
2012	1,560	520
2013	1,560	630
2014	1,560	780
2015	1,560	845

Table 18, Vegetation Management Metric Goals

Metric Description	OMT Events due to Tree-Weather	SAIFI - Tree Fall	SAIFI - Tree Grow	SAIFI - Tree Weather
2009	166	1.40E-07	8.84E-08	1.34E-05
2010	166	1.40E-07	8.84E-08	1.34E-05
2011	166	1.40E-07	8.84E-08	1.34E-05
2012	166	1.40E-07	8.84E-08	1.34E-05
2013	166	1.40E-07	8.84E-08	1.34E-05
2014	166	1.40E-07	8.84E-08	1.34E-05
2015	166	1.40E-07	8.84E-08	1.34E-05

VM KPI Performance

Both Figure 19 and Figure 20 show the same trends for Tree Growth, Tree Fell, and Tree Weather. The number of OMT events due to Tree Growth and Tree Fell were below the 10 year average and above the five year cycle projections. The number of miles completed in VM will cause the number of events in the future to continue to grow and exceed projected five year cycle values. Table 19 shows the results. The number of OMT events remains above the values for 5 year cycle plan but less than the 2009 plan. We did clear enough miles in 2011 to exceed a five year cycle but slipped back to less than a five year cycle in 2012 and 2013. Until we have a well entrenched five year cycle, we will continue to realize more vegetation related events than projected by the five year cycle plan. However, we do see the number of events improving and nearly cleared enough miles in 2013 to align with a five year cycle.

Table 19, VM KPI Performance

Year	Projected Tree Growth + Tree Fell OMT Events - 2009 Plan (Current)	Projected Tree Growth + Tree Fell OMT Events – 5 Year Cycle	Actual Number of OMT Events	Projected Annual Miles Managed	Actual Annual Miles Managed w/o Risk Tree or Spraying	Percent Model Error*
2009	1120	556	765	1,220	790	68%
2010	620	540	836	1,560	1,304	135%
2011	790	500	727	1,560	1,747	92%
2012	1210	520	712	1,560	1,296	59%
2013	1390	630	647	1,560	1,459	47%
2014	1400	780		1,560		

- Note: values in red have negatively exceeded the goal
- * This model error is for the current plan model and not the 5 year cycle model

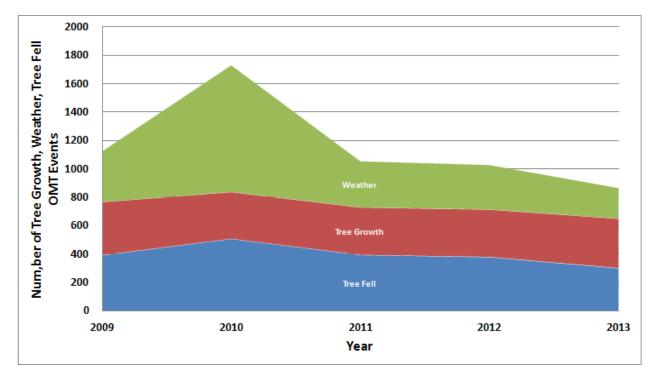


Figure 19, OMT Events Data Trends for Tree-Weather, Tree Growth, and Tree Fell Sub-Reasons

Figure 20, OMT Outage and Partial Outage Data Trends for Tree-Weather, Tree Growth, and Tree Fell Sub-Reasons

VM Metric Performance

The Tree-Weather OMT Events for 2013 continued to show improvement and were below the AM model projects (see Table 20). We must update the Vegetation Management models before we have better projections.

The cost per mile for VM in 2013 was \$1,657. We need to update the Vegetation Management model to address changes in the program which will help understand the impact to our system. Table 21 shows the current information.

Table 20, Tree-Weather OMT Events Metric for Vegetation Management

Year	Projected Tree-Weather OMT Events – 2009 Plan (Current)	Projected Tree- Weather OMT Events – 5 Year Cycle	Actual Number of Tree-Weather OMT Events	Percent Model Error
2009	420	166	357	85%
2010	80	50	895	-
2011	220	70	325	148%
2012	580	70	314	54%
2013	800	170	216	27%
2014	1120	430		

• Note: values in red have negatively exceeded the goal.

Table 21, VM Cost per Mile and All Vegetation Management Work Metric

Year	Actual Annual Miles Managed all work	Cost per Mile of VM
2009	N/A	\$6,575
2010	N/A	\$2,990
2011	3,455	\$2,612
2012	3,364	\$3,272
2013	4,014	\$1,657
2014		

VM Model Performance

The AM model for Distribution VM was revised in 2010, but the recent changes to the work performed and errors experienced justify updating the model. We anticipate completing the update in 2015.

VM Summary

Depending on how you evaluate the program, VM is currently not getting enough miles completed each year to achieve the goal of a 5 year cycle. The costs per mile may be too high and/or the current funding levels are too low and the impacts of herbicide spraying and enhanced risk tree work modify the meaning of work per mile. Vegetation Management's performance does show continued improvement but further analysis will provide an opportunity to re-evaluate our current performance and update future expectations.

Distribution Grid Modernization Program

Avista initiated a Grid Modernization Program designed to reduce energy losses, improve operation, and increase the long-term reliability of its overhead and underground electric distribution system. The program includes replacing poles, transformers (Pad Mount, OH & Submersible), cross arms, arresters,

air switches, grounds, cutouts, riser wire, insulators, conduit and conductors in order to address concerns related to age, capacity, high electrical resistance, strength, and mechanical ability. The program also includes the addition of wildlife guards, smart grid devices, switched capacitor banks, balancing feeders, removing unauthorized attachments, replacing open wire secondary, and reconfigurations.

When funded to a level that allows 5-6 feeders to be upgraded per year, the continuous program represents a 60 year interval to upgrade all the feeders in Avista's system and coordinates all of its activities with Avista's Wood Pole Management. The objectives of the Grid Modernization Program are listed in Table 22.

Table 22, Grid Modernization Program Objectives

Objective	Objective Description
Safety	Focus on public and employee safety through smart design and work practices
Reliability	Replace aging and failed infrastructure that has a high likelihood of creating a need for unplanned crew call-outs
Avoided Costs	Replace equipment that has high energy losses with new equipment that is more energy efficient and improve the overall feeder performance
Operational Ability	Replace conductor and equipment that hinders outage detection and install automation devices that enable isolation of outages
Capital Offset	Avoid future equipment O&M costs with programmatic rebuild of failing system

Selected Metrics

Since the program originally began as a Feeder Upgrade Program and has since grown in scope to be a Grid Modernization Program; the selected KPI's may not be valid anymore. The metrics selected include miles of work completed, OMT sustained outages on feeders with Feeder Upgrade work completed, and energy savings provided by completed work.

Based on Avista's 2013 Integrated Resource Plan dated August 31st, 2013, Table 5.3 and Table 5.4, the realized and anticipated energy savings by identified feeders is shown in Table 23. From Table 24, we calculated that the power saved per mile of work is 1.38 kW.

Table 23, Energy Savings based on 2013 Integrated Resource Plan

Feeder	Energy Savings (MWH)	OH Circuit Miles
NE12F3	115	13.09062
RAT231	91	52.25448
OTH502	21	0.783542
M23621	151	28.388
DVP12F2	35	39.1079
HAR4F1	69	12.0028
BEA12F3	167	9.854272
FWT12F3	121	10.5042
TEN1255	249	12.27521
ROS12F1	267	18.93558
SPI12F1	162	91.80389
TUR112	101	24.33467
9CE12F4	601	17.04767
WIL12F2	1403	105.5954
BEA12F1	972	24.80689
F&C12F2	570	20.6956
BEA12F5	885	15.66515
TUR113	76	5.098
Total	6056	502.2438
KW per Mile		1.376471

The miles of work planned is ultimately driven by the approved budget and generally can only be projected for 5 years. In order to maintain a 60 year cycle, Avista would need to address an average of 137 miles per year of overhead circuit miles. This would result in an average of 188 kW of power savings each year.

For tracking the impacts of the work on outages, we will monitor the following OMT sub-reasons shown in Table 25. While the Grid Modernization will affect all of the sub-reasons listed in Table 25, the sub-reasons identified as potentially avoidable represent the most direct impact of the work. So we assume that the number of OMT sustained outages will be reduced by 0.1 outages per mile of overhead work completed. Based on the data shown in Figure 21, the average number of OMT events that could potentially been avoided over the last 5 years is 773. Dividing 773 outages by the number of circuit miles yields 0.1 outages avoided per mile of work. So, the annual anticipated number of OMT sustained outages will be the average value of outages minus the number of OMT outages avoided by performing the work.

Table 24, OMT Sub-Reasons impacted by Grid Modernization

OMT Sub-Reason	Potentially Avoidable
Arrester	Yes
Capacitor	Yes
Conductor - Pri	Yes
Conductor - Sec	Yes
Connector - Pri	Yes
Connector - Sec	Yes
Cross arm - rotten	Yes
Cutout/Fuse	Yes
Elbow	Yes
Insulator	Yes
Insulator Pin	Yes
Lightning	No
Pole Fire	No
Pole - rotten	Yes
Recloser	Yes
Regulator	Yes
Snow/Ice	No
Switch/Disconnect	Yes
Transformer - OH	Yes
Transformer UG	Yes
Undetermined	No
Weather	No
Wildlife Guard	Yes



Figure 21, OMT Sustained Outages related to Grid Modernization

Metric Performance

The results of the first two years work are shown in Table 25. The year 2012 marks the beginning of the program. The number of miles actually completed missed the goal of 137 and the energy savings fell short of its goal as well. We will continue with the program as allowed by the budgets and continue to monitor the results for a few more years before considering any significant changes to the plan.

Table 25, Metric Performance for Grid Modernization Program

Year	Planned Miles for Modernization (Miles)*	Actual Miles Completed (Miles)**	Anticipated Power Savings (kW)*	Realized Power Savings (kW)**	Anticipated Number of Sustained Outages	Realized Number of Sustained Outages
2012	95	73.33	127	150	2340	2331
2013	137	53.83	188	150	2327	2665
2014	137		188		2313	
2015	137		188		2300	
2016	137		188		2286	
2017	137		188		2272	

^{*}Note: The planned or anticipated values may be modified to match approved work plans for each year that more accurately align with the actual work planned.

Summary

The Grid Modernization Program began in earnest in 2012 and represents feeder replacement work and upgrades founded on smart grid work. We need to examine a few more years' worth of data before drawing any conclusions.

Conclusion

In this report, we documented and examined the KPIs and metrics AM selected for the Distribution system and provided the results for 2013. Some of the metrics compared how an asset performed with a program and how it would have performed without a program. The difference in performance provide an estimate of the cost saving and value of an AM program. While the exact savings are impossible to calculate in most cases, it provides a relative comparison and supporting justification or motivation for change in AM decisions made in the past. Other KPIs and metrics provided indications of how well an asset performed and help determined if further work is required. Some AM models clearly need more work to better predict future conditions and will be scheduled in the future if it makes sense.

^{**}Data from Grid Modernization Group

Distribution Vegetation Management

2013 Washington	RIT732		WAK12F4
•	WAK12F1		CLV12F4
	NW13T23		C&W12F3
	DRY1208		CLV12F3
	DRY1209		CLV12F2
	GAR461		CLV12F1
	HAR4F1		C&W12F6
	HAR4F2		C&W12F5
	KET12F1		3HT12F1
	SPU125		C&W12F4
	SPU124		BKR12F1
	SPU123		C&W12F2
	SPU122		C&W12F1
	MIL12F1		WAK12F2
	SPA442		BKR12F3
	CLV34F1	Idaho	
	RIT731		STM631
	RDN12F2		OSB522
	RDN12F1		STM633
	PAL312		STM632
	MIL12F2		BLU321
	MIL12F3		BIG411
	MIL12F4		M23621
	PAL311		BIG413
	NW12F1		NMO522
	NW12F2		COT2401
	NW12F3		COT2402
	NW12F4		HUE141
	SPU121		HUE142
	WAK12F3		LKV341
	3HT12F2		LKV342
	3HT12F3		M15515
	3HT12F4		BIG412
	3HT12F5		LKV343
	3HT12F6		NMO521
	3HT12F7		M15514
	3HT12F8		M15513
	9CE12F1		M15512
	9CE12F2		M15511
	9CE12F3		LKY551
	9CE12F4		
	ARD12F1		

OLD722 2014 Washington LAT421 WAS781 OGA611 SUN12F1 PF211 LIN711 PF212 ORI12F1 PRV4S40 ORI12F2 SLW1316 ORI12F3 SLW1348 LAT422 SLW1358 SUN12F2 SLW1368 SUN12F3 SUN12F4 SUN12F6 WIL12F1 WIL12F2 KET12F2 EFM12F2 SUN12F5 **DIA232** DEP12F1 DEP12F2 **DIA231** EFM12F1 BKR12F2 H&W12F2 H&W12F1 ARD12F2 Idaho CDA121 TEN1256 JUL661 TEN1257 **TEN1254** TEN1253 CDA122 CDA123 CDA124 CDA125 TEN1255 OSB521 SPL361 **BLA311** LOL1359 OLD721

A04 F TV 11 4	DE 44254		DCA 424
2015 Washington	BEA12F1		RSA431
	BEA12F3		PDL1203
	F&C12F1		PST12F1
	BEA12F2		SIP12F4
	LL12F1	1.1.1.	TKO411
	NE12F2	Idaho	DEDCE4
	NE12F3		DER651
	NE12F4		APW111
	BEA12F4		APW112
	ODS12F1		APW113
	HOL1205		APW114
	OPT12F1		APW115
	OPT12F2		AVD152
	NE12F5		CKF712
	F&C12F2		AVD151
	BEA12F5 BEA12F6		APW116
	BEA12F6 BEA13T09		WAL544
			DER652
	HOL1206 GIF34F1		WAL545 N131222
	FOR12F1		WAL543
	F&C12F6		WAL543 WAL542
	F&C12F5		SAG742
	F&C12F4		PF213
	F&C12F3		N131321
	PDL1201		LOL1266
	SPI12F2		JUL662
	HOL1207		JPE1287
	SOT521		IDR253
	NE12F1		IDR252
	VAL12F3		WEI1289
	VAL12F2		IDR251
	TKO412		1511252
	SLK12F3		
	SPR761		
	PDL1202		
	SLK12F2		
	SLK12F1		
	SIP12F5		
	PDL1204		
	SIP12F3		
	SIP12F2		
	SIP12F1		

2016 Washington	L&S12F3	Idaho	
· ·	SE12F2		SPT4S21
	SE12F1		KOO1298
	ROX751		CGC331
	ROK451		RAT231
	MLN12F2		KAM1292
	LOO12F2		KAM1291
	LOO12F1		KAM1293
	L&S12F4		KOO1299
	L&S12F1		SPT4S30
	L&S12F2		SPT4S22
	SE12F3		DAL131
	L&S12F5		RAT233
	SE12F4		SAG741
	SE12F5		DAL134
	SOT522		SPT4S23
	SOT523		DAL132
	SPI12F1		GRV1274
	L&R511		GRV1271
	TUR115		CKF711
	TUR111		GRV1272
	TUR116		GRV1273
	TUR117		DAL133
	TVW131	Montana	
	TVW132		NRC352
	VAL12F1		
	TUR112		
	CHE12F2		
	TUR113		
	AIR12F1		
	AIR12F2		
	AIR12F3		
	CFD1210		
	CFD1211		
	CHE12F1		
	CHE12F3		
	CHE12F4		
	CLA56		
	EWN241		
	FOR2.3		
	GIF34F2		
	INT12F2		
	INT12F1		

2017 Washington	LIB12F4 LIB12F2 LIB12F3 LIB12F1 LF34F1		ECL222 FWT12F1 GLN12F1 FWT12F4 FWT12F3
	LEO612		FWT12F2
	LEO611	Idaho	
	MEA12F1		PRA222
	GRN12F3		PVW241
	L&R512		PRA221
	MEA12F2		BUN426
	MLN12F1		PIN441
	OTH501		BUN424
	OTH502		BUN423
	OTH503		BUN422
	OTH505		WOR471
	ROS12F1		SWT2403
	ROS12F2		WIK1278
	ROS12F3		WIK1279
	ROS12F4		PVW243
	ROS12F6		POT322
	GRN12F2		POT321
	DVP12F1		PIN442
	ROS12F5		ORO1282
	COB12F1		ORO1281
	CHW12F1		ORO1280
	CHW12F2		ODN732
	ECL221		ODN731
	CHW12F4		NEZ1267
	GRN12F1		MIS431
	COB12F2		CRG1260
	DVP12F2		CRG1261
	GLN12F2		CRG1263
	CHW12F3		PIN443

Distribution Wood Pole Management

2013

WA

Office	Feeder	ОНМ	Est.# Poles
SPO	3HT 12F1	4.56	237
SPO	3HT 12F3	3.22	167
SPO	3HT 12F5	7.67	399
SPO	3HT 12F6	3.2	166
SPO	3HT 12F7	4.67	243
SPO	3HT 12F8	1.07	56
	PCB TR's		
SPO	C&W 12F2	7.4	444
SPO	C&W 12F3	7.16	430
SPO	C&W 12F4	5.65	339
SPO	C&W 12F5	8.94	536
SPO	C&W 12F6	12.9	774
SPO	NW 12F1	16.29	977
SPO	NW 12F2	11.8	708
SPO	NW 12F3	13.52	811
SPO	NW13T23	0.94	56
COL	SPI12F1	90.32	1626
COL	GIF 34F1-SEC.3	58	1034
OTH	WAS 781	34.68	506
			9,510

Office	Feeder	ОНМ	Est.# Poles
	PCB TR's		
CDA	APW112	13.09	759
CDA	LKV341	0.8	44
CDA	LKV342	2.6	59
CDA	LKV343	9.14	188
PAL	M23621	28.33	659
SDPT	SAG741	52.21	1,566
		·	3,275

2014

Office	Feeder	ОНМ	Est.# Poles
SPO	NW12F3	13.52	811
SPO	WAK12F2	13.21	766
SPO	NW12F4	14.45	874
COL	GIF 34F1-SEC 4	58	1,034
SPO	AIR12F3	7.6	228
SPO	L&S12F1	3.25	195
SPO	L&S12F2	18.62	1,117
SPO	L&S12F3	3.22	193
PAL	GAR461	46.81	1,239
SPO	L&S12F4	6.24	374
SPO	L&S12F5	5.48	329
,			7,160

110			
Office	Feeder	ОНМ	Est.# Poles
CDA	APW113	8.04	466
CDA	APW111	11.67	537
CDA	RAT233	58	1,830
LEW	LOL1266	31.07	932
LEW	LOL1359	27.43	823
SDPT	SAG741	52.17	1,566
SDPT	SAG742	29.4	882
			7,036

2015

Office	Feeder	ОНМ	Est.# Poles
OTH	SOT522	36.1	738
DPK	MLN12F1	44.3	1,329
DPK	MLN12F2	38.67	1,154
DPK	CLA56	2	40
OTH	SPR761	55.79	918
PAL	TUR112	37.73	1,321
SPO	NE12F1	12.5	749
SPO	NE12F2	3.8	225
			6,474

Office	Feeder	ОНМ	Est.# Poles
LEW	N131222	19.21	672
CDA	IDR252	10.34	414
LEW	LOL1359	27.43	823
LEW	ORO1280	9.51	396
CDA	APW115	1.48	68
CDA	APW114	1.9	108
SDPT	SDPT4S23	20.88	835
			3,316

2016

WA

Office	Feeder	ОНМ	Est.# Poles
SPO	NE12F4	18.1	861
SPO	H&W12F2	66.86	2,006
SPO	H&W12F1	0.24	7
SPO	CHE12F1	16.3	650
SPO	CHE12F2	13.3	531
SPO	CHE12F4	17.5	699
PAL	ROK451	21.6	757
SPO	SE12F3	7.8	374
OTH	OTH501	9.4	330
OTH	OTH503	0.3	6
OTH	OTH505	0.7	26
SPO	F&C12F3	9.6	411
			6,658

Office	Feeder	ОНМ	Est.# Poles
CDA	APW116	7.37	353
CDA	IDR251	7.1	285
SDPT	SPT4S22	11.2	449
SDPT	SPT4S30	17.3	694
PAL	JUL661	15.0	335
PAL	JUL662	25.9	510
LEW	JPE1287	19.6	490
KEL	PIN441	19.3	545
CDA	PVW243	1.8	81
			3,742

2017

Office	Feeder	ОНМ	Est.# Poles
SPO	F&C12F4	20.4	875
SPO	F&C12F6	12.8	552
SPO	F&C12F1	21.5	924
COL	CHW12F1	0.5	13
COL	CHW12F4	61.9	2,228
SPO	LIB12F2	38.6	1,352
SPO	LIB12F4	2.1	74
PAL	TUR116	27.1	948
			6,966

Office	Feeder	ОНМ	Est.# Poles
PAL	POT321	14.2	448
CDA	IDR253	34.0	1,359
KEL	BIG411	15.4	276
KEL	BIG412	6.3	187
LEW	COT2402	27.2	544
LEW	SWT2403	33.8	845
			3,659

2018

Office	Feeder	ОНМ	Est.# Poles
SPO	GLN12F1	22.1	884
SPO	9CE12F1	12.6	518
SPO	9CE12F2	16.5	674
SPO	9CE12F3	9.8	403
SPO	BEA12F2	21.2	955
SPO	BEA12F4	6.8	304
SPO	BEA12F6	10.5	474
SPO	BEA13T09	1.2	52
DAV	FOR12F1	70.9	1,488
DAV	FOR2.3	0.2	5
PAL	LEO612	21.6	832
SPO	ROS12F2	6.6	404
	_	•	6,993

Office	Feeder	ОНМ	Est.# Poles
PAL	POT322	25.2	807
SDPT	PRV4S40	65.5	2,714
	Unknown		923
			4,444

2019

Office	Feeder	ОНМ	Est.# Poles
SPO	ROS12F1	18.44	1,125
SPO	ROS12F3	11.3	698
SPO	ROS12F4	5.6	341
SPO	ROS12F5	12.6	769
SPO	ROS12F6	14.5	883
SPO	FWT12F2	12.0	721
SPO	FWT12F4	15.0	900
SPO	INT12F1	1.4	49
SPO	INT12F2	24.9	871
SPO	WAK12F1	15.6	933
SPO	WAK12F3	7.0	422
SPO	WAK12F4	13.3	798
SPO	OPT12F1	7.0	418
SPO	OPT12F2	2.4	146
			9,074

Office	Feeder	ОНМ	Est.# Poles
LEW	KAM1291	14.9	757
LEW	KAM1292	11.9	195
LEW	KAM1293	13.6	433
LEW	KOO1298	24.7	432
LEW	KOO1299	23.7	567
LEW	HOL1205	4.3	216
			2,600

Grid Modernization

2015 Grid Modernization Plan Feeder	Design	Constr	State	Region	Area
BEA12F1		х	WA	West	Spokane
M23621	X	X	ID	South	Pullman/Mosc
MIL12F2	X		WA	West	Spokane
ORO1280	X		ID	South	Grangeville
OTH502		X	WA	West	Othello
RAT231		x	ID	East	Coeur d'Alene
RAT233	X		ID	East	Coeur d'Alene
SPI12F1	X	x	WA	West	Colville
SPR761	X		WA	West	Othello
TUR112	X		WA	South	Pullman/Mosc
WAK12F2		X	WA	West	Spokane
WIL12F2		х	WA	West	Davenport
ER 2570 Sandpoint Grid Mod	X	x	ID	East	Sandpoint

2016 Grid Modernization Plan Feeder	Design	Constr	State	Region	Area
2015 Carryover	X	X			
MIL12F2	X	x	WA	West	Spokane
ORO1280	X	X	ID	South	Grangeville
PDL1201	X		WA	South	Lewiston/Clark
RAT233	X	x	ID	East	Coeur d'Alene
SPI12F1		x	WA	West	Colville
SPR761	X		WA	West	Othello
TUR112		x	WA	South	Pullman/Mosc

2017 Grid Modernization Plan Feeder	Design	Constr	State	Region	Area
2016 Carryover	X	x			
F&C12F1	X		WA	West	Spokane
M15514	X		ID	South	Pullman/Mosc
MIL12F2		X	WA	West	Spokane
PDL1201		x	WA	South	Lewiston/Clark
RAT233	X		ID	East	Coeur d'Alene
SPI12F1		x	WA	West	Colville
SPR761	х	х	WA	West	Othello
TUR112		х	WA	South	Pullman/Mosc

Transformer Change-Out Program

Row Labels	Count of STENCIL
2013-WPM	4
2014-2015-WPM	29
2014-2015-WPM (MP ND)	24
2014-Area Office	1,170
2014-Area Office (MP ND)	32
2014-WPM	111
2014-WPM (MP ND)	14
2015-2016-Area Office (PDMT SUBM-PREDICTED ND)	1,368
2015-2017-Grid Modernization	146
2015-2017-Grid Modernization (MP ND)	8
2015-Area Office	1,609
2015-Area Office (MP ND)	1
2015-Grid Modernization	321
2015-Grid Modernization (MP ND)	27
2015-Substation	40
2015-WPM	306
2015-WPM (MP ND)	241
2016-2017-Grid Modernization	371
2016-2017-Grid Modernization (MP ND)	25
2016-Grid Modernization	97
2016-Grid Modernization (MP ND)	19
2016-WPM	64
2017 or TBD-Program TBD (PDMT SUBM-ACTUAL ND)	2,551
2017-2018-Grid Modernization	28
2017-2018-Grid Modernization (MP ND)	14
2017-2037-WPM (OVHD-ND)	20,167
2017-2037-WPM (OVHD-ND) (MP ND)	2,809
2018-Grid Modernization	289
2018-Grid Modernization (MP ND)	9
Grand Total	31,894