

June 09, 2021

Vista Work Order No. 2105037

Ms. Delaney Peterson Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

Dear Ms. Peterson,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 05, 2021 under your Project Name 'GascoSiltronic: US Moorings'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 2105037 Case Narrative

Sample Condition on Receipt:

Two QC water samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 1613B

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	10
Certifications	11
Sample Receipt	14
Extraction Information	17
Sample Data - EPA Method 1613	23
Continuing Calibration	98
Initial Calibration	162

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2105037-01	SC-FB-2105030940	03-May-21 09:40	05-May-21 10:09	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2105037-02	SC-RB-2105030901	03-May-21 09:00	05-May-21 10:09	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

ANALYTICAL RESULTS

Sample ID: Method	l Blank						EPA Me	thod 1613B
Matrix: Aque Sample Size: 1.00 1		QC Batch: B1E0193 Date Extracted: 21-May-2021	13:59		ab Sample: B1E0193-BLK1 Date Analyzed : 07-Jun-21 19:58	3 Column: ZB-DI	OXIN	
Analyte Conc.	(pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.520		IS	13C-2,3,7,8-TCDD	72.9	25 - 164	
1,2,3,7,8-PeCDD	ND	1.01			13C-1,2,3,7,8-PeCDD	74.6	25 - 181	
1,2,3,4,7,8-HxCDD	ND	1.07			13C-1,2,3,4,7,8-HxCDD	66.6	32 - 141	
1,2,3,6,7,8-HxCDD	ND	1.11			13C-1,2,3,6,7,8-HxCDD	65.4	28 - 130	
1,2,3,7,8,9-HxCDD	ND	1.07			13C-1,2,3,7,8,9-HxCDD	64.1	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	1.01			13C-1,2,3,4,6,7,8-HpCDD	62.0	23 - 140	
OCDD	ND	2.28			13C-OCDD	36.9	17 - 157	
2,3,7,8-TCDF	ND	0.303			13C-2,3,7,8-TCDF	69.0	24 - 169	
1,2,3,7,8-PeCDF	ND	0.463			13C-1,2,3,7,8-PeCDF	64.3	24 - 185	
2,3,4,7,8-PeCDF	ND	0.438			13C-2,3,4,7,8-PeCDF	63.2	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.428			13C-1,2,3,4,7,8-HxCDF	67.1	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.392			13C-1,2,3,6,7,8-HxCDF	67.3	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.465			13C-2,3,4,6,7,8-HxCDF	72.8	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.631			13C-1,2,3,7,8,9-HxCDF	67.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.728			13C-1,2,3,4,6,7,8-HpCDF	66.9	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.756			13C-1,2,3,4,7,8,9-HpCDF	66.6	26 - 138	
OCDF	ND	0.702			13C-OCDF	57.7	17 - 157	
				CRS	37Cl-2,3,7,8-TCDD	99.1	35 - 197	
					Toxic Equivalent Quotient (T	EQ) Data (pg/L)		
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	0.520						
Total PeCDD	ND	1.01						
Total HxCDD	ND	1.11						
Total HpCDD	ND	1.01						
Total TCDF	ND	0.303						
Total PeCDF	ND	0.463						
Total HxCDF	ND	0.631						
Total HpCDF	ND	0.756						

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Sample ID: OPR								EPA Method 1613B
Matrix:AqueousSample Size:1.00 L	`	Batch: e Extracted:	B1E0193 21-May-202	1 13:59		Lab Sample:B1E0193-BS1Date Analyzed:24-May-21 17:23	Column: ZB-DIOXIN	
Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	240	200	120	67 - 158	IS	13C-2,3,7,8-TCDD	91.0	20 - 175
1,2,3,7,8-PeCDD	1210	1000	121	70 - 142		13C-1,2,3,7,8-PeCDD	98.5	21 - 227
1,2,3,4,7,8-HxCDD	1240	1000	124	70 - 164		13C-1,2,3,4,7,8-HxCDD	81.7	21 - 193
1,2,3,6,7,8-HxCDD	1220	1000	122	76 - 134		13C-1,2,3,6,7,8-HxCDD	81.0	25 - 163
1,2,3,7,8,9-HxCDD	1240	1000	124	64 - 162		13C-1,2,3,7,8,9-HxCDD	80.4	21 - 193
1,2,3,4,6,7,8-HpCDD	1210	1000	121	70 - 140		13C-1,2,3,4,6,7,8-HpCDD	76.9	26 - 166
OCDD	2390	2000	119	78 - 144		13C-OCDD	62.6	13 - 199
2,3,7,8-TCDF	239	200	119	75 - 158		13C-2,3,7,8-TCDF	86.6	22 - 152
1,2,3,7,8-PeCDF	1200	1000	120	80 - 134		13C-1,2,3,7,8-PeCDF	70.8	21 - 192
2,3,4,7,8-PeCDF	1220	1000	122	68 - 160		13C-2,3,4,7,8-PeCDF	94.0	13 - 328
1,2,3,4,7,8-HxCDF	1200	1000	120	72 - 134		13C-1,2,3,4,7,8-HxCDF	85.8	19 - 202
1,2,3,6,7,8-HxCDF	1210	1000	121	84 - 130		13C-1,2,3,6,7,8-HxCDF	88.2	21 - 159
2,3,4,6,7,8-HxCDF	1220	1000	122	70 - 156		13C-2,3,4,6,7,8-HxCDF	87.5	22 - 176
1,2,3,7,8,9-HxCDF	1200	1000	120	78 - 130		13C-1,2,3,7,8,9-HxCDF	83.7	17 - 205
1,2,3,4,6,7,8-HpCDF	1190	1000	119	82 - 122		13C-1,2,3,4,6,7,8-HpCDF	84.2	21 - 158
1,2,3,4,7,8,9-HpCDF	1190	1000	119	78 - 138		13C-1,2,3,4,7,8,9-HpCDF	87.3	20 - 186
OCDF	2400	2000	120	63 - 170		13C-OCDF	72.2	13 - 199
					CRS	37Cl-2,3,7,8-TCDD	104	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: SC-FB-	-2105030940							EPA Me	thod 1613B
Project: Gasco	or QEA, LLC oSiltronic: US Moorings [ay-2021 9:40	Sample Matri Samp			Lat QC	boratory Data Sample: 2105037-01 Batch: B1E0193 te Analyzed : 07-Jun-21 20:4		ved: 05-May-2021 cted: 21-May-2021 DIOXIN	
Analyte Conc.	. (pg/L)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.392			IS	13C-2,3,7,8-TCDD	87.7	25 - 164	
1,2,3,7,8-PeCDD	ND	0.692				13C-1,2,3,7,8-PeCDD	83.4	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.750				13C-1,2,3,4,7,8-HxCDD	75.9	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.846				13C-1,2,3,6,7,8-HxCDD	72.6	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.851				13C-1,2,3,7,8,9-HxCDD	73.1	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.771				13C-1,2,3,4,6,7,8-HpCDD	68.7	23 - 140	
OCDD	ND	2.89				13C-OCDD	55.5	17 - 157	
2,3,7,8-TCDF	ND	0.161				13C-2,3,7,8-TCDF	88.1	24 - 169	
1,2,3,7,8-PeCDF	ND	0.501				13C-1,2,3,7,8-PeCDF	82.0	24 - 185	
2,3,4,7,8-PeCDF	ND	0.436				13C-2,3,4,7,8-PeCDF	83.5	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.313				13C-1,2,3,4,7,8-HxCDF	79.0	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.276				13C-1,2,3,6,7,8-HxCDF	77.8	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.332				13C-2,3,4,6,7,8-HxCDF	81.2	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.442				13C-1,2,3,7,8,9-HxCDF	75.8	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.288				13C-1,2,3,4,6,7,8-HpCDF	71.5	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.320				13C-1,2,3,4,7,8,9-HpCDF	72.4	26 - 138	
OCDF	ND	0.639				13C-OCDF	59.9	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	103	35 - 197	
						Toxic Equivalent Quotient (T	EQ) Data (pg/L)		
						TEQMinWHO2005Dioxin	0.00		
TOTALS									
Total TCDD	ND	0.392							
Total PeCDD	ND		0.779						
Total HxCDD	ND	0.851							
Total HpCDD	ND	0.771							
Total TCDF	ND	0.161							
Total PeCDF	ND	0.501							
Total HxCDF	ND	0.442							
Total HpCDF	ND	0.320							

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Sample ID: SC-RB	-2105030901							EPA Me	thod 1613B
Project: Gasco	or QEA, LLC oSiltronic: US Moorings lay-2021 9:00	Sampl Matri Samp			Lab QC	boratory Data Sample: 2105037-02 Batch: B1E0193 te Analyzed : 07-Jun-21 21:27		d: 05-May-2021 d: 21-May-2021 OXIN	
Analyte Conc.	. (pg/L)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.370			IS	13C-2,3,7,8-TCDD	94.8	25 - 164	
1,2,3,7,8-PeCDD	ND	0.547				13C-1,2,3,7,8-PeCDD	86.1	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.633				13C-1,2,3,4,7,8-HxCDD	81.5	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.670				13C-1,2,3,6,7,8-HxCDD	78.3	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.645				13C-1,2,3,7,8,9-HxCDD	78.1	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.681				13C-1,2,3,4,6,7,8-HpCDD	73.1	23 - 140	
OCDD	ND	1.25				13C-OCDD	62.3	17 - 157	
2,3,7,8-TCDF	ND	0.297				13C-2,3,7,8-TCDF	95.8	24 - 169	
1,2,3,7,8-PeCDF	ND	0.496				13C-1,2,3,7,8-PeCDF	87.2	24 - 185	
2,3,4,7,8-PeCDF	ND	0.426				13C-2,3,4,7,8-PeCDF	82.5	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.169				13C-1,2,3,4,7,8-HxCDF	84.2	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.150				13C-1,2,3,6,7,8-HxCDF	86.6	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.175				13C-2,3,4,6,7,8-HxCDF	87.2	28 - 136	
1,2,3,7,8,9-HxCDF	ND		0.515			13C-1,2,3,7,8,9-HxCDF	81.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.351				13C-1,2,3,4,6,7,8-HpCDF	77.8	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.361				13C-1,2,3,4,7,8,9-HpCDF	80.2	26 - 138	
OCDF	ND	0.873				13C-OCDF	69.1	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	109	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data (pg/L)		
						TEQMinWHO2005Dioxin	0.00		
TOTALS						-			
Total TCDD	ND	0.370							
Total PeCDD	ND		0.495						
Total HxCDD	ND	0.670							
Total HpCDD	ND	0.681							
Total TCDF	ND	0.297							
Total PeCDF	ND	0.496							
Total HxCDF	ND		0.515						
Total HpCDF	ND	0.361							

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
E	The associated compound concentration exceeded the calibration range of the instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
RL	For 537.1, the reported RLs are the MRLs.
TEQ	Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the sample concentrations.
TEQMax	TEQ calculation that uses the detection limit as the concentration for non-detects
TEQMin	TEQ calculation that uses zero as the concentration for non-detects
TEQRisk	TEQ calculation that uses $\frac{1}{2}$ the detection limit as the concentration for non-
	detects
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-26
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1980678
New Hampshire Environmental Accreditation Program	207720
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-016
Pennsylvania Department of Environmental Protection	017
Texas Commission on Environmental Quality	T104704189-21-12
Vermont Department of Health	VT-4042
Virginia Department of General Services	10769
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p- Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B
GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA
GC/HRMS	1613/1613B
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid	
Chromatography/Tandem Mass Spectrometry	
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009
Chromatography/Mass Spectrometry	

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

1201 3rd A	Venue, Suite 2600, Seattle, WA 98101	INVIR	ONM	ENTAL SA	MPLE	CH.	AIN	OF CUSTODY	COCI	D:	VIST	A-202105	603-151734
POC: "	POC: [#] Delaney Peterson (360-715-2707) 1605 Cornwall Avenue, Bellingham, WA 98225			Project: Client:		GascoSiltronic: US Moorings NW Natural		S Moorings	Sample Custodia Lab:		CO VIST/	A	
COC Sample Number	Field Sample ID	Sample Type	Matrix	Collect	ed Time	# Containers	Lab QC*	Test Request		Method		TAT**	Preservative
001	SC-FB-2105030940	FB	WQ	05/03/2021	9:40	2						The s	
		•						Dioxin/Furans		E1613B		30	4°C
002	SC-RB-2105030901	RB	WQ	05/03/2021	9:00	2							and the same
		<u> </u>		•			-	Dioxin/Eurans		E1613B		30	4°C

Comment:					
Relinguished By	Received By:	Relinquished By	Received By:	Relinquished By:	Received By
Signature					Signature
2924 NO141011	Justin Basen	Print Name	Print Name	Print Name	Print Name
Company Anchor DEA	Company	Company	Company	Company	Company
Date/Time	050521009	Date/Time	Date/Time	Date/Time	Date/Time
	•				

Date Printed: 5/3/2021

ANCHOR

* Lab QC Requested for sample when box is checked ** TAT = Turn Around Time in DAYS # POC = Project Point of Contact

2105037 2.100

Sample Log-In Checklist

						Pa	age # _	1_0	of	_		
Vista Work Orde	r #:	2105	037			т	АТ	57	٢	_		
Samples	Date/Tim	-	Initials:				Location: NR-2					
Arrival:	05/05	21 10	001		Shel							
Delivered By:	FedEx	edEx UPS On Trac			DHI	-	Hane Delive		Oth	ner		
Preservation:		e	Bi	ue Ice		chni ce	Dry	Ice	No	ne		
Temp °C: 3.1	(uncorre	ected)	robo us	od: V (hi)		Thor	momo	tor ID:	TO-	3		
Temp °C: 3	Temp °C: 3 (corrected) Probe used: Y / $\textcircled{0}$ Thermometer ID: $\underline{T} \underbrace{2-3}$											
							and a state of the	YES	NO	NA		
Shipping Contain	or(s) Intact	2				AND THE REAL		$\overline{\checkmark}$				
								V				
Shipping Custody			- 190	IN Or	79			V				
Airbill	Trk #	114	0 299	HUD								
Shipping Docum												
Shipping Contain	ner		/ista	(Client	R	etain	Re	eturn/	Disp	oose		
Chain of Custody	/ / Sample I	Do <u>cume</u> r	<u>tation Pr</u>	resent?		_	<u> </u>	V				
Chain of Custody	/ / Sample I	Documer	ntation Co	omplete?								
Holding Time Ac	ceptable?							V				
	Date/Tim	e		Initials:		Loca	ation:	WR	-2			
Logged In:												
	05/0	15/21	14:06	16-		She	lf/Rack	: <u> </u>	<u>, c</u>	-5		
COC Anomaly/S	ample <u>Acce</u>	eptanc <u>e</u> F	Form com	npleted?					~	~		

Comments:

CoC/Label Reconciliation Report WO# 2105037

LabNumber CoC Sample ID		SampleAlia	as		Sample Date/Time	Container	BaseMatrix	Sample Comments
2105037-01 A SC-FB-2105030940					03-May-21 09:40	Amber Glass NM Bottle, 1L	Aqueous	
2105037-01 B SC-FB-2105030940	C				03-May-21 09:40	Amber Glass NM Bottle, 1L	Aqucous	
2105037-02 A SC-RB-2105030901		and the second			03-May-21 09:00	Amber Glass NM Bottle, 1L	Aqueous	
2105037-02 B SC-RB-2105030901	C				03-May-21 09:00	Amber Glass NM Bottle, 1L	Aqueous	
Checkmarks indicate that informatio Any discrepancies are noted in the fo			No	NA	Comments:			
Sample Container Intact?					+			
Sample Custody Seals Intact?				/	-			
Adequate Sample Volume?		~			-			
Container Type Appropriate for An	alysis(es)	/						
Preservation Documented: Na2S	2O3 Trizma NH4CH3CO2	(None ALL Othe	er		1			

Verifed by/Date: 14 05/35/2

EXTRACTION INFORMATION

Prep Expiration: 2022-05-03 Client: Anchor QEA, LLC

 \bigtriangledown

Workorder Due:02-Jun-21 00:00

TAT: 28

Method: 1613 Full List Matrix: Aqueous Client Matrix: OC Water					Prep Batch:
Client Matrix: QC Water Also run: Percent Solids					Prep Data Entered: $+605/24/71$ Date and Initials
					Initial Sequence: SE0056
		Prep	Spike		
LabSampleID	A/B		Rec	ClientSampleID	Date Received Location Comments
2105037-01	A T	Ń	~	SC-FB-2105030940	05-May-21 10:09 WR-2 B-1
2105037-02	\downarrow	$\overline{\nabla}$		SC-RB-2105030901	05-May-21 10:09 WR-2 B-1

Pre-Prep Check Out: OF 05/17/21 Pre-Prep Check In: DF 05/17/2

Prep Check Out: <u>JUD</u> 9 05/22/21 Empty Prep Check In:

Prep Reconciled Initals/Date AM 05 Spike Reconciled Initals/Date: 22 21 SOUT VialBoxID:

Page 1 of 1

PREPARATION BENCH SHEET

Matrix: Aqueous

B1E0193

Chemist:

Prep Date/Time: 21-May-21

Method: 1613 Full List Method: 1613 2.3.7.8-TCDD Only

Prepared using: HRMS - Separatory Funnel

VISTA Sample ID	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	CHE	IS/NS CHEM/WIT DATE		CRS CHEM/WIT DATE		AP CHEM/ DATE		ABSG CHEM/ DATE		AA CHEM/ DATE		lorisil HEM/ DATE	RS CHEM/WIT DATE	
B1E0193-BLK1	NA	NA	(1.00)	ADA	UR AM 05/2200 AR		N HS 05/22/21		1/A		5/22/21	AM	06/22/21	TC	Q5/24/21	TL HS	05/24/21
B1E0193-BS1	Ţ		(1.00)	V		V -		-		V -	T	1					
2105037-01	1514.52	512.84	1,001.68														
2105037-02	1534,70	514.38	1.024.32								1						
2105101-01	1515.58	518.76	0996.82											N	Ą		
2105101-02	1544,46	518.58	1,025.88	•													
2105108-01	1576.02	5)8.34	(057.68											70	05/24/z1		
2105109-01 (A)	1564.44	518.ZZ	1.046.22														
2105110-01	1541.94	515.9Z	1.02602														
2105133-017	1492.74	521.04	09.7170		\checkmark		\checkmark				Y		L			J	,
(7) Sample (8) Yellow ba	emulsed nd on Colur	AN 05/22 nn Al (172) 15/22/21														

	_	\frown			2	
IS Name 10ML	NS Name (())	CRS Name	RS Name $\left(\frac{1}{3} \right)$	Cycle Time	APP: (SEFUN) SOX SDS	Check Out: Chemist/Date:
PCDD/F21C0101	PCDD/F 20 FUI07, 10ul	CRS Name (N) 2 PCDD/F <u>20142501, 10111</u>	PCDD/F 20H2502, 1021	Start Date/Time:	SOLV:	
РСВ	PCB	PCB	PCB	NA		Check In: Chemist/Date:
РАН	PAH	PAH	РАН	Stop Date/Time:	Final Volume(s) _(4	Balance ID: HRMS-10
				<u></u>	Junc	

Comments: Assume 1 g = 1 mL

1 = Sample approached dryness on rotovap

2 = Sample bumped on rotovap; lost < 5%

3 = Sample poured through Na2SO4 to remove water

4 = Precipitate present at Final Volume

Work Order 2105037

5 = Sample Centrifuged to remove particulate

6 = Added boiling chips to seperatory funnel

7 = Sample emulsed during shakeout

Batch: B1E0193

۲

Matrix: Aqueous

LabNumber	WetWeight Initial (L)	% Solids (Extraction Solids)	DryWeight Initial (L)	Final (uL)	Extracted	Ext By	Spike	SpikeAmount (uL)	ClientMatrix	Analysis
2105037-01	1.00168 -	NA	NA	20	21-May-21 13:59	¥ lC¥			QC Water	1613 Full List
2105037-02	1.02432 -			20	21-May-21 13:59	JG			QC Water	1613 Full List
2105101-01	0.99682 ~			20	21-May-21 13:59	JG			Drinking Water	1613 2,3,7,8-TCDD Only
2105101-02	1.02588 ົ			20	21-May-21 13:59	JG			Drinking Water	1613 2,3,7,8-TCDD Only
2105108-01	1.05768 ~		Ì	20	21-May-21 13:59	JG			Ocean Water	1613 Full List
2105109-01	1.04622 ~			20	21-May-21 13:59	JG			Wastewater	1613 Full List
2105110-01	1.02602 -			20	21-May-21 13:59	JG		_	Wastewater	1613 Full List
2105133-01	0.9717 -			20	21-May-21 13:59	JG			Wastewater	1613 2,3,7,8-TCDD Only
B1E0193-BLK1	1			20	21-May-21 13:59	JG				QC
B1E0193-BS1	1		\downarrow	20	21-May-21 13:59	JG	20F0107	- 10		QC

All bolded data on report verified against written benchsheet by (initial/date) $\pm c \frac{05/24/7}{}$

Printed: 5/24/2021 2:46:50PM Page 1 of 1

Work Order 2105037

Moisture/ Percent Solids

D2216-90 BATCH ID B1E0155

Analyst: OF	Test Code: %Moist/%Solids	
Analyte:	Units: %	Data Entry Verified by: (Initial and Date) <u>TC 05/24/2</u>
Dried at 110°C+/-5°C		
Oven ID: 01 02 /	/	

Date/Time IN: Date/Time OUT Inst HRMS-10 05/17/21 1614 05/20/21 1519

	В	С	D		F		н	1	к		М	N	0	Р
				Intial and Date:	OF 05/17/21	OF 05/20/21			OF 05/17/21			N/A		OF 05/17/21
Particle Size	SampID	-	SampType	Pan Tare Wt. (gms)	Weight (g)	Dry Pan and Sample Weight (g)	Dry Sample Weight (g)	%Solids RawVal	Visual Inspection		pH Before	pH After	Added	
	2105037-01		Sample	1.2800	14.7400	1.2800 -	0.0000	0.00	CLEAR	0 /	4		N/A	x /
	2105037-02		Sample	1.2800 🦯	11.6200	1.2800 🦯	0.0000	0.00	CLEAR	0/	4/	N/A	N/A	X /
						_							/	
											-			

*Sample homogenized in sample container unless otherwise noted.

BCH_PMOIST_B1E0155.xls

, • .

Moisture/	Percent	Solide	
IVIOISIULE/	reicent	Solius	

D2216-90 BATCH ID B1E0155

 		7
Analyst: OF	Test Code: %Moist/%Solids	
		Data Entry Verified by:
Analyte:	Units: %	(Initial and Date) //A
Dried at 110°C+/-5°C		· · · · · · · · · · · · · · · · · · ·
 Oven ID: 01 (02)		

		Date/Time IN:	Date/Time OUT
Inst	HRMS-10	05/17/21	05/20/21
		1614	1519

Management of the local data and the	and the second		1014 D	E	_									
	В	C				G	Н		K			N	0	P CON
				Intial and Date:	OF 05/17/21	OF 05/20/21			OF 05/	171	21	N	A	OF 05/17/21
Particle Size	SampID		SampType	Intial and Date: Pan Tare Wt. (gms) J. 28	OF 05/17/21 Wet Pan and Sample Weight (g) 14.74	Dry Pan and Sample Weight (g)	Dry Sample Weight (g)	%Solids RawVal	Visual Inspection	CI-	pH Before	pH After	Acid Added	Sample Homogenized*
	2105037-01	A	Sample	1.28	14.74	1.28			clear		4		~/	
	2105037-02	\checkmark	Sample	1.28	11.62	* + 28 1 28			T	0	4	∕M	r.	×
	-													
														<u> </u>
														·
·														
									L					
				_										
	-													

*Sample homogenized in sample container unless otherwise noted.

* OF 05/20/21

BCH_PMOIST_B1E0155.xls

ε.

5/17/2021 3:06 PM

SAMPLE DATA – EPA METHOD 1613

Quantify Sam Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1 SCN815	
Dataset:	U:\VG12.PRO\Results\21	0607R4\210607R4_9.qld	
Last Altered: Printed:		11:36:14 Pacific Daylight Time 13:44:32 Pacific Daylight Time	

FIN 06/08/21 CT0610912021

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.929	1.000	26.713		1.001				0.520	
2	2 1,2,3,7,8-PeCDD			NO	0.826	1.000	31.151		1.001				1.01	
3	3 1,2,3,4,7,8-HxCDD			NO	0.972	1.000	34.508		1.001				1.07	
4	4 1,2,3,6,7,8-HxCDD			NO	0.877	1.000	34.644		1.001				1.11	
5	5 1,2,3,7,8,9-HxCDD			NO	0.874	1.000	34.927		1.000				1.07	
6	6 1,2,3,4,6,7,8-HpCDD			NO	0.899	1.000	38.290		1.000				1.01	
7	7 OCDD			NO	0.852	1.000	41.357		1.000				2.28	
8	8 2,3,7,8-TCDF			NO	0.747	1.000	26.063		1.000				0.303	
9	9 1,2,3,7,8-PeCDF			NO	0.877	1.000	29.932		1.000				0.463	
10	10 2,3,4,7,8-PeCDF			NO	0.962	1.000	30.961		1.001				0.438	
11	11 1,2,3,4,7,8-HxCDF			NO	0.920	1.000	33.555		1.000				0.428	
12	12 1,2,3,6,7,8-HxCDF			NO	0.936	1.000	33.712		1.001				0.392	
13	13 2,3,4,6,7,8-HxCDF			NO	0.973	1.000	34.403		1.001				0.465	
14	14 1,2,3,7,8,9-HxCDF			NO	0.940	1.000	35.482		1.000				0.631	
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.05	1.000	37.098		1.000				0.728	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.05	1.000	38.949		1.000				0.756	
17	17 OCDF			NO	0.771	1.000	41.681		1.000				0.702	
18	18 13C-2,3,7,8-TCDD	2.20e5	0.78	NO	1.10	1.000	26.655	26.68	1.027	1.028	1457.4	72.9	2.36	
19	19 13C-1,2,3,7,8-PeCDD	1.76e5	0.63	NO	0.864	1.000	31.034	31.12	1.196	1.1 9 9	1492.3	74.6	3.17	
20	20 13C-1,2,3,4,7,8-HxCDD	1.17e5	1.29	NO	0.746	1.000	34.475	34.49	1.014	1.014	1332.2	66.6	5.36	
21	21 13C-1,2,3,6,7,8-HxCDD	1.30e5	1.27	NO	0.847	1.000	34.594	34.62	1.017	1.018	1308.9	65.4	4.72	
22	22 13C-1,2,3,7,8,9-HxCDD	1.31e5	1.29	NO	0.868	1.000	34.893	34.92	1.026	1.027	1282.6	64.1	4.60	
23	23 13C-1,2,3,4,6,7,8-HpCDD	9.69e4	1.05	NO	0.664	1.000	38.242	38.28	1.125	1.126	1239.5	62.0	6.37	
24	24 13C-OCDD	9.73e4	0.87	NO	0.561	1.000	41.191	41.35	1.211	1.216	1474.6	36.9	6.78	
25	25 13C-2,3,7,8-TCDF	3.29e5	0.76	NO	1.09	1.000	26.045	26.06	1.003	1.004	1379.6	69.0	2.36	
26	26 13C-1,2,3,7,8-PeCDF	2.27e5	1.64	NO	0.809	1.000	29.764	29.93	1.147	1.153	1286.8	64.3	3.89	
27	27 13C-2,3,4,7,8-PeCDF	2.22e5	1.65	NO	0.803	1.000	30.725	30.94	1.184	1.192	1263.9	63.2	3.93	
28	28 13C-1,2,3,4,7,8-HxCDF	1.60e5	0.48	NO	1.01	1.000	33.546	33.54	0.987	0.987	1342.7	67.1	6.72	
29	29 13C-1,2,3,6,7,8-HxCDF	1.70e5	0.50	NO	1.07	1.000	33.675	33.69	0.990	0.991	1345.2	67.3	6.33	
30	30 13C-2,3,4,6,7,8-HxCDF	1.56e5	0.49	NO	0.910	1.000	34.366	34.38	1.011	1.011	1455.5	72.8	7.47	
31	31 13C-1,2,3,7,8,9-HxCDF	1.31e5	0.48	NO	0.828	1.000	35.444	35.47	1.042	1.043	1343.4	67.2	8.20	

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 13:44:32 Pacific Daylight Time

-	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.04e5	0.42	NO	0.661	1.000	37.052	37.08	1.090	1.090	1337.1	66.9	7.63	
33	33 13C-1,2,3,4,7,8,9-HpCDF	8.87e4	0.40	NO	0.566	1.000	38.814	38.94	1.141	1.145	1332.3	66.6	8.91	
34	34 13C-OCDF	1.80e5	0.88	NO	0.663	1.000	41.578	41.67	1.223	1.225	2309.7	57.7	6.15	
35	35 37CI-2,3,7,8-TCDD	2.24e5			2.07	1.000	26.855	26.70	1.035	1.028	792.57	99.1	0.376	
36	36 13C-1,2,3,4-TCDD	2.74e5	0.77	NO	1.00	1.000	26.070	25.96	1.000	1.000	2000.0	100	2.61	
37	37 13C-1,2,3,4-TCDF	4.37e5	0.78	NO	1.00	1.000	24.760	24.61	1.000	1.000	2000.0	100	2.58	
38	38 13C-1,2,3,4,6,9-HxCDF	2.35e5	0.50	NO	1.00	1.000	34.040	34.01	1.000	1.000	2000.0	100	6.79	
39	39 Total Tetra-Dioxins				0.929	1.000	24.620		0.000				0.285	
40	40 Total Penta-Dioxins				0.826	1.000	29.960		0.000				0.458	
41	41 Total Hexa-Dioxins				0.877	1.000	33.635		0.000				0.782	
42	42 Total Hepta-Dioxins				0.899	1.000	37.640		0.000				0.650	
43	43 Total Tetra-Furans				0.747	1.000	23.610		0.000				0.136	
44	44 1st Func. Penta-Furans				0.877	1.000	27.620		0.000				0.0708	
45	45 Total Penta-Furans				0.877	1.000	29.275		0.000				0.137	
46	46 Total Hexa-Furans				0.973	1.000	33.555		0.000				0.331	
47	47 Total Hepta-Furans				1.05	1.000	37.835		0.000				0.470	

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 13:44:32 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Name: 210607R4_9, Date: 07-Jun-2021, Time: 19:58:57, ID: B1E0193-BLK1 Method Blank 1, Description: Method Blank

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1									

Penta-Dioxins

	Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1									

Hexa-Dioxins

	Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1											

Hepta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA n	n/y Resp	Conc.	EMPC	DL
1									

Tetra-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:Tuesday, June 08, 2021 11:36:14 Pacific Daylight TimePrinted:Tuesday, June 08, 2021 13:44:32 Pacific Daylight Time

Name: 210607R4_9, Date: 07-Jun-2021, Time: 19:58:57, ID: B1E0193-BLK1 Method Blank 1, Description: Method Blank

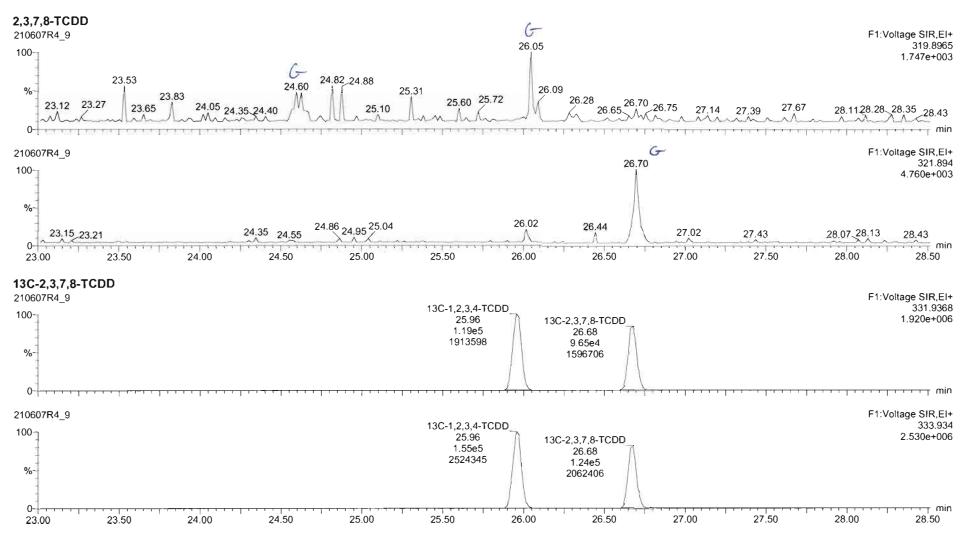
Penta-Furans

Name RT m1 Height m2 Height m1 Resp m2 Resp RA n/y Resp Conc. EMPC DL

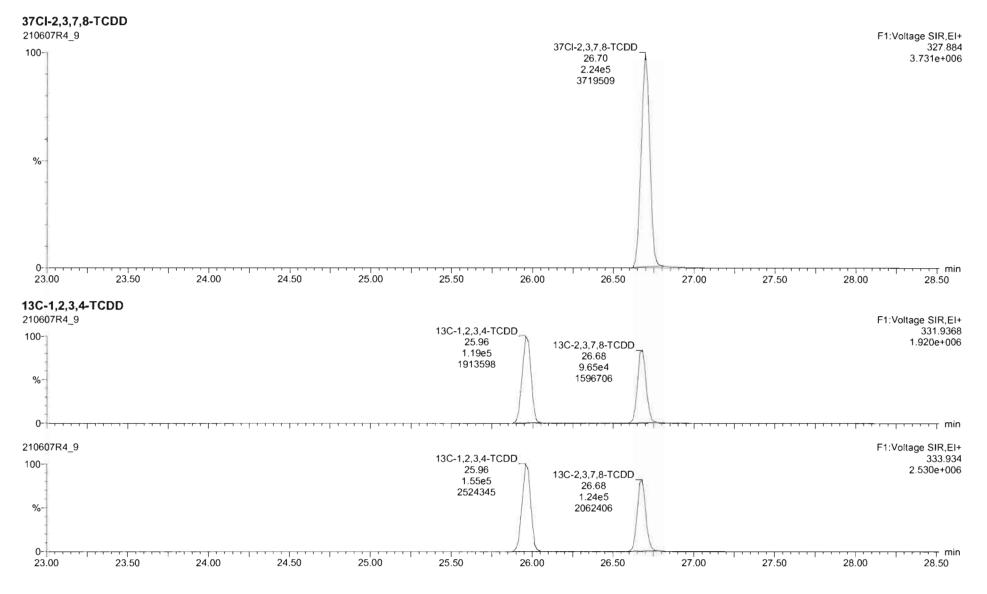
Hexa-Furans

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

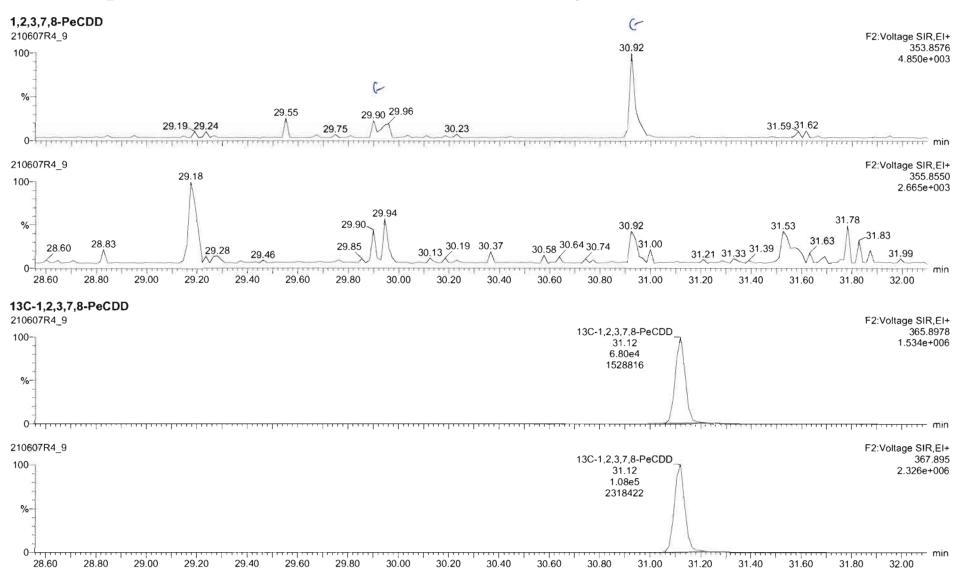
Hepta-Furans


Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

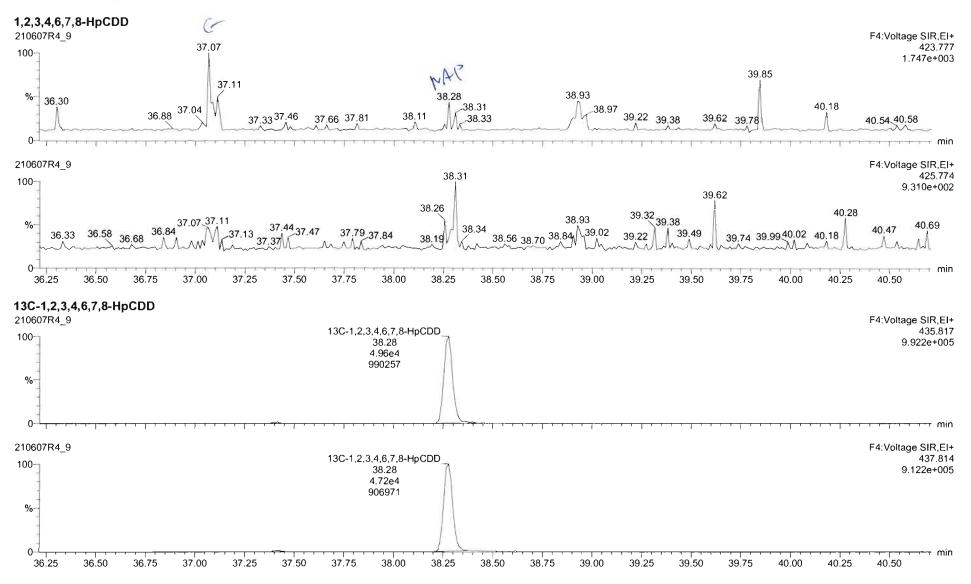
Quantify Sample Report	MassLynx 4.1 SCN815	
Vista Analytical Laboratory		

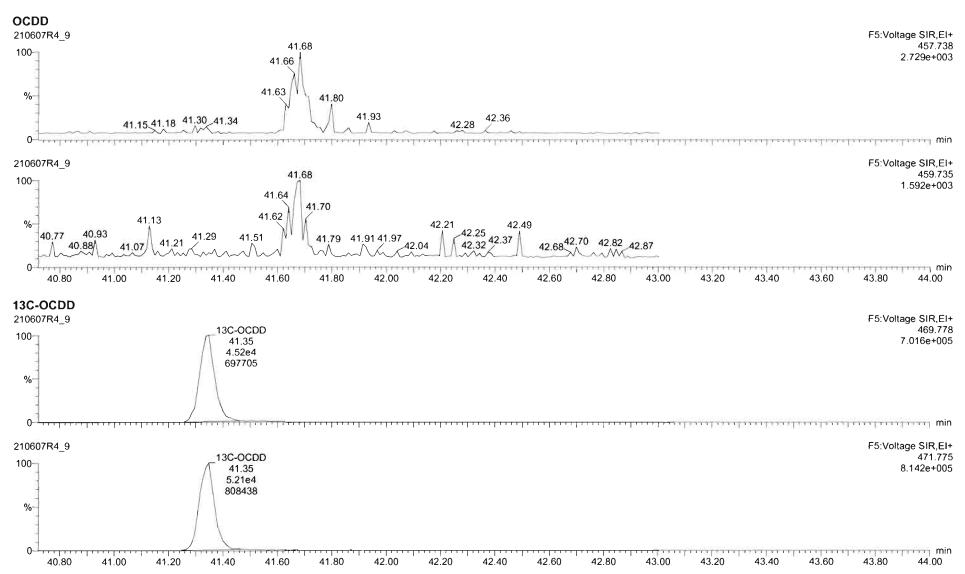

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time


Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

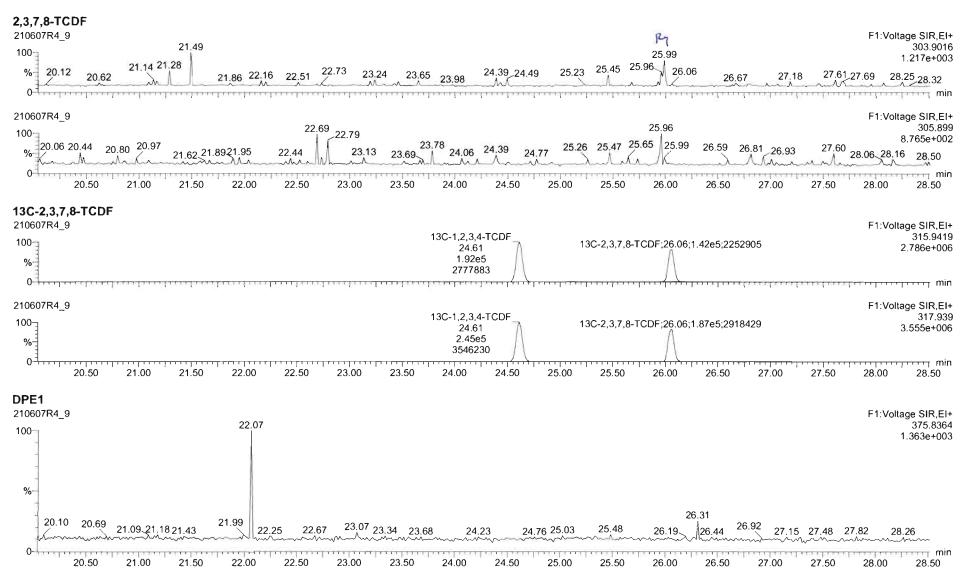
Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_9.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time	


Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_9.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time	

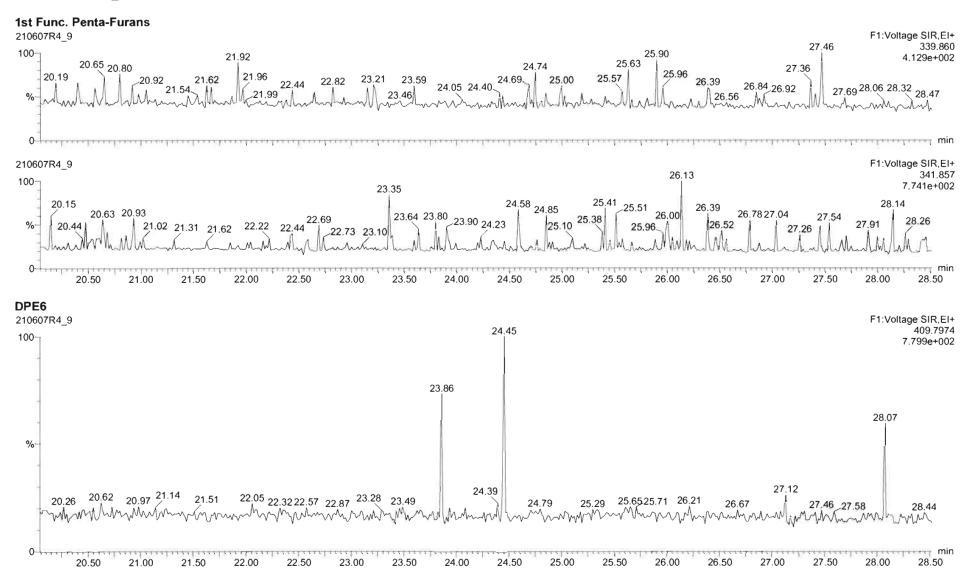

Quantify Sample Report MassLynx 4.1 SCN815 Page 4 of 13 Vista Analytical Laboratory U:\VG12.PRO\Results\210607R4\210607R4_9.qld Dataset: Last Altered: Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time Printed: Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time HIN06/08/21 Name: 210607R4_9, Date: 07-Jun-2021, Time: 19:58:57, ID: B1E0193-BLK1 Method Blank 1, Description: Method Blank 1,2,3,4,7,8-HxCDD G 210607R4 9 F3:Voltage SIR,EI+ 34.02 389.816 6 100-1 1.808e+003 PI 33.54 C 34.05 2 33.99 34.35 35.47_35.50 % 33.70 34.3934.52 33.38 33.82 33.18 34.30 34.90 32.89 34.77 34.82 32.80 33.08 35.62 32.40 35.06 35.27 35.30 34.11 . ΛΛ 0min min 210607R4 9 F3:Voltage SIR,EI+ 33.54 391.813 100-8.991e+002 34.02 34.50 33.65 35.70 34.36.34.39 33.27 34.75 34.65 % 33.70 35.48 35.73 32.68 32.79 35.55 34.14 32.52 33.91 34.99.35.02 33.23 34.24 35.2335.41 32.98 33.37 32.38 34.88 50 0i min 32.80 32.40 32.60 33.00 33.20 33.40 33.60 33.80 34.00 34.20 34.40 34.60 34.80 35.00 35.20 35.40 35.60 35.80 13C-1,2,3,4,7,8-HxCDD 210607R4_9 F3:Voltage SIR,EI+ 13C-1,2,3,6,7,8-HxCDD;34.62;7.30e4;1297107 13C-1,2,3,7,8,9-HxCDD 401.856 100 -34.92 1.377e+006 7.38e4 1364738 % 0---min ריידדייי 210607R4_9 F3:Voltage SIR,EI+ 13C-1,2,3,6,7,8-HxCDD;34.62;5.74e4;1001376 13C-1,2,3,7,8,9-HxCDD 403.853 100-34.92 1.024e+006 5.72e4 1013290 % 0 min ా 33.40 32.40 32.60 32.80 33.00 33.20 33.60 33.80 34.00 34.20 34.60 35.00 35.20 35.40 34.40 34.80 35.60 35.80

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

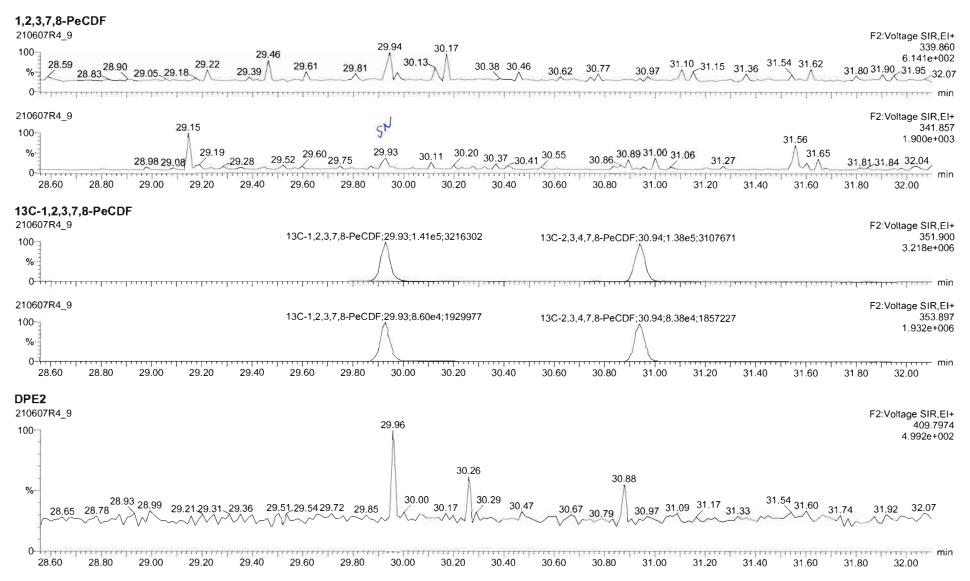
Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time

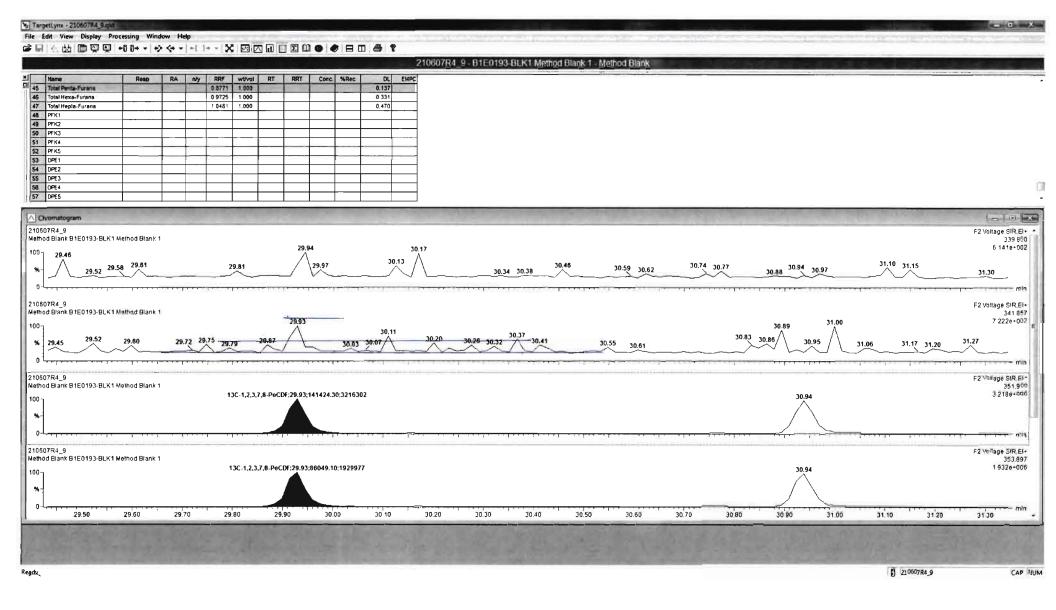


Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_9.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time	


Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

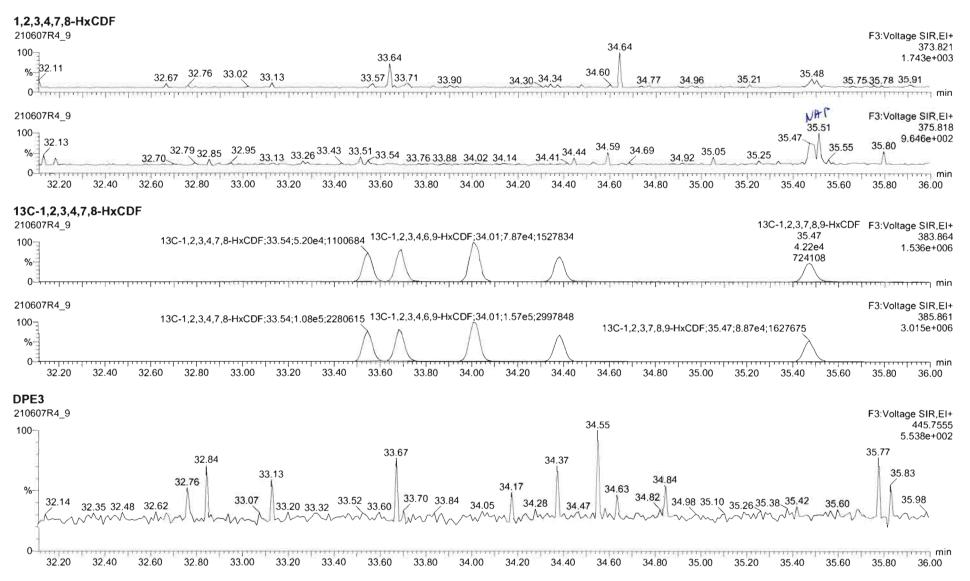
Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time


Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld


Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time

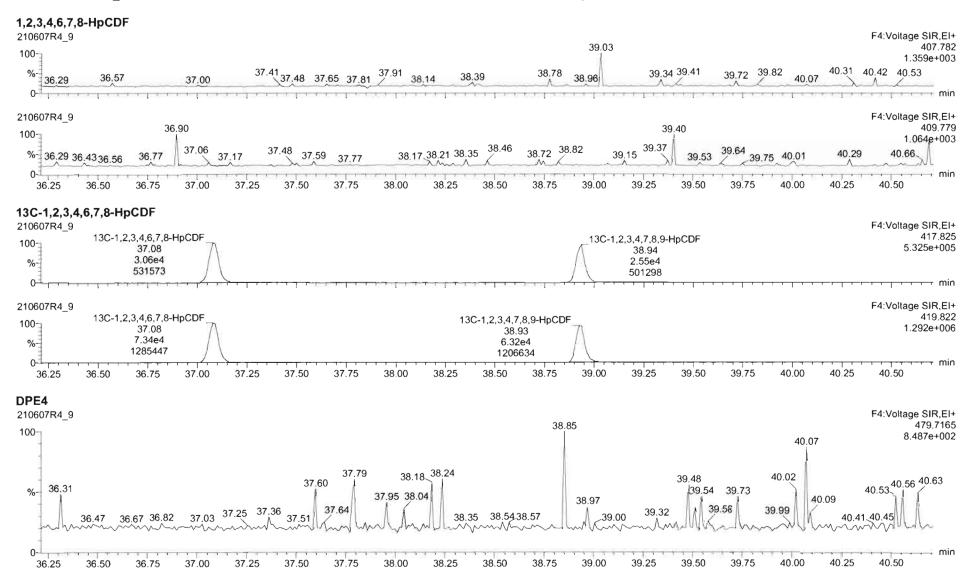
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time

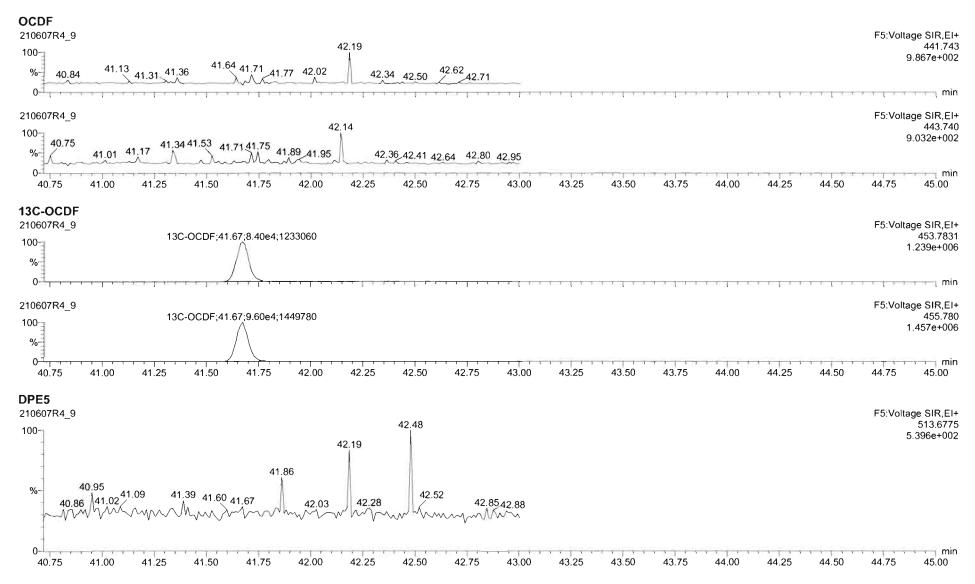


Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

Page 10 of 13

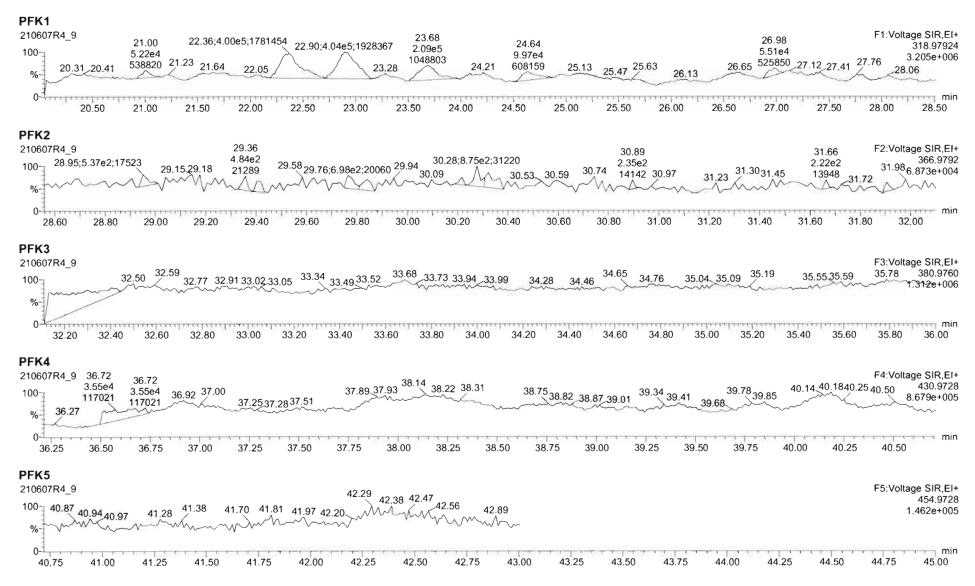

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time



Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time



Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_9.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:14 Pacific Daylight Time Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time	

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_9.qld

Last Altered:Tuesday, June 08, 2021 11:36:14 Pacific Daylight TimePrinted:Tuesday, June 08, 2021 11:36:26 Pacific Daylight Time

Quantify San Vista Analytica	nple Summary Report al Laboratory	MassLynx 4.1 SCN815				
Dataset:	U:\VG12.PRO\Results\21	0524R1\210524R1_8.qld				
Last Altered: Printed:		1:16:25 Pacific Daylight Time 1:17:23 Pacific Daylight Time	+			

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

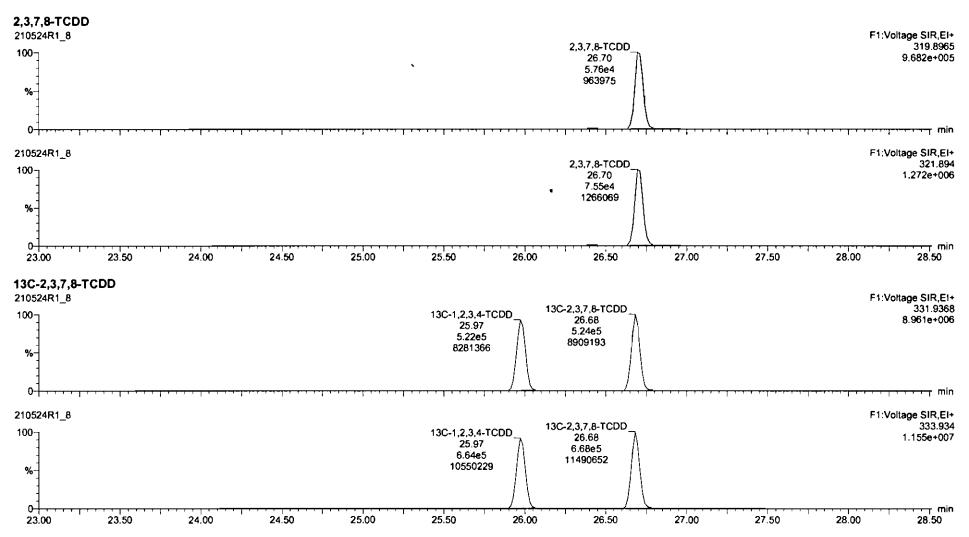
Name: 210524R1_8, Date: 24-May-2021, Time: 17:23:08, ID: B1E0193-BS1 OPR 1, Description: OPR

	# Name	Resp	RA	n/y		wt/vol	Pred.RT	_RT_	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.33e5	0.76	NÖ	0.929	1.000	26.713	26.70	1.001	1.001	240.33		0.250	240
2	2 1,2,3,7,8-PeCDD	5.02e5	0.62	NO	0.826	1.000	31.151	31,12	1.001	1.000	1205.1		1.23	1210
3	3 1,2,3,4,7,8-HxCDD	4.16e5	1.27	NO	0.972	1.000	34.477	34.48 -	1.001	1.001	1235.8		1.67	1240
4	4 1,2,3,6,7,8-HxCDD	4.17e5	1.24	NO	0.877	1.000	34.613	34.60~	1.001	1.000	1221.5		1.75	1220
5	5 1,2,3,7,8,9-HxCDD	4.30e5	1.25	NO	0.874	1.000	34.884	34.88 🖍	1.000	1.000	1242.5		1.73	1240
6	6 1,2,3,4,6,7,8-HpCDD	3.16e5	1.05	NO	0.899	1.000	38.300	38.30	1.000	1.000	1211.5		3.48	1210
7	7 OCDD	4.06e5	0.90	NO	0.852	1.000	41.356	41.37	1.000	1.001	2387.1		7.08	2390
8	8 2,3,7,8-TCDF	1.59e5	0.74	NO	0.747	1.000	26.063	26.09	1.000	1.001	238.64		0.292	239
9	9 1,2,3,7.8-PeCDF	5.67e5	1.57	NO	0.877	1.000	29.917	29.94	1.000	1.001	1196.0		4.66	1200
10	10 2,3,4,7,8-PeCDF	8.32e5	1.57	NO	0.962	1.000	30.961	30.95	1.001	1.000	1215.5		3.58	1220
11	11 1,2,3,4,7,8-HxCDF	5.46e5	1.23	NO	0.920	1.000	33.534	33.53 🖍	1.000	1.000	1204.2		1.92	1200
12	12 1,2,3,6,7,8-HxCDF	6.07e5	1.23	NO	0.936	1.000	33.680	33.68~	1.001	1.001	1206.5		1.81	1210
13	13 2,3,4,6,7,8-HxCDF	5.35e5	1.22	NO	0.973	1.000	34.372	34.37	1.001	1.001	1217.8		2.21	1220
14	14 1,2,3,7,8,9-HxCDF	4.43e5	1.24	NO	0.940	1.000	35.440	35.45*	1.000	1.001	1197.9		2.98	1200
15	15 1,2,3,4,8,7,8-HpCDF	3.96e5	1.02	NO	1.05	1.000	37.087	37.08	1.000	1.000	1193.8		3.14	1190
18	16 1,2,3,4,7,8,9-HpCDF	3.49e5	1.02	NO	1.05	1.000	38.971	38.97	1.000	1.000	1191.8		3.16	1190
17	17 OCDF	5.03e5	0.89	NO	0.771	1.000	41.681	41.68	1.000	1.000	2402.6		4.04	2400
18	18 13C-2,3,7,8-TCDD	1.19e6	0.78	NO 1	1.10	1.000	26.670	26.68	1.027	1.027	1820.9	91.0 🦯	0.897	
19	19 13C-1,2,3,7,8-PeCDD	1.01e6	0.83	NO	0.864	1.000	31.051	31.12	1.196	1.198	1970.1	98.5	1.56	
20	20 13C-1,2,3,4,7,8-HxCDD	6.92e5	1.29	NO	0.746	1.000	34.454	34.46 🖍	1.014	1.014	1634.0	81.7	2.42	
21	21 13C-1,2,3,6,7,8-HxCDD	7.79e5	1.29	NO	0.847	1.000	34.573	34.59 ⁄	1.017	1.018	1620.4	81.0	2.13	
22	22 13C-1,2,3,7,8,9-HxCDD	7.93e5	1.25	NO	0.868	1.000	34.872	34.87 -	1.026	1.026	1807.1	80.4	2.08	
23	23 13C-1,2,3,4,6,7,8-HpCDD	5.80e5	1.04	NO	0.664	1.000	38.220	38.29 -	1.125	1.127	1537.6	76.9	4.55	
24	24 13C-OCDD	7.97e5	0.89	NO	0.561	1.000	41.166	41.35	1.211	1.217	2503.4	62.6	5.03	
25	25 13C-2,3,7,8-TCDF	1.79e6	0.79	NO	1.09	1.000	26.059	26.06	1.003	1.003	1732.8	86.6	1.03	
26	26 13C-1,2,3,7,8-PeCDF	1.08e6	1.57	NO	0.809	1.000	29.781	29.91	1.147	1.152	1415.8	70.8	7.51	
27	27 13C-2,3,4,7,8-PeCDF	1.42e6	1.61	NO	0.803	1.000	30.742	30.94	1.184	1.191	1879.4	94.0	7.57	
28	28 13C-1,2,3,4,7,8-HxCDF	9.86e5	0.51	NO	1.01	1.000	33.526	33.52	0.987	0.986	1716.4	85.8	4.08	
29	29 13C-1,2,3,6,7,8-HxCDF	1.08e6	0.52	NO	1.07	1.000	33.655	33.66 🗸	0.990	0.990	1763.7	86.2	3.84	
30	30 13C-2,3,4,6,7,8-HxCDF	9.04e5	0.52	NO	0.910	1.000	34.345	34.35 /	1.011	1.011	1750.4	87.5	4.53	
31	31 13C-1,2,3,7,8,9-HxCDF	7.87e5	0.51	NO	0.828	1.000	35.423	35.43 /	1.042	1.042	1673.3	83.7	4.98	

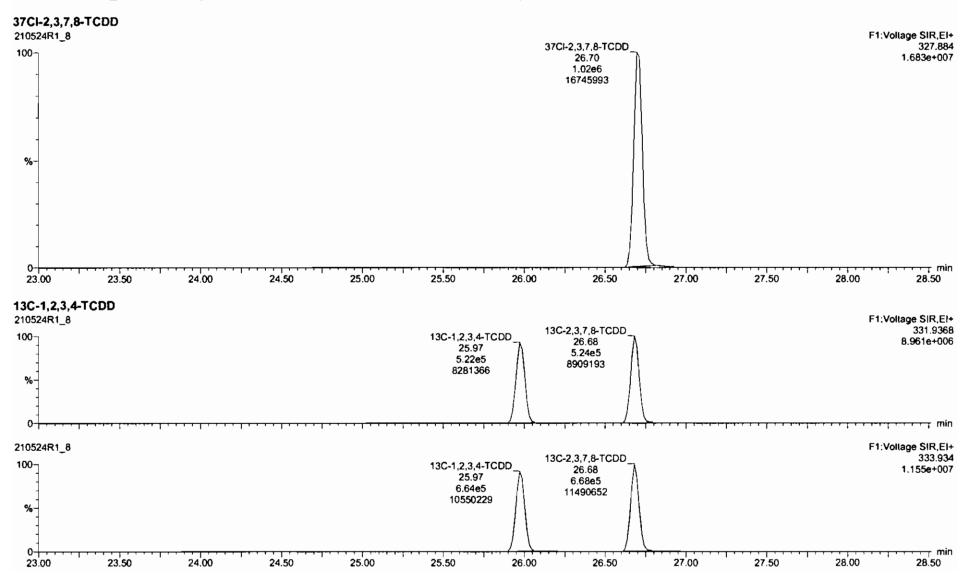
Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: U:\VG12.PRO\Results\210524R1\210524R1_8.qld

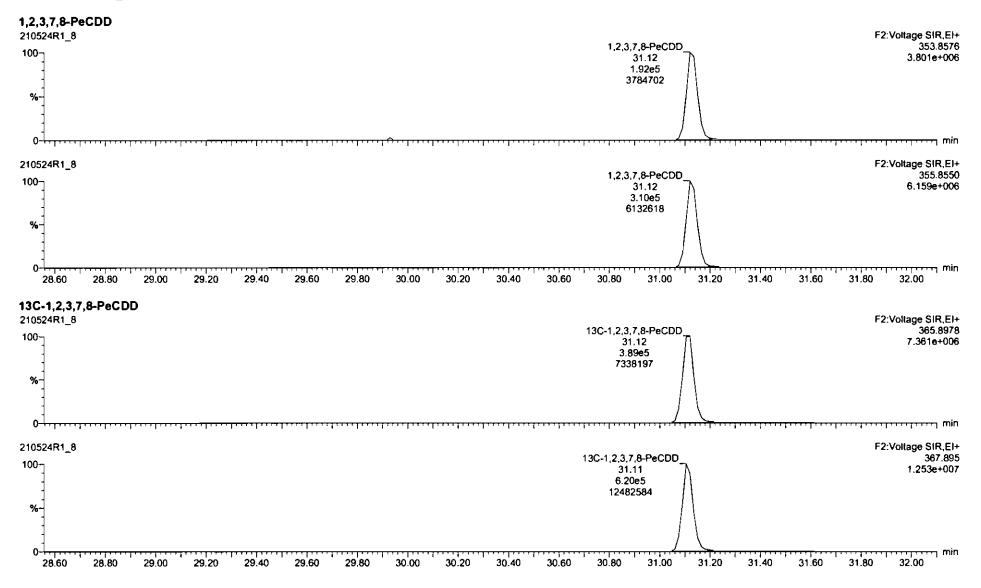
Last Altered:	Tuesday, May 25, 2021 11:16:25 Pacific Daylight Time
Printed:	Tuesday, May 25, 2021 11:17:23 Pacific Daylight Time

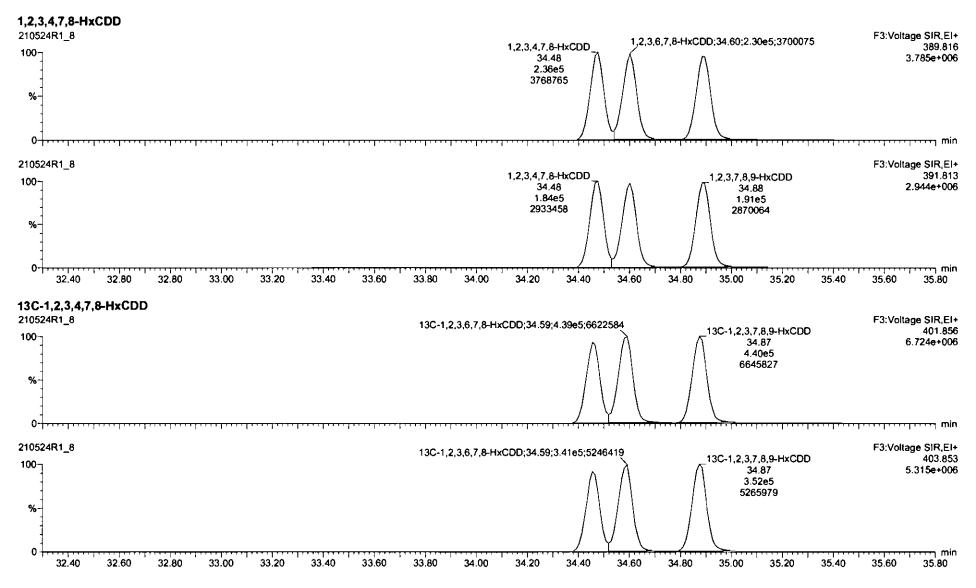

Name: 210524R1_8, Date: 24-May-2021, Time: 17:23:08, ID: B1E0193-BS1 OPR 1, Description: OPR

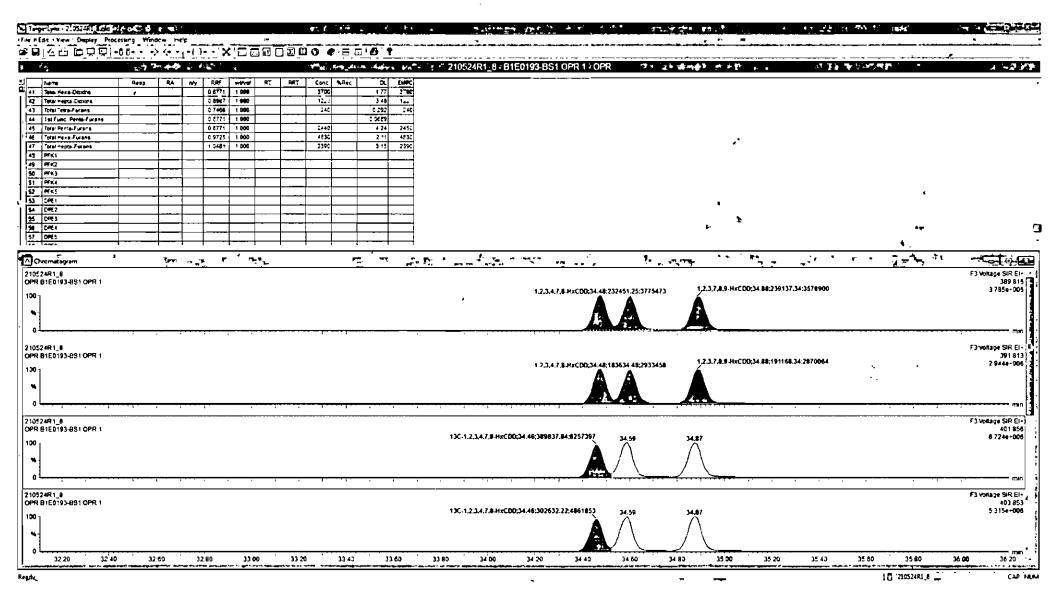
	# Name	Resp	RA	n/y	RRF	wt/vol	Pred RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	6.32e5	0.44	NO	0.661	1.000	37.030	37.07	1.090	1.091	1684.6	84.2	4.20
33	33 13C-1,2,3,4,7,8,9-HpCDF	5.61e5	0.44	NO	0.566	1.000	38.790	38.96	1.141	1.146	1745.4	87.3	4.91
34	34 13C-OCDF	1.09e6	0.89	NO	0.663	1.000	41.553	41.67	1.223	1,226	2887.6	72.2	3.69
35	35 37CI-2,3,7,8-TCDD	1.02e6			2.07	1.000	26.870	26.70	1.035	1.028	834.45	104	0.246
36	36 13C-1,2,3,4-TCDD	1.19e6	0.79	NO	1.00	1.000	26.070	25.97	1.000	1.000	2000.0	100	0.990
37	37 13C-1,2,3,4-TCDF	1.89e6	0.80	NO	1.00	1.000	24.760	24.64	1.000	1.000	2000.0	100	1.13
38	38 13C-1,2,3,4,6,9-HxCDF	1.14e6	0.52	NO	1.00	1.000	34.040	33.99	1.000	1.000	2000.0	100	4.12


2

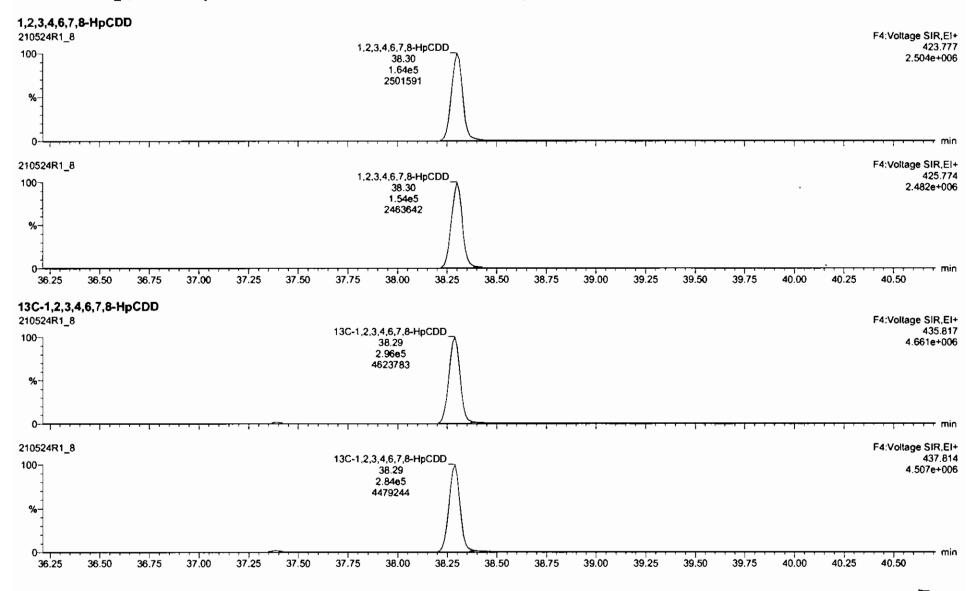
Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld	
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time	


Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

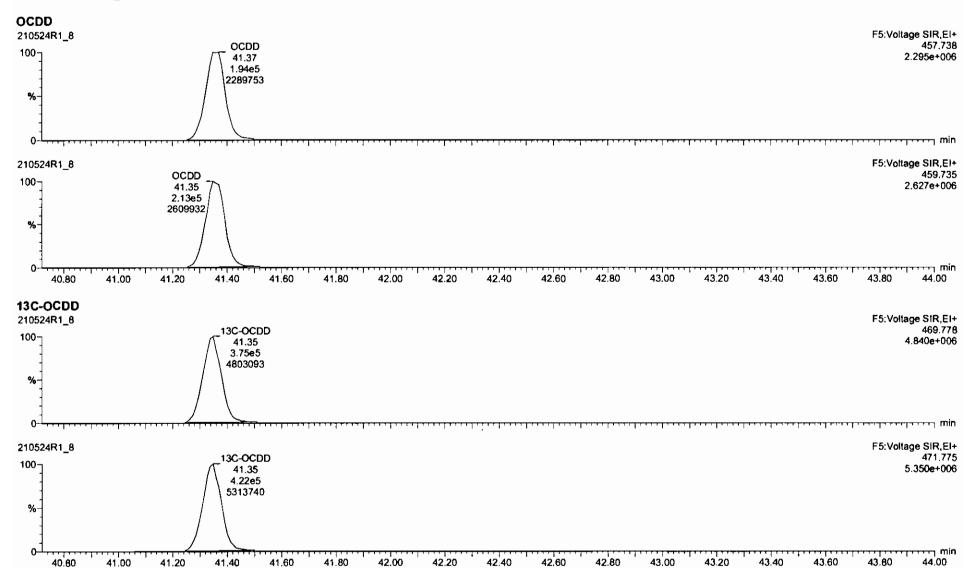

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld	
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time	

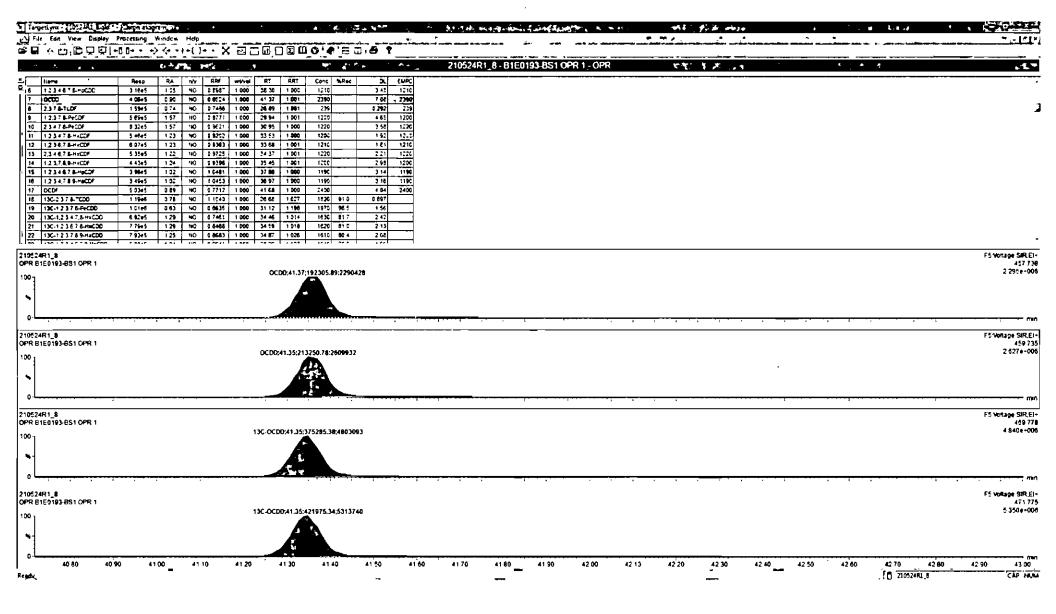


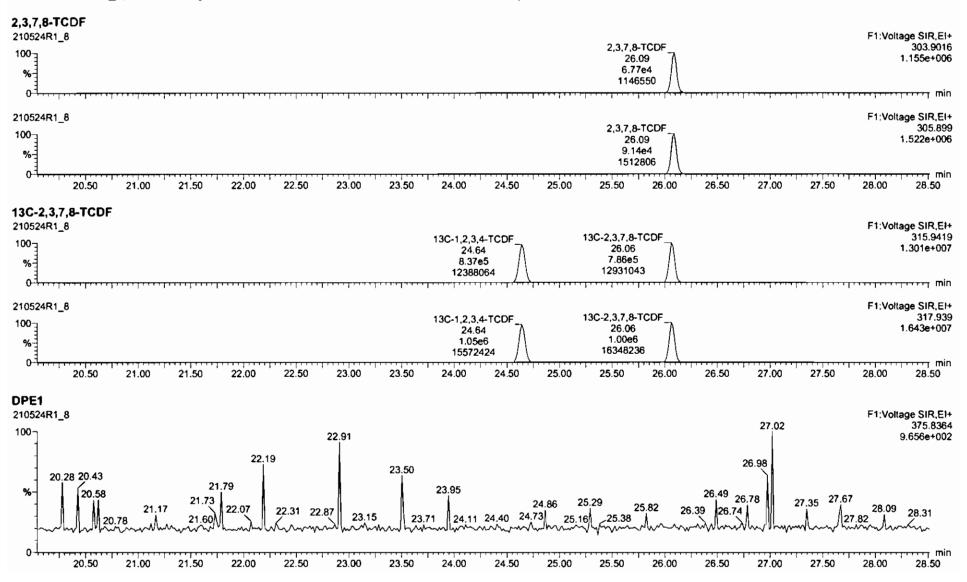
Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld	
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time	



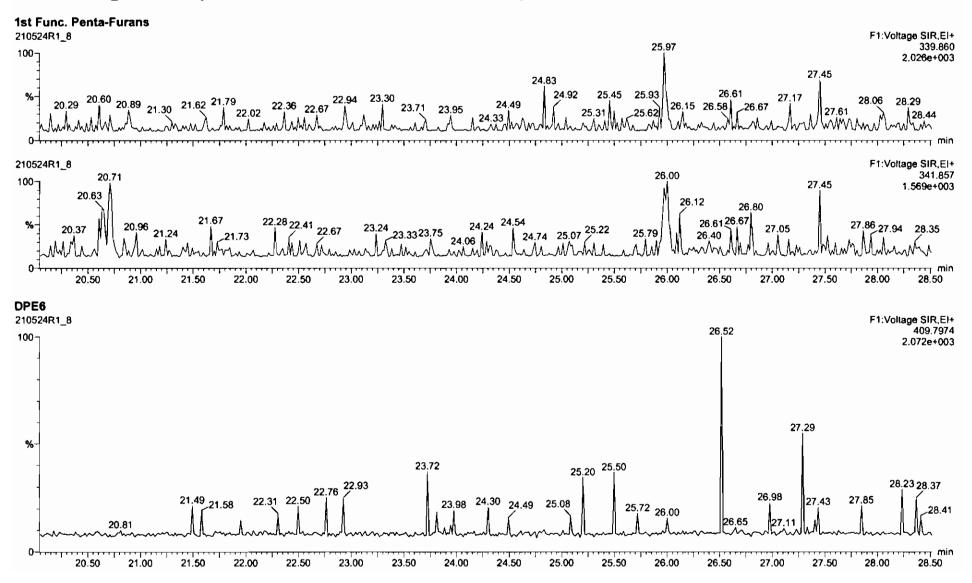
Quantify Sarr Vista Analytica		Page 4 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld	
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time	

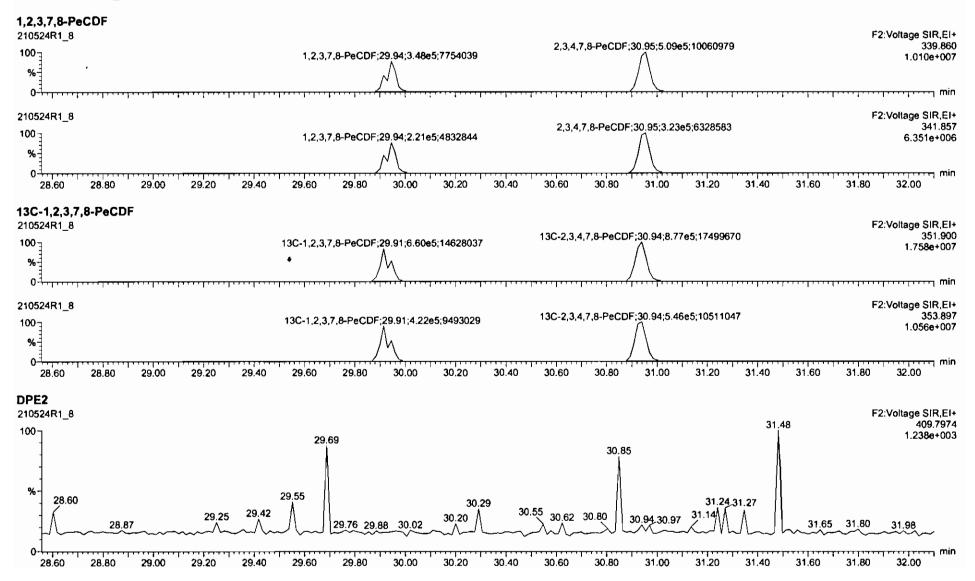



Quantify Sam Vista Analytica		Page 5 of 13					
Dataset:	taset: U:\VG12.PRO\Results\210524R1\210524R1_8.qld						
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time						

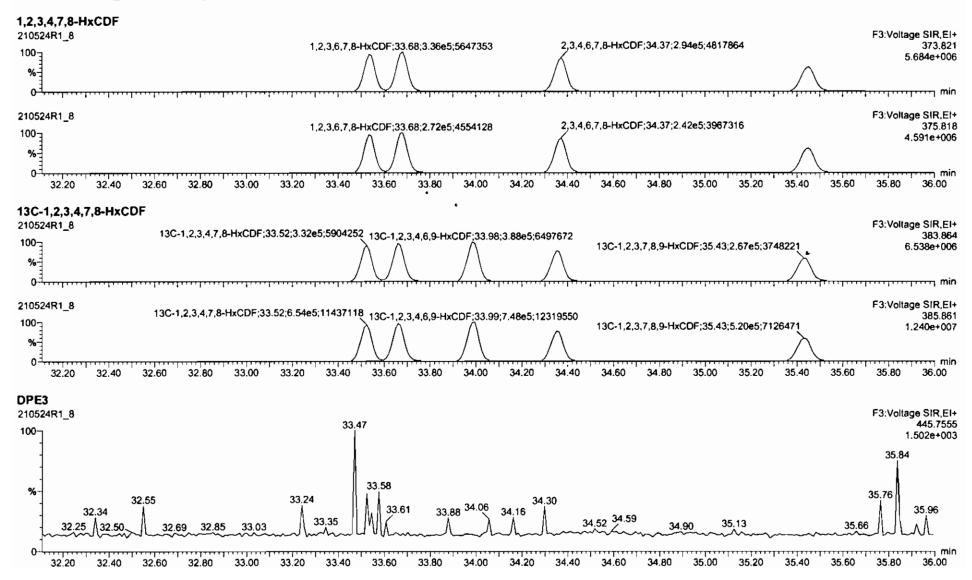

Targettyre - 1052441 Bold	Processing Window Help		المراجع المعروسية والأرشية فيتوليتهم والتنامي	a an ar a star an	i fan de mais a la se	
	+00+ · ·> ·+ · · · · >			······································	······································	
2	(74 1) E. C. P. 14		210524R1_8-B1E0193-BS1 OPR 1			······································
here		wowow RT FUT Conc %Rec	OL EVAC			
E 12,346.7,4-HeCOD			3 48 1210			
7 0000			7 08 2450			
8 2,17 8-TCDF	1 \$9+5 074 NO 07468		292 239			
9 1237 8-PeCOF			65 1200			
10 2.3 4 7 8-PecOF	2 32e5 157 NO 0 9621 5 46e5 123 NO 0 9212		9 58 122C 1 92 123C			
11 123478HaCCF 12 123678HsCDF			1 W2 1230 FEI 1210			
13 234878-HxCDF			21 1220			
14 1237.89-H+COF	443e5 124 40 09396		2 96 1200			
15 1 2,3 4 6 7 B-HeCDF	3 96e5 102 NO 10481		3 14 119C			
18 1234789-HoCOF	7 49#5 1 02 NO 1 0453		3 16 1190			
17 0004	5 02e5 0 89 NO 0 7712		64 Z40C			
18 130-237 6-7000	1 1946 9 76 NO 1 1242		152			
19 13C-1237 8-PeCDD 20 13C-123478-HeCDD			2 42			
21 13C-1 2 3 6 7 8-H COD			2 13			
13C-123789-HICCO			2 08			
	T const toos has been the	and an line line line line				
624R1_8						F4 Voltage SIR
R 81E0193-851 OPR 1						423 2 504e-
01			1,2,3,4.6,7.8-HpCDD;38,30;162061.77;2501748			2:0484
			A			
h						
o <u> </u>						
0524R1_8			·····			F4 Vottage SIR.E
R 61E0193-ES1 OPR 1						425.7
A			1.2.3.4.6.7,8-HpC00:38.30;153716.50;2463642			2 482 - 0
°۱					•	
•						
						<u> </u>
/		•••••••••••••••••••••••••••••••••••••••				
0524R1_8						F4 Voltage SIR
R 81E0193-ES1 OPR 1						4 66 10-1
0 n			13C-1.2,3,4,6,7,8-HpCDD;38,29;296284.81;4623783			
1						
4						
					······································	·······
						C - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
0524R1_8 R 8160193-851 OPR 1						F# voltage SIR, 4371
A DIEVISSIONA I			13C-1.2,3,4,6,7,8-HpCDD;38.29;283734.25;4479244			4 507e+
0 1						
•						
, <u> </u>	D6 50 36 80 37 00	37 20 37 49 37 60	37 80 38 00 38 20 38 40 38 60	38 80 39 00 39 20 39 40	39 60 39 80 40 00 40 20	40 40 60
	10 00 37 00 37 00	3120 3140 3160	37 80 38 00 38 20 38 40 38 60	3880 JVW JVW 3940		CAP N
غدر					210524R1_8	

Quantify Sam Vista Analytica		Page 6 of 13					
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld						
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time						

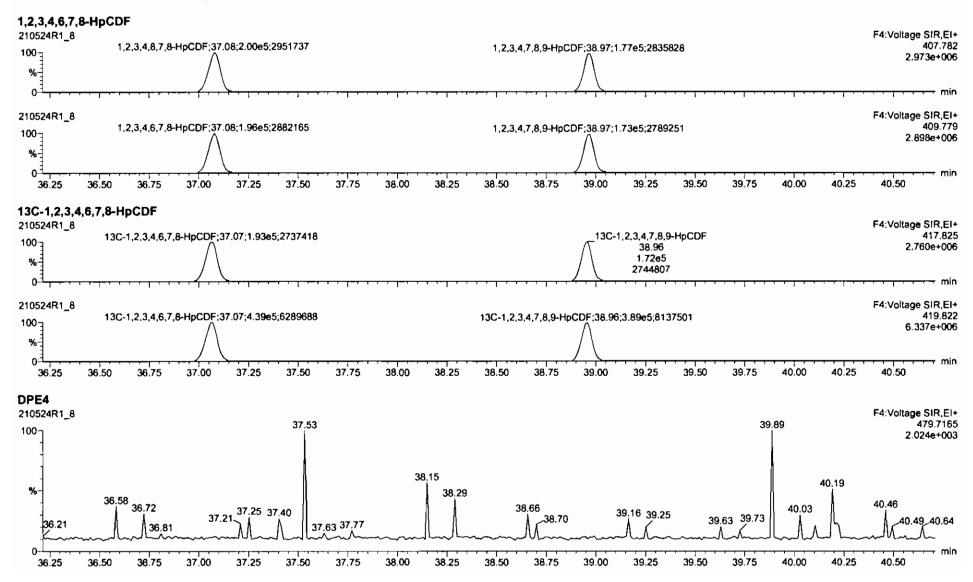



Quantify San Vista Analytica		Page 7 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld	
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time	

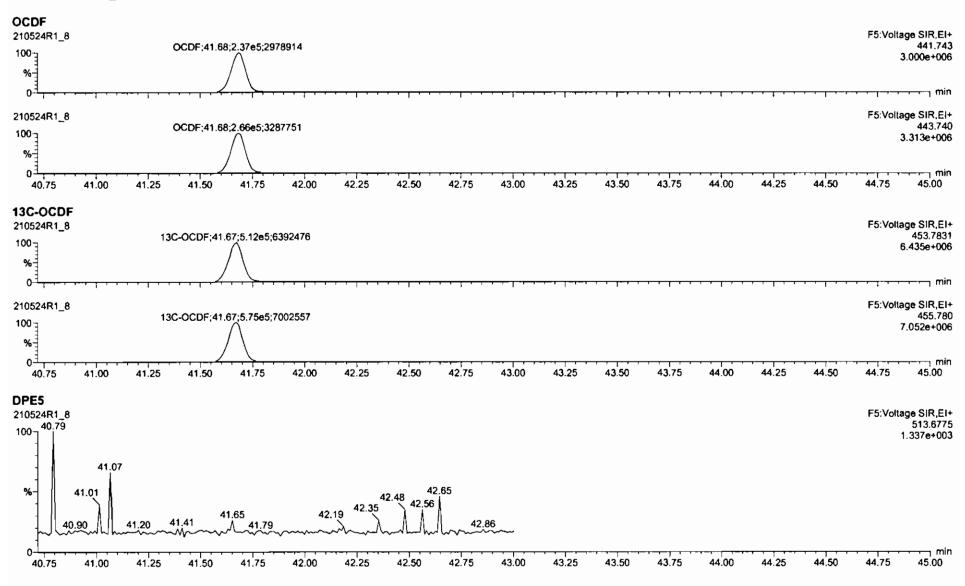
Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld	
Last Attered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 9 of 13					
Dataset:	taset: U:\VG12.PRO\Results\210524R1\210524R1_8.qld						
Last Altered: Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Printed: Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time							

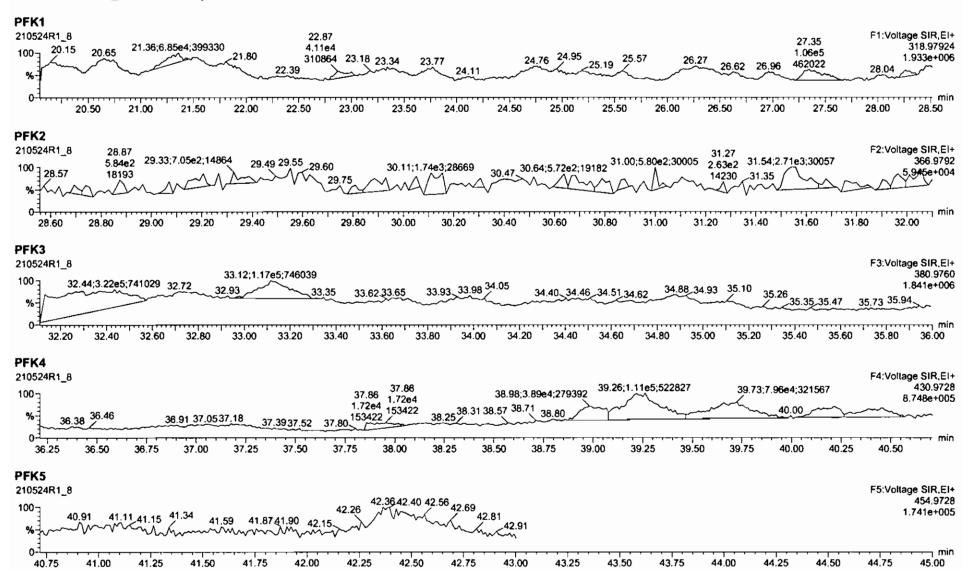


Targe-Lyne - 210224 Load		The All Market on the	and the state of the	and the state of the second	a la la la setterat al ser de	
M fee Eda View Despier	Processing Window Help		···			<u>× ۲۰ ۲۰</u>
b			210524R1_8-B1E0193-BS1 OPR 1 - OPR		a and and an interest	
R 17 00DF		RRT Conc NR+c DL EMPC 1 000 2400 4 04 2400				
18 110-2376-7000		1 327 1820 91 0 0 897				
11 13C-1 237 8-PeCOD	1 01e6 0 63 NO 0 8635 1 000 31 12	1 196 1970 98.5 1 56				
20 13C-123478-HRC00 21 13C-123678-HRC00		1 014 163C B1 7 2 42 1 018 1622 31 0 2 13				
21 13C-1235789-H#C00		1 026 1610 80.4 2 08				
73 13C-1 2 3 4 8 7 8-HpC00	5 80+5 1 04 NO 0 6641 1 000 38 29	1 127 1540 76.9 4.55				1
24 130-0030		1217 2566 62.8 5.03				
25 13C-2378-TCDF 26 13C-12378-PyCDF		1 003 1736 56 6 1 03 1 152 1420 70 8 7 51				
127 13C-2 3 4 7 8-54 CDF		191 158C 34 C 7 57				
28 13C-123478-HxCOF		0 986 1720 85 8 4 68				
28 13C-123678-HxCDF 30 13C-234878-HxCDF		2 990 1760 88 2 3 84 1 011 1750 87 5 4 53				
31 13C-123785-H-COF		1 042 1670 83 7 4 98				
32 13C-1234676-HoCDF	6 32e5 0 44 NO 0 8609 1 880 37 07					
33 13C-1234789-HOCDF	561e5 044 NO 05658 1000 3896	1 146 1750 87.3 4 91				•
210524R1_8						F2*Vollage SIR EI+
OPR 81E0193-851 OPR 1						339 660 7 766a -005
100 1		1.2.3,7,4	-PeCDF(29.94(346546.66)7751500			/ /008-005
		1,2,3,7,8-P+CDF:29.94;346546.66;77	51500			
\ \						
L	• • •	• • •	· · · · ·			
210524R1_8				—		F2*Voltage SIR,EI+
OPR B1E0193-BS1 OPR 1		1237	PeCDF;29.94:220388.88:4833034			341.857 4 834e+005
100		1.2.3.7.8-PetOF:29.94:220385.98:44	▲			
		1.4,4,7,8,8°,97,47,48,84,520,343,54,49			•	
"				•	•	
ه لــــــــــــــــــــــــــــــــــــ						min
					• • • • • • • • • • • • • • • • • • • •	F2 Voltage \$18,E1+
210524R1_8 OPR 81E0193-851 OPR 1						*2 Voltage SPCE1* 3*1 100
100 1		13C-1,2,3,7,8-PeC	DF:29 91;659709.31:14628037			1 4534-007
			13C-1,2.3,7,8-PeC0F;29.91;659709,31;14628037			
n						
			4.4			
• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·	maa
210524R1_8						F2 Voltage SIR EI+
OPR 8160193-851 OPR 1						353 897
100 1		13C-1.2,3,7,8-Pe	CDF;29.91.421122.31;9491953			9 4954-005
			13C-1.2,3,7,8-PeC0F(29.91)421122.31;8491953			
N						
29 30 29 35 29 4	0 29 45 29 50 29 55 29 60 29 65	29 70 29 75 29 60 29 65	29 90 29 95 30 00 30 05 30 10 30 15 3	0 20 30 25 30 30 30 35 30 40 3	0 45 30 50 30 55 30 60 30 65 30	70 3075
Read					. D 21052481.8	CAP HUM


Quantify Sam Vista Analytica		Page 10 of 13					
Dataset:	Dataset: U:\VG12.PRO\Results\210524R1\210524R1_8.qld						
Last Altered: Printed:							

Vista Analytical Laboratory		lassLynx 4.1 SCN815	Page 11 of 13				
Dataset:	ataset: U:\VG12.PRO\Results\210524R1\210524R1_8.qld						
Last Altered: Printed:		2021 09:17:11 Pacific Daylight Time 2021 09:17:23 Pacific Daylight Time					

Quantify Sam Vista Analytica	• •	Page 12 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_8.qld	
Last Altered: Printed:	Tuesday, May 25, 2021 09:17:11 Pacific Daylight Time Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time	



Page 13 of 13

Dataset: U:\VG12.PRO\Results\210524R1\210524R1_8.qld

Last Altered:Tuesday, May 25, 2021 09:17:11 Pacific Daylight TimePrinted:Tuesday, May 25, 2021 09:17:23 Pacific Daylight Time

Name: 210524R1_8, Date: 24-May-2021, Time: 17:23:08, ID: B1E0193-BS1 OPR 1, Description: OPR

.

Quantify Sam Vista Analytica	ple Summary Report I Laboratory	MassLynx 4.1 SCN815
Dataset:	U:\VG12.PRO\Results\2106	07R4\210607R4_10.qld
Last Altered: Printed:		:52:14 Pacific Daylight Time :53:45 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Name: 210607R4_10, Date: 07-Jun-2021, Time: 20:43:11, ID: 2105037-01 SC-FB-2105030940 1.00168, Description: SC-FB-2105030940

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.929	1.002 -	26.698		1.001				0.392	
2	2 1,2,3,7,8-PeCDD			NO	0.826	1.002	31.136		1.001				0.692	
3	3 1,2,3,4,7,8-HxCDD			NO	0.972	1.002	34.477		1.001				0.750	
4	4 1,2,3,6,7,8-HxCDD			NO	0.877	1.002	34.602		1.001				0.846	
5	5 1,2,3,7,8,9-HxCDD			NO	0.874	1.002	34.884		1.000				0.851	
6	6 1,2,3,4,6,7,8-HpCDD			NO	0.899	1.002	38.268		1.000				0.771	
7	7 OCDD			NO	0.852	1.002	41.419		1.000				2.89	
8	8 2,3,7,8-TCDF			NO	0.747	1.002	26.048		1.000				0.161	
9	9 1,2,3,7,8-PeCDF			NO	0.877	1.002	29.917		1.000				0.501	
10	10 2,3,4,7,8-PeCDF			NO	0.962	1.002	30.946		1.001				0.436	
11	11 1,2,3,4,7,8-HxCDF			NO	0.920	1.002	33.523		1.000				0.313	
12	12 1,2,3,6,7,8-HxCDF			NO	0.936	1.002	33.680		1.001				0.276	
13	13 2,3,4,6,7,8-HxCDF			NO	0.973	1.002	34.372		1.001				0.332	
14	14 1,2,3,7,8,9-HxCDF			NO	0.940	1.002	35.440		1.000				0.442	
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.05	1.002	37.077		1.000				0.288	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.05	1.002	38.939		1.000				0.320	
17	17 OCDF			NO	0.771	1.002	41.744		1.000				0.639	
18	18 13C-2,3,7,8-TCDD	2.98e5	0.79	NO	1.10	1.002	26.640	26.67	1.027	1.028	1752.0	87.7	1.83	
19	19 13C-1,2,3,7,8-PeCDD	2.21e5	0.62	NO	0.864	1.002	31.016	31.10	1.196	1.199	1664.4	83.4	3.42	
20	20 13C-1,2,3,4,7,8-HxCDD	1.46e5	1.30	NO	0.746	1.002	34.454	34.46	1.014	1.014	1514.7	75.9	4.67	
21	21 13C-1,2,3,6,7,8-HxCDD	1.58e5	1.27	NO	0.847	1.002	34.573	34.58	1.017	1.018	1449.3	72.6	4.11	
22	22 13C-1,2,3,7,8,9-HxCDD	1.63e5	1.29	NO	0.868	1.002	34.872	34.87	1.026	1.026	1458.8	73.1	4.01	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.17e5	1.07	NO	0.664	1.002	38.220	38.26	1.125	1.126	1371.9	68.7	5.40	
24	24 13C-OCDD	1.60e5	0.87	NO	0.561	1.002	41.166	41.41	1.211	1.219	2214.5	55.5	6.00	
25	25 13C-2,3,7,8-TCDF	4.56e5	0.78	NO	1.09	1.002	26.030	26.05	1.003	1.004	1758.6	88.1	2.25	
26	26 13C-1,2,3,7,8-PeCDF	3.14e5	1.61	NO	0.809	1.002	29.748	29.91	1.147	1.153	1636.7	82.0	4.74	
27	27 13C-2,3,4,7,8-PeCDF	3.17e5	1.61	NO	0.803	1.002	30.708	30.92	1.184	1.192	1666.4	83.5	4.77	
28	28 13C-1,2,3,4,7,8-HxCDF	2.05e5	0.50	NO	1.01	1.002	33.526	33.51	0.987	0.986	1576.7	79.0	5.72	
29	29 13C-1,2,3,6,7,8-HxCDF	2.15e5	0.49	NO	1.07	1.002	33.655	33.66	0.990	0.990	1553.6	77.8	5.39	
30	30 13C-2,3,4,6,7,8-HxCDF	1.90e5	0.50	NO	0.910	1.002	34.345	34.35	1.011	1.011	1621.2	81.2	6.36	
31	31 13C-1,2,3,7,8,9-HxCDF	1.62e5	0.49	NO	0.828	1.002	35.423	35.43	1.042	1.042	1513.0	75.8	6.99	

+1N-05/08/2

0706/09/2021

Quantify Sample Summary Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

Page 2 of 2

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Last Altered:	Tuesday, June 08, 2021 13:52:14 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 13:53:45 Pacific Daylight Time

22.00	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.22e5	0.41	NO	0.661	1.002	37.030	37.06	1.090	1.090	1427.8	71.5	5.25	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.05e5	0.42	NO	0.566	1.002	38.790	38.93	1.141	1.145	1446.1	72.4	6.14	
34	34 13C-OCDF	2.04e5	0.88	NO	0.663	1.002	41.553	41.74	1.223	1.228	2391.9	59.9	4.84	
35	35 37CI-2,3,7,8-TCDD	2.60e5			2.07	1.002	26.840	26.68	1.035	1.028	818.77	103	0.432	
36	36 13C-1,2,3,4-TCDD	3.07e5	0.77	NO	1.00	1.002	26.070	25.94	1.000	1.000	1996.6	100	2.02	
37	37 13C-1,2,3,4-TCDF	4.73e5	0.79	NO	1.00	1.002	24.760	24.60	1.000	1.000	1996.6	100	2.46	
38	38 13C-1,2,3,4,6,9-HxCDF	2.57e5	0.51	NO	1.00	1.002	34.040	33.99	1.000	1.000	1996.6	100	5.79	
39	39 Total Tetra-Dioxins				0.929	1.002	24.620		0.000				0.209	
40	40 Total Penta-Dioxins				0.826	1.002	29.960		0.000		0.00000		0.213	0.779
41	41 Total Hexa-Dioxins				0.877	1.002	33.635		0.000				0.491	
42	42 Total Hepta-Dioxins				0.899	1.002	37.640		0.000				0.543	
43	43 Total Tetra-Furans				0.747	1.002	23.610		0.000				0.0835	
44	44 1st Func. Penta-Furans				0.877	1.002	27.620		0.000				0.0576	
45	45 Total Penta-Furans				0.877	1.002	29.275		0.000				0.160	
46	46 Total Hexa-Furans				0.973	1.002	33.555		0.000				0.165	
47	47 Total Hepta-Furans				1.05	1.002	37.835		0.000				0.137	

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Last Altered:Tuesday, June 08, 2021 13:52:14 Pacific Daylight TimePrinted:Tuesday, June 08, 2021 13:53:45 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Name: 210607R4_10, Date: 07-Jun-2021, Time: 20:43:11, ID: 2105037-01 SC-FB-2105030940 1.00168, Description: SC-FB-2105030940

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Penta-Dioxins

N	ame	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 Te	otal Penta-Dioxins	29.18	8.310e2	3.553e3	2.754e1	1.339e2	0.21	YES	0.000e0	0.00000	0.77930	0.213

Hexa-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Hepta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Tetra-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1									

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Last Altered: Tuesday, June 08, 2021 13:52:14 Pacific Daylight Time Printed: Tuesday, June 08, 2021 13:53:45 Pacific Daylight Time

Name: 210607R4_10, Date: 07-Jun-2021, Time: 20:43:11, ID: 2105037-01 SC-FB-2105030940 1.00168, Description: SC-FB-2105030940

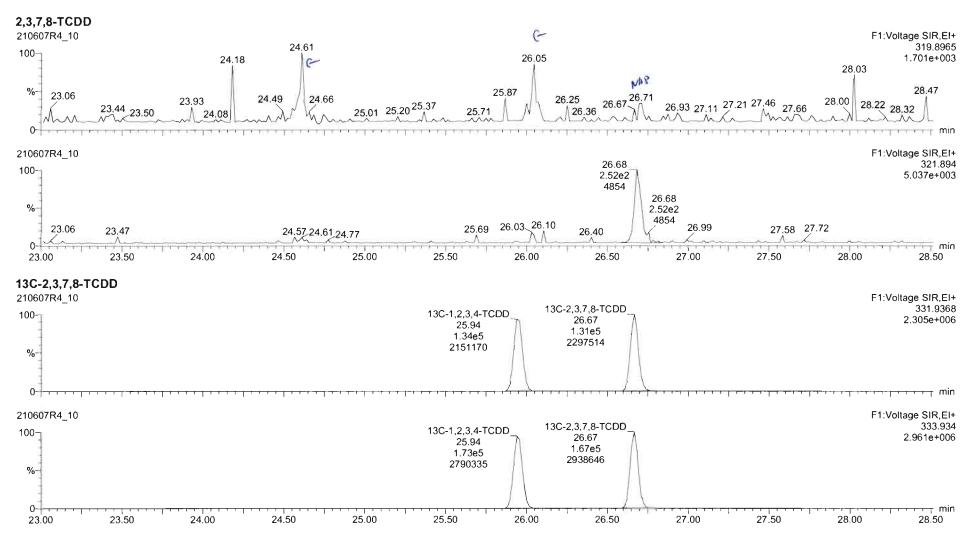
Penta-Furans

Name RT m1 Height m2 Height m1 Resp m2 Resp RA n/y Resp Conc. EMPC DL

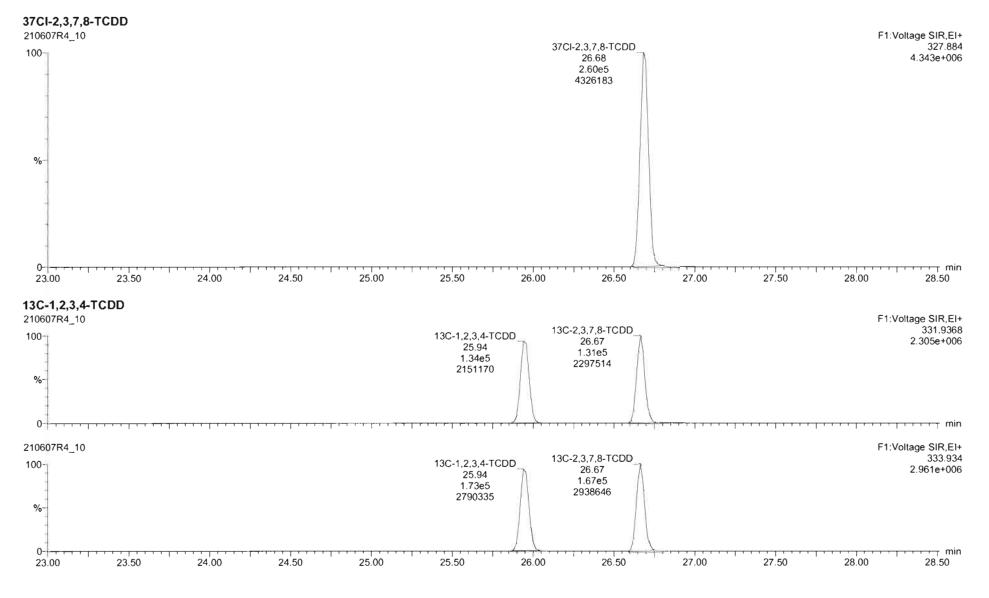
Hexa-Furans

Name RT m1 Height m2 Height m1 Resp m2 Resp RA n/y Resp Conc. EMPC DL

Hepta-Furans

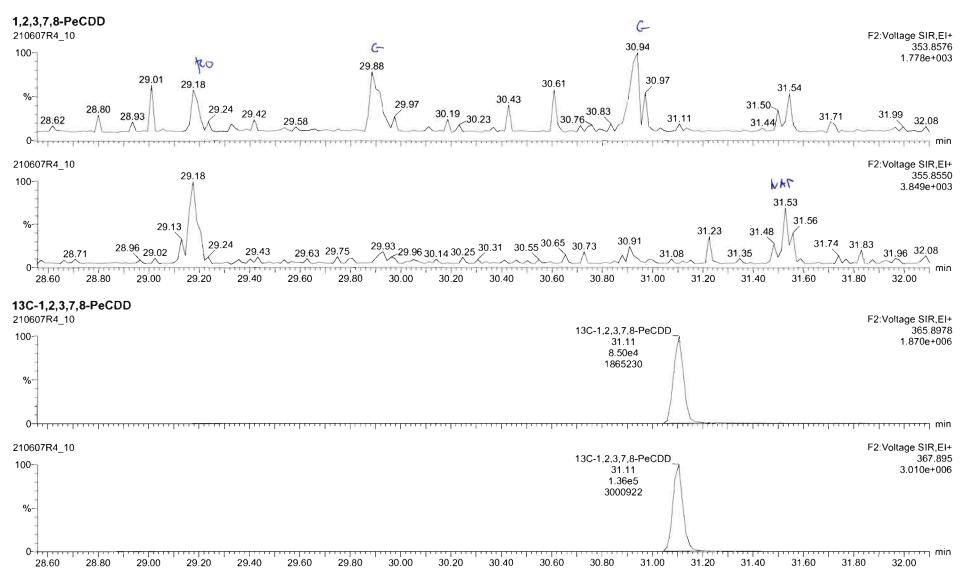

Name RT m1 Height m2 Height m1 Resp m2 Resp RA n/y Resp Conc. EMPC DL

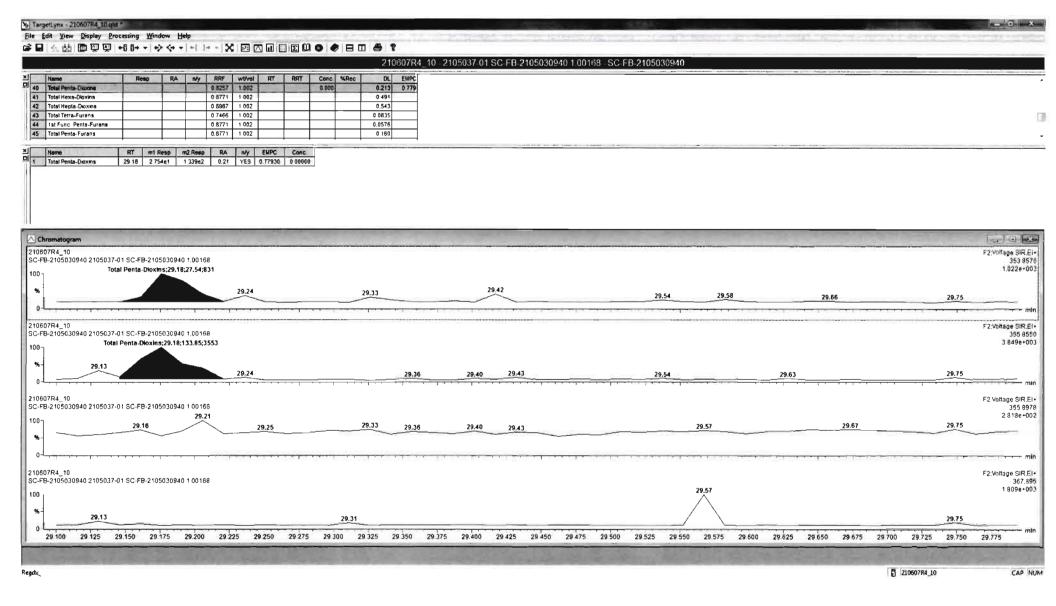
Quantify Sample Report	MassLynx 4.1 SCN815	
Vista Analytical Laboratory		


Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time Last Altered: Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time Printed:

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

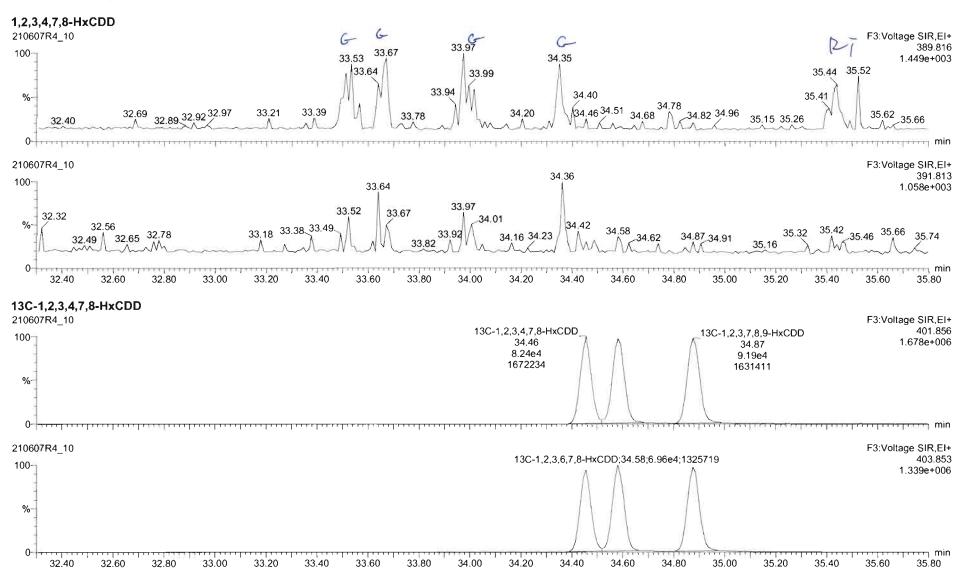

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_10.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time	



Page 3 of 13

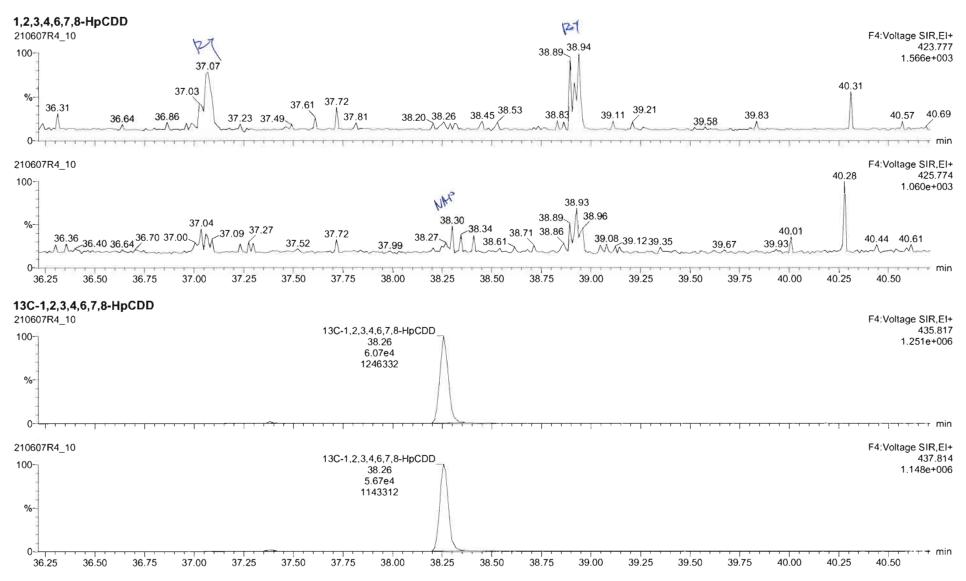
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

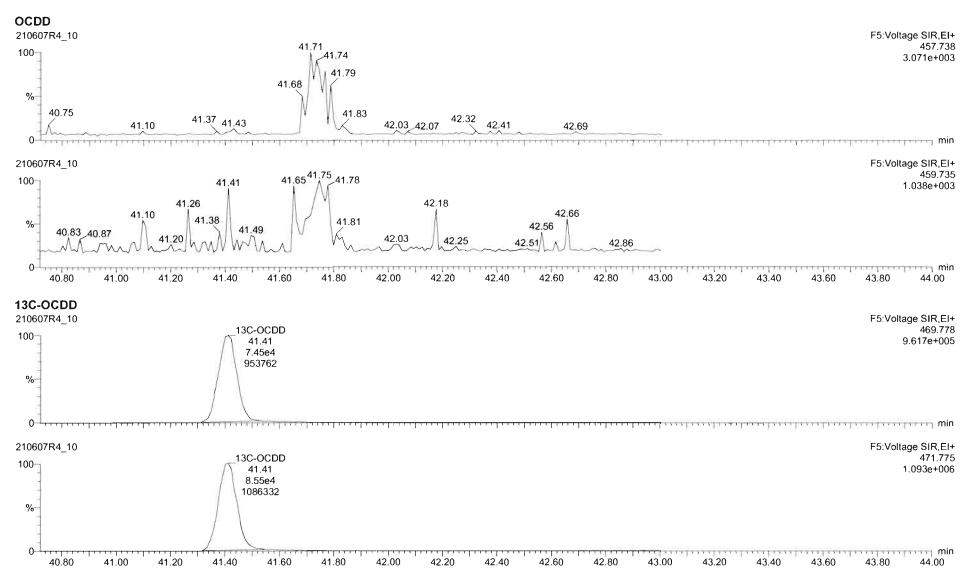
Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

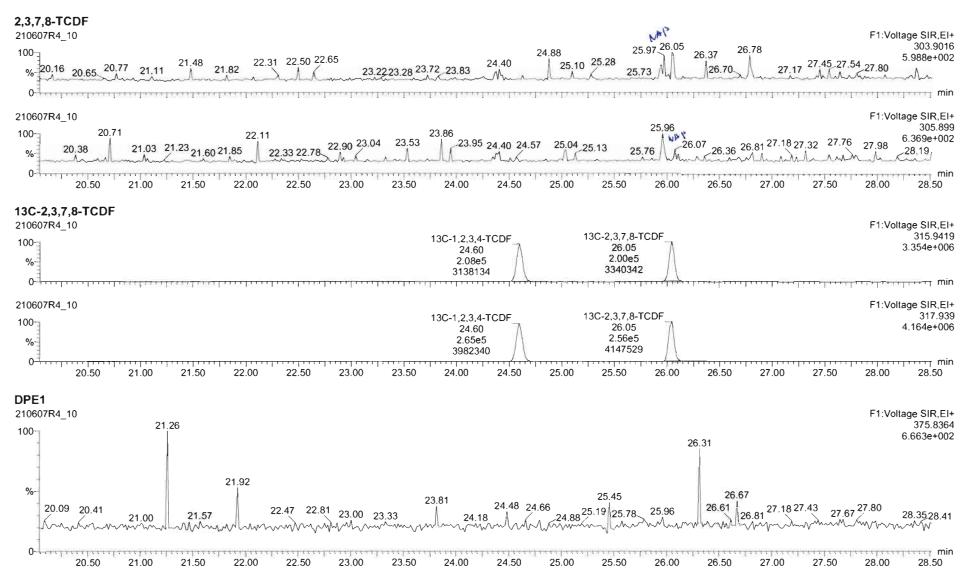
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld


Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time


Page 5 of 13

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

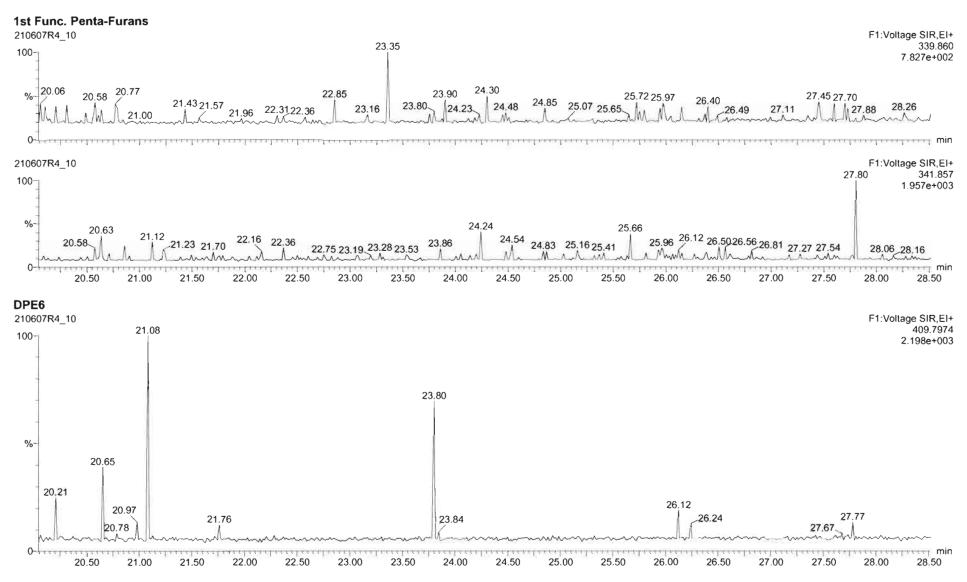
Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time



Quantify San Vista Analytica		Page 6 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_10.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time	

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

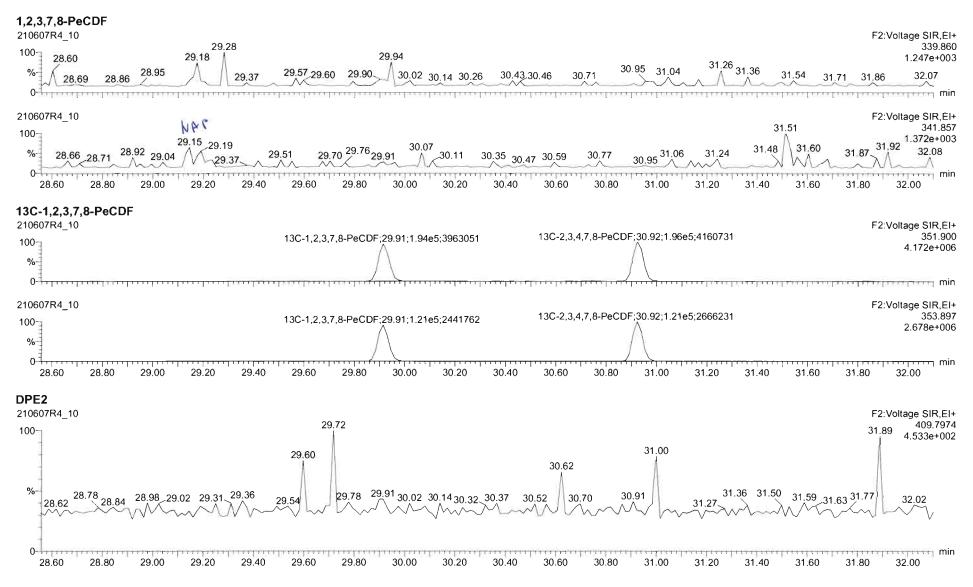
Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1 SCN815

Vista Analytical Laboratory

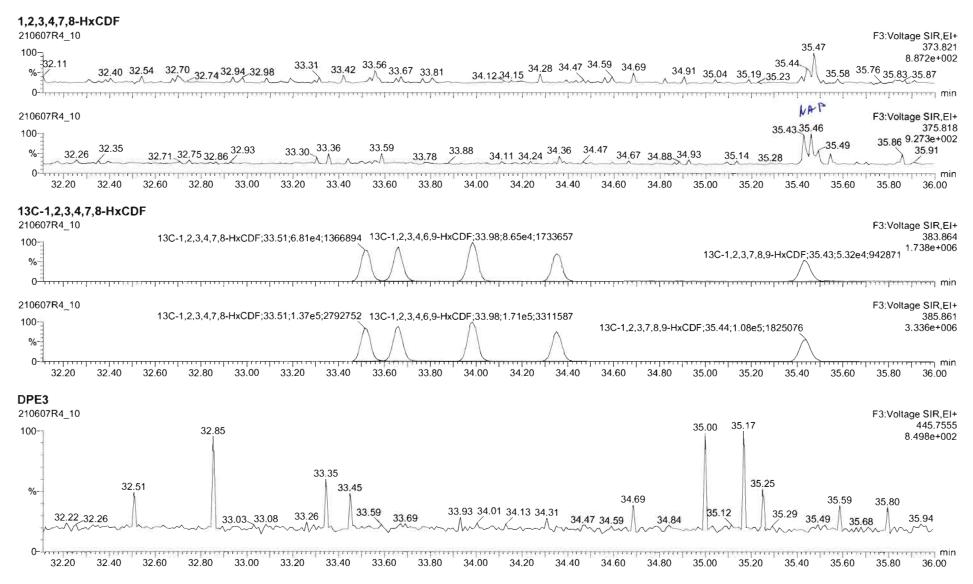
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld


Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time

Page 9 of 13

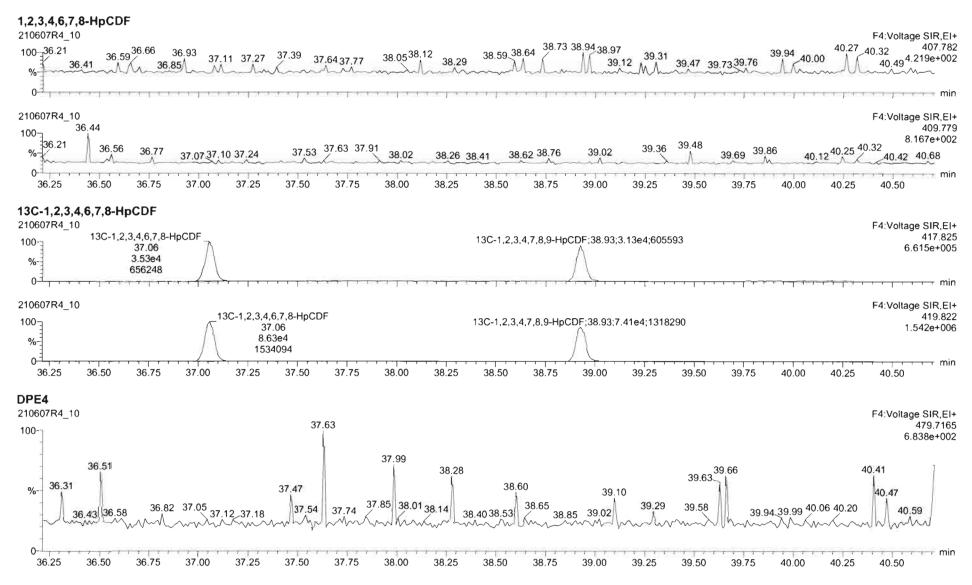
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time

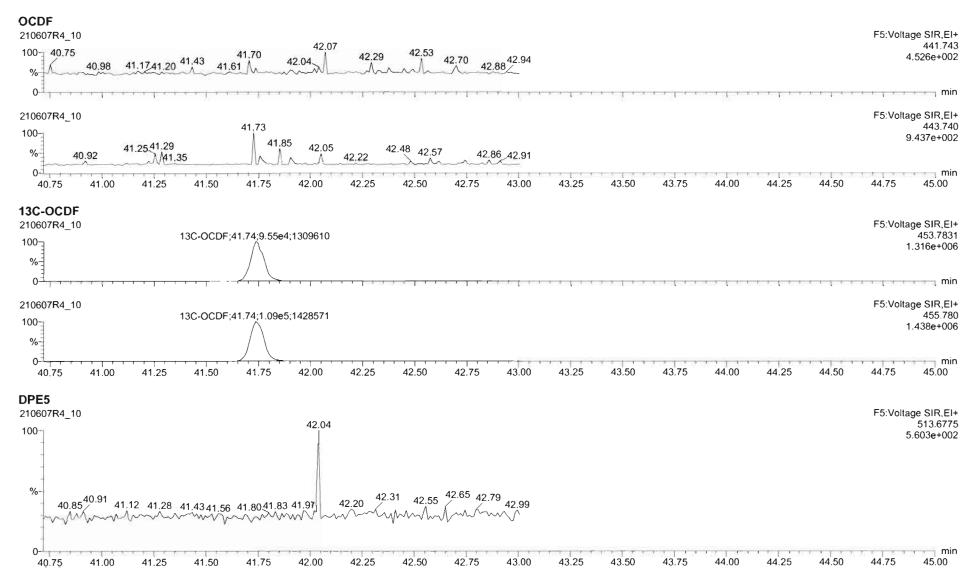


Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Page 10 of 13

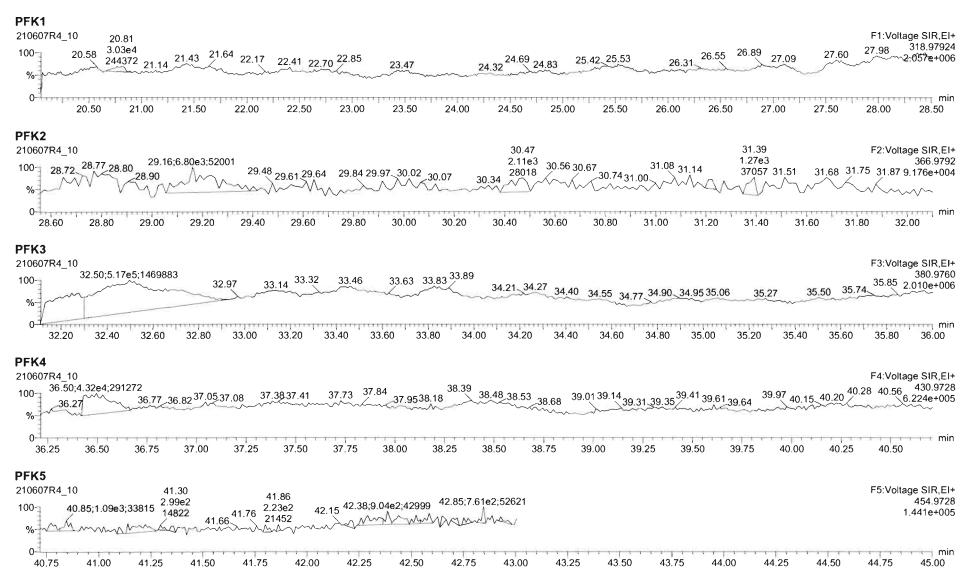

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time



Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time



Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_10.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time	

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_10.qld

Last Altered:	Tuesday, June 08, 2021 11:36:32 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:36:46 Pacific Daylight Time

Quantify Sam Vista Analytica	al Laboratory MassLynx 4.1 SCN815	Page 1 of 2
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_11.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 14:12:27 Pacific Daylight Time Tuesday, June 08, 2021 14:26:23 Pacific Daylight Time	41N06608/21
Mothod: U:W	G12 PRO\MethDR\1613rrt-04-27-21 mdb 27 Apr 2021 17:33:38	C10610912021

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.929	1.024 🥌	26.698		1.001				0.370	
2	2 1,2,3,7,8-PeCDD			NO	0.826	1.024	31.136		1.001				0.547	
3	3 1,2,3,4,7,8-HxCDD			NO	0.972	1.024	34.508		1.001				0.633	
4	4 1,2,3,6,7,8-HxCDD			NO	0.877	1.024	34.634		1.001				0.670	
5	5 1,2,3,7,8,9-HxCDD			NO	0.874	1.024	34.905		1.000				0.645	
6	6 1,2,3,4,6,7,8-HpCDD			NO	0.899	1.024	38.290		1.000				0.681	
7	7 OCDD			NO	0.852	1.024	41.388		1.000				1.25	
8	8 2,3,7,8-TCDF			NO	0.747	1.024	26.048		1.000				0.297	
9	9 1,2,3,7,8-PeCDF			NO	0.877	1.024	29.932		1.000				0.496	
10	10 2,3,4,7,8-PeCDF			NO	0.962	1.024	30.961		1.001				0.426	
11	11 1,2,3,4,7,8-HxCDF			NO	0.920	1.024	33.555		1.000				0.169	
12	12 1,2,3,6,7,8-HxCDF			NO	0.936	1.024	33.701		1.001				0.150	
13	13 2,3,4,6,7,8-HxCDF			NO	0.973	1.024	34.403		1.001				0.175	
14	14 1,2,3,7,8,9-HxCDF	4.42e1	1.47	YES	0.940	1.024	35.461	35.47	1.000	1.001	0.56842		0.145	0.515
15	15 1,2,3,4,6,7,8-HpCDF			NO	1.05	1.024	37.098		1.000				0.351	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.05	1.024	38.950		1.000				0.361	
17	17 OCDF			NO	0.771	1.024	41.712		1.000				0.873	
18	18 13C-2,3,7,8-TCDD	3.15e5	0.78	NO	1.10	1.024	26.640	26.67	1.027	1.028	1850.9	94.8	1.89	
19	19 13C-1,2,3,7,8-PeCDD	2.23e5	0.62	NO	0.864	1.024	31.016	31.10	1.196	1.199	1681.0	86.1	4.12	
20	20 13C-1,2,3,4,7,8-HxCDD	1.45e5	1.30	NO	0.746	1.024	34.475	34.49	1.014	1.014	1590.6	81.5	5.80	
21	21 13C-1,2,3,6,7,8-HxCDD	1.58e5	1.29	NO	0.847	1.024	34.594	34.61	1.017	1.018	1529.0	78.3	5.11	
22	22 13C-1,2,3,7,8,9-HxCDD	1.62e5	1.29	NO	0.868	1.024	34.894	34.90	1.026	1.026	1525.6	78.1	4.98	
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.16e5	1.05	NO	0.664	1.024	38.243	38.28	1.125	1.126	1428.0	73.1	6.15	
24	24 13C-OCDD	1.66e5	0.90	NO	0.561	1.024	41.191	41.38	1.211	1.217	2431.9	62.3	6.64	
25	25 13C-2,3,7,8-TCDF	4.90e5	0.77	NO	1.09	1.024	26.030	26.05	1.003	1.004	1871.1	95.8	1.98	
26	26 13C-1,2,3,7,8-PeCDF	3.30e5	1.61	NO	0.809	1.024	29.748	29.93	1.147	1.154	1703.0	87.2	7.44	
27	27 13C-2,3,4,7,8-PeCDF	3.10e5	1.63	NO	0.803	1.024	30.708	30.94	1.184	1.193	1610.9	82.5	7.50	
28	28 13C-1,2,3,4,7,8-HxCDF	2.03e5	0.49	NO	1.01	1.024	33.547	33.54	0.987	0.986	1643.3	84.2	7.38	
29	29 13C-1,2,3,6,7,8-HxCDF	2.21e5	0.51	NO	1.07	1.024	33.676	33.68	0.990	0.990	1690.3	86.6	6.96	
30	30 13C-2,3,4,6,7,8-HxCDF	1.89e5	0.49	NO	0.910	1.024	34.366	34.38	1.011	1.011	1701.8	87.2	8.21	
31	31 13C-1,2,3,7,8,9-HxCDF	1.62e5	0.50	NO	0.828	1.024	35.444	35.45	1.042	1.042	1599.5	81.9	9.01	

Quantify Sam Vista Analytica	ple Summary Report I Laboratory	MassLynx 4.1 SCN815	
Dataset:	U:\VG12.PRO\Results\210)607R4\210607R4_11.qld	

Last Altered:	Tuesday, June 08, 2021 14:12:27 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 14:26:23 Pacific Daylight Time

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.22e5	0.41	NO	0.661	1.024	37.053	37.08	1.090	1.090	1518.1	77.8	5.99	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.08e5	0.42	NO	0.566	1.024	38.814	38.94	1.141	1.145	1565.1	80.2	7.00	
34	34 13C-OCDF	2.18e5	0.88	NO	0.663	1.024	41.579	41.70	1.223	1.226	2697.3	69.1	5.94	
35	35 37CI-2,3,7,8-TCDD	2.70e5			2.07	1.024	26.840	26.68	1.035	1.028	849.39	109	0.325	
36	36 13C-1,2,3,4-TCDD	3.01e5	0.77	NO	1.00	1.024	26.070	25.94	1.000	1.000	1952.5	100	2.09	[
37	37 13C-1,2,3,4-TCDF	4.68e5	0.79	NO	1.00	1.024	24.760	24.60	1.000	1.000	1952.5	100	2.16	
38	38 13C-1,2,3,4,6,9-HxCDF	2.38e5	0.48	NO	1.00	1.024	34.040	34.01	1.000	1.000	1952.5	100	7.47	
39	39 Total Tetra-Dioxins				0.929	1.024	24.620		0.000				0.190	
40	40 Total Penta-Dioxins				0.826	1.024	29.960		0.000		0.00000		0.181	0.495
41	41 Total Hexa-Dioxins				0.877	1.024	33.635		0.000				0.514	
42	42 Total Hepta-Dioxins				0.899	1.024	37.640		0.000				0.408	
43	43 Total Tetra-Furans				0.747	1.024	23.610		0.000				0.193	
44	44 1st Func. Penta-Furans				0.877	1.024	27.620		0.000				0.118	
45	45 Total Penta-Furans				0.877	1.024	29.275		0.000				0.201	
46	46 Total Hexa-Furans				0.973	1.024	33.555		0.000		0.00000		0.108	0.515
47	47 Total Hepta-Furans				1.05	1.024	37.835		0.000				0.172	

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

Last Altered:	Tuesday, June 08, 2021 14:12:27 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 14:26:23 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDlOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Name: 210607R4_11, Date: 07-Jun-2021, Time: 21:27:26, ID: 2105037-02 SC-RB-2105030901 1.02432, Description: SC-RB-2105030901

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Penta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	31.54	4.520e2	2.445e3	1.809e1	1.236e2	0.15	YES	0.000e0	0.00000	0.49513	0.181

Hexa-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Hepta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL

Tetra-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Quantify Totals Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

Last Altered:	Tuesday, June 08, 2021 14:12:27 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 14:26:23 Pacific Daylight Time

Name: 210607R4_11, Date: 07-Jun-2021, Time: 21:27:26, ID: 2105037-02 SC-RB-2105030901 1.02432, Description: SC-RB-2105030901

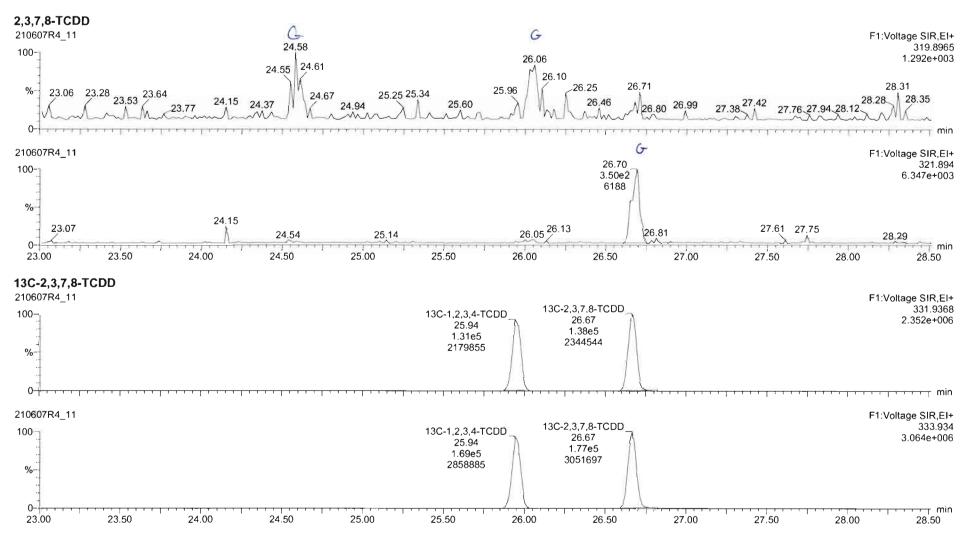
Penta-Furans

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

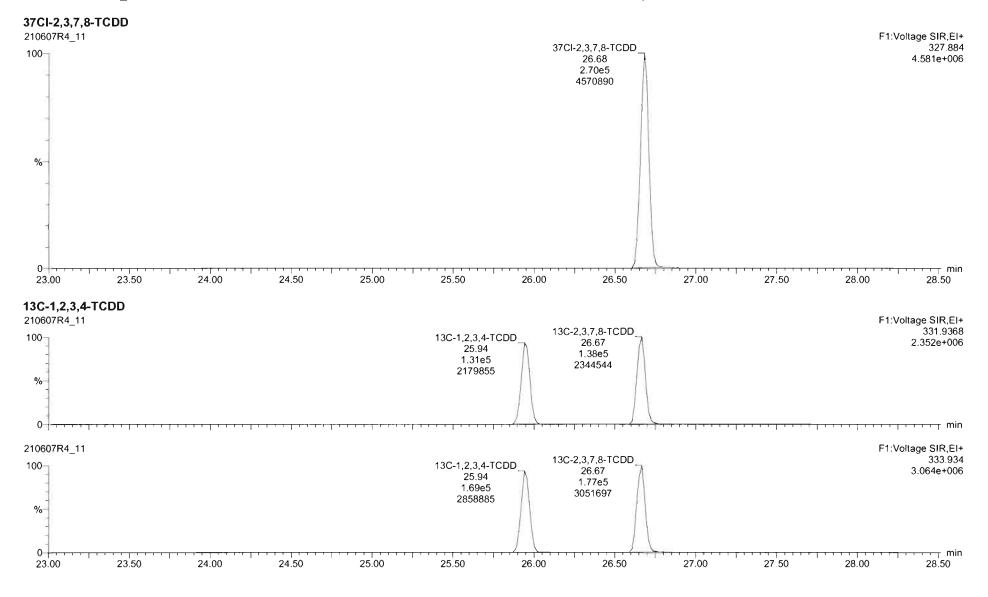
Hexa-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,7,8,9-HxCDF	35.47	6.590e2	3.980e2	2.636e1	1.788e1	1.47	YES	4.423e1	0.00000	0.51457	0.145

Hepta-Furans

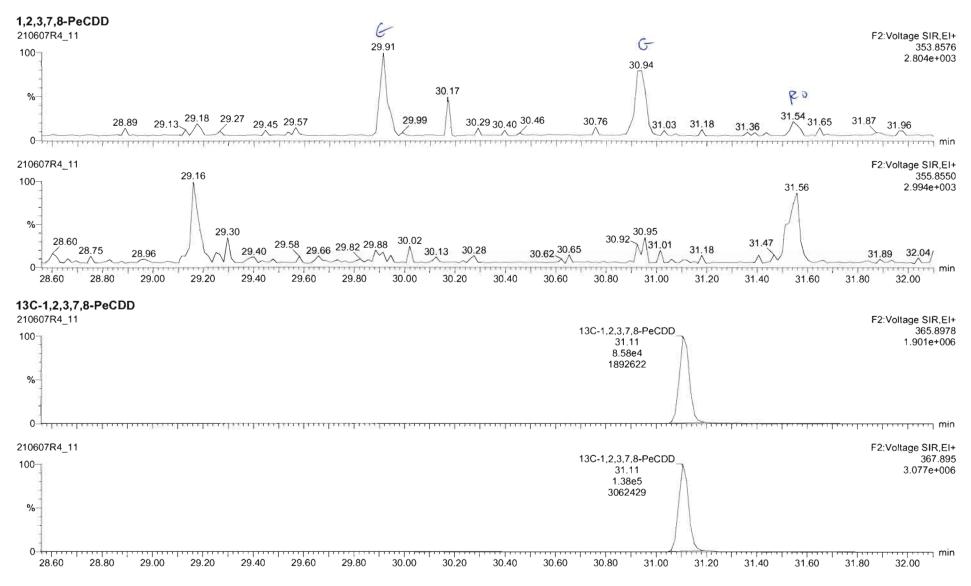

Name	RT	m1 Height m2 Height	m1 Resp m2	2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

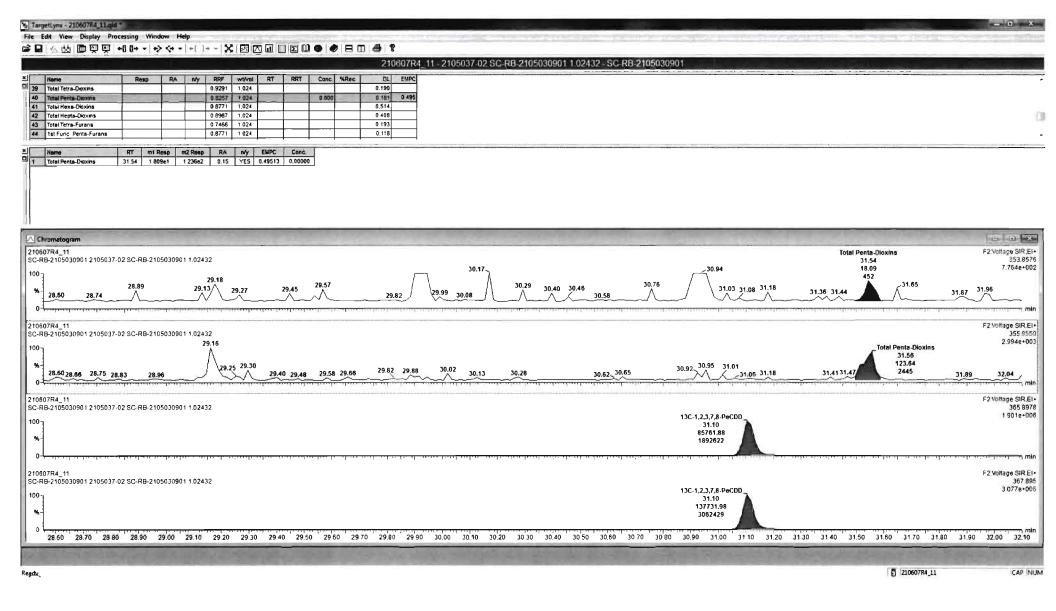
Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	


Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

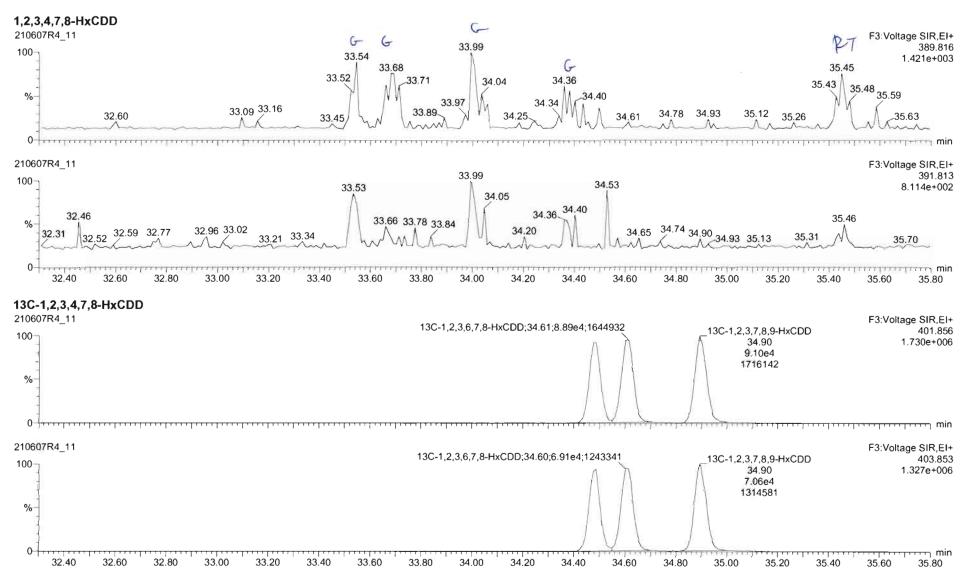

Quantify San Vista Analytica		Page 2 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_11.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time	

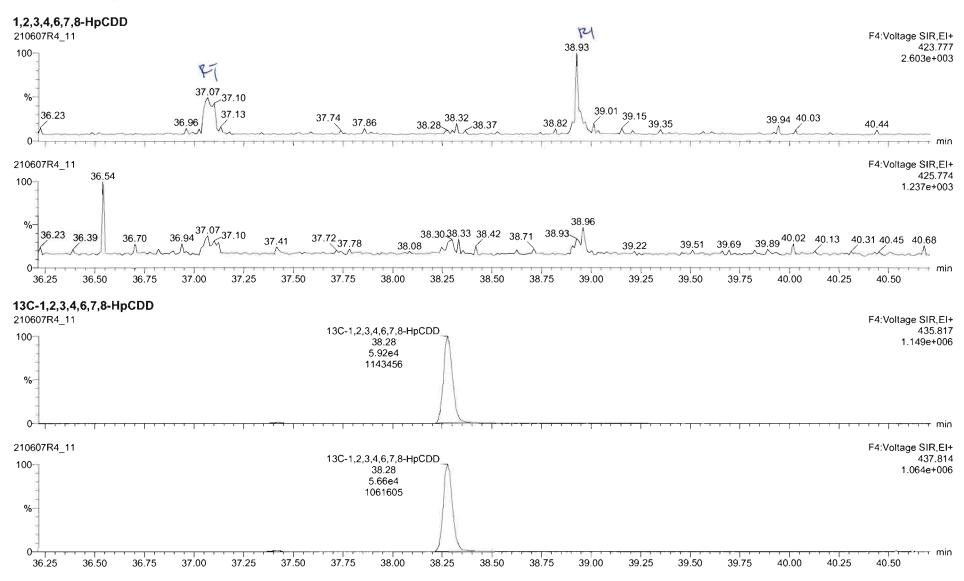


Page 3 of 13

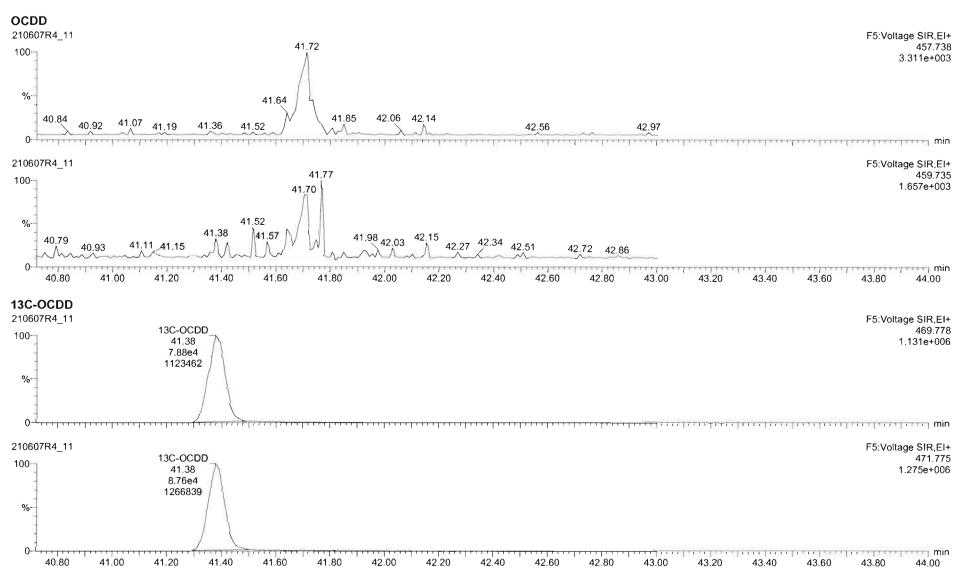
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time

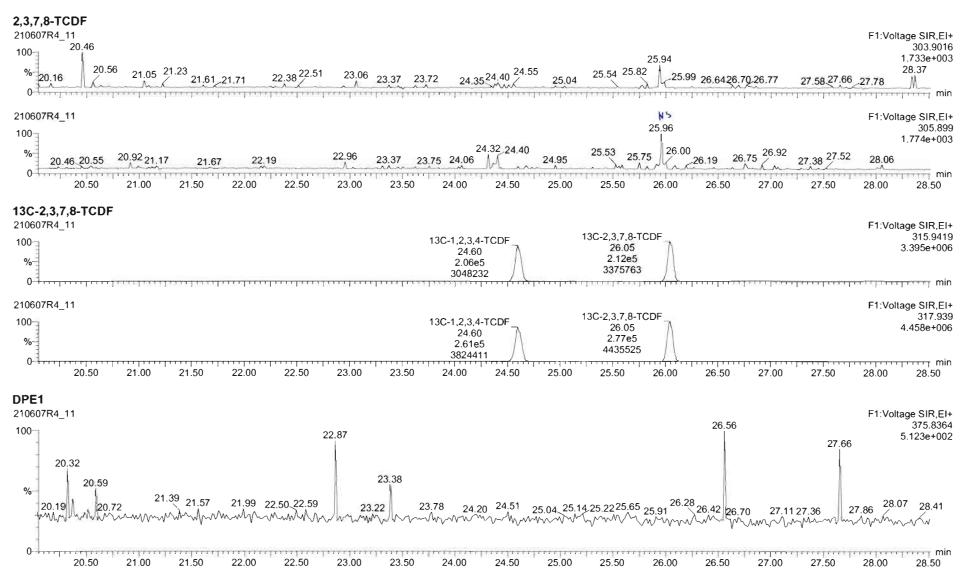



Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

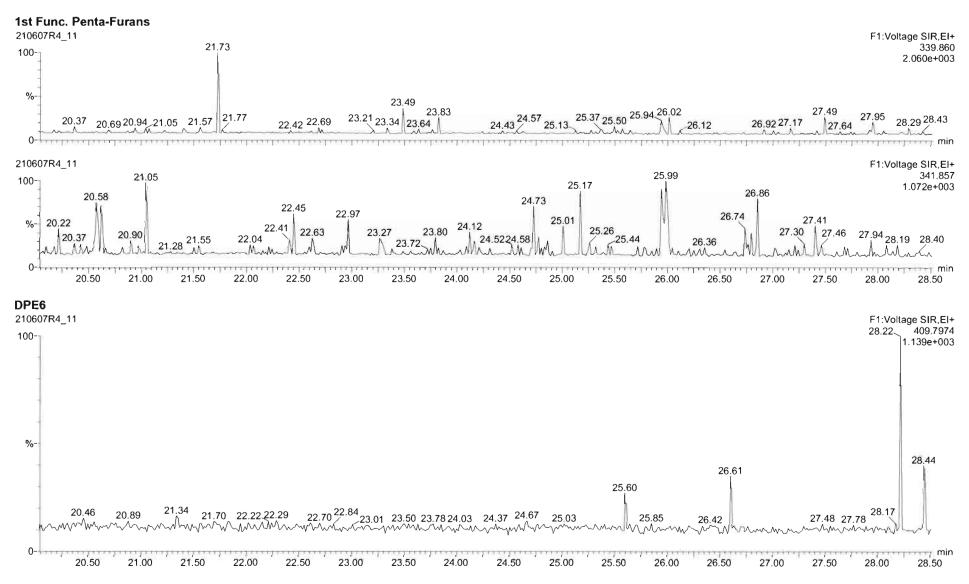

Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time

Quantify San Vista Analytica		Page 5 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_11.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time	



Quantify Sam Vista Analytica	· · · <i>·</i>	Page 6 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_11.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time	

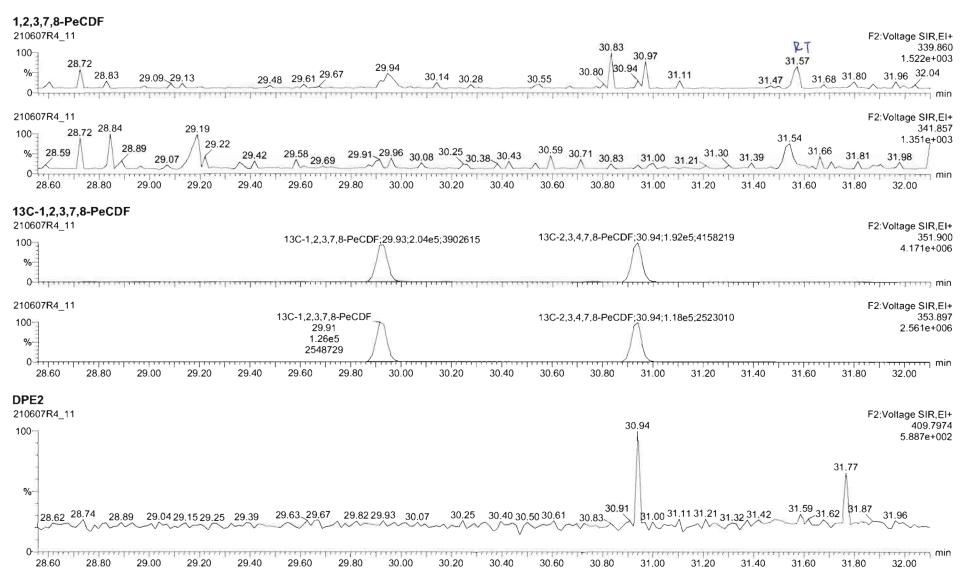
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld


Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time

Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

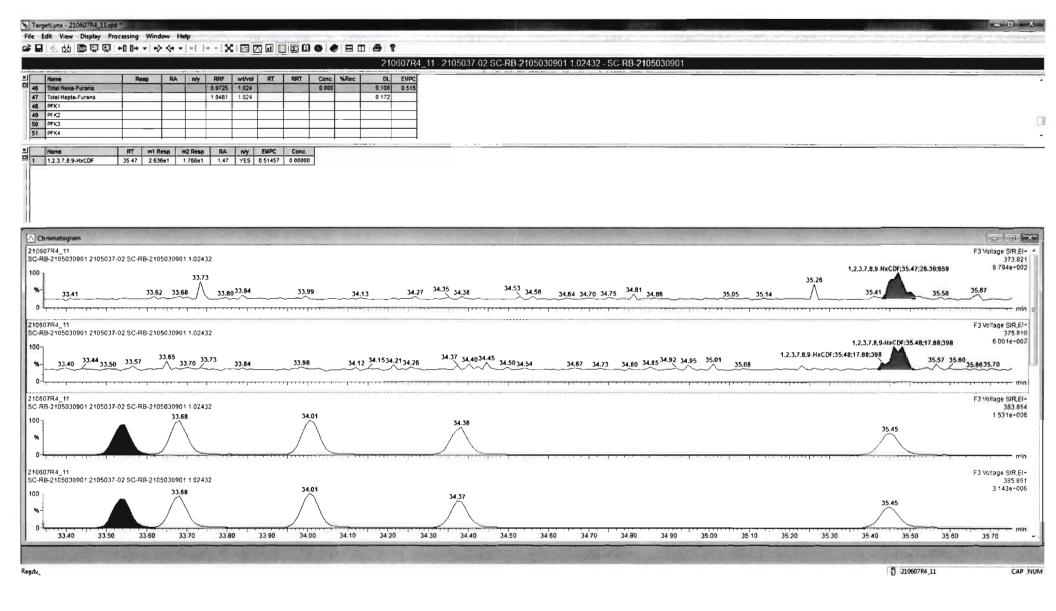
Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time



Quantify Sample Report MassLynx 4.1 SCN815

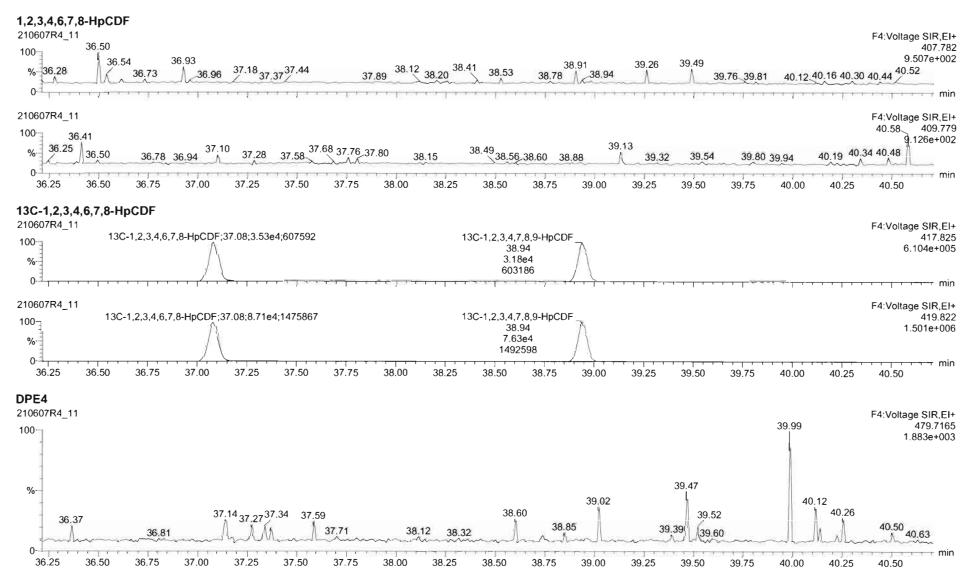
Vista Analytical Laboratory

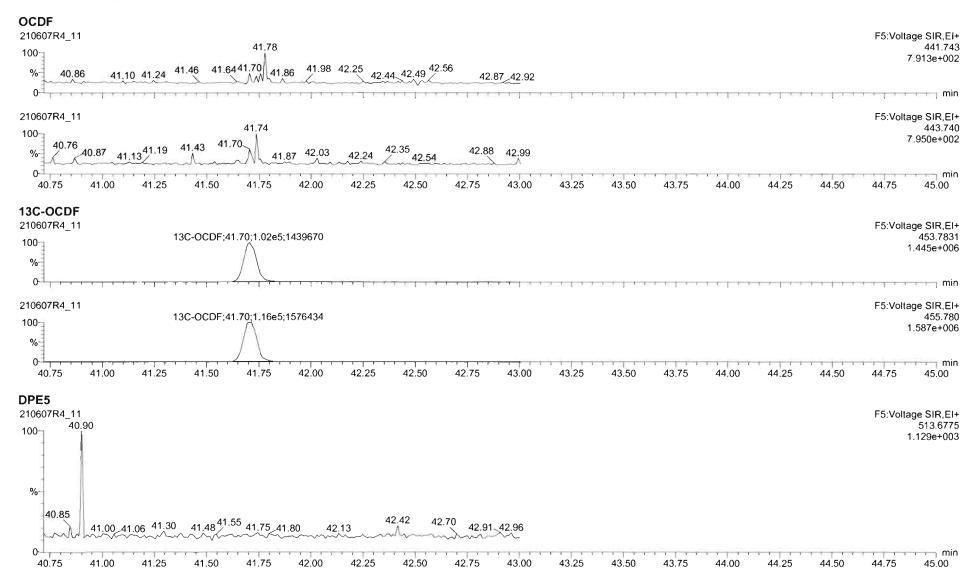
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld


Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

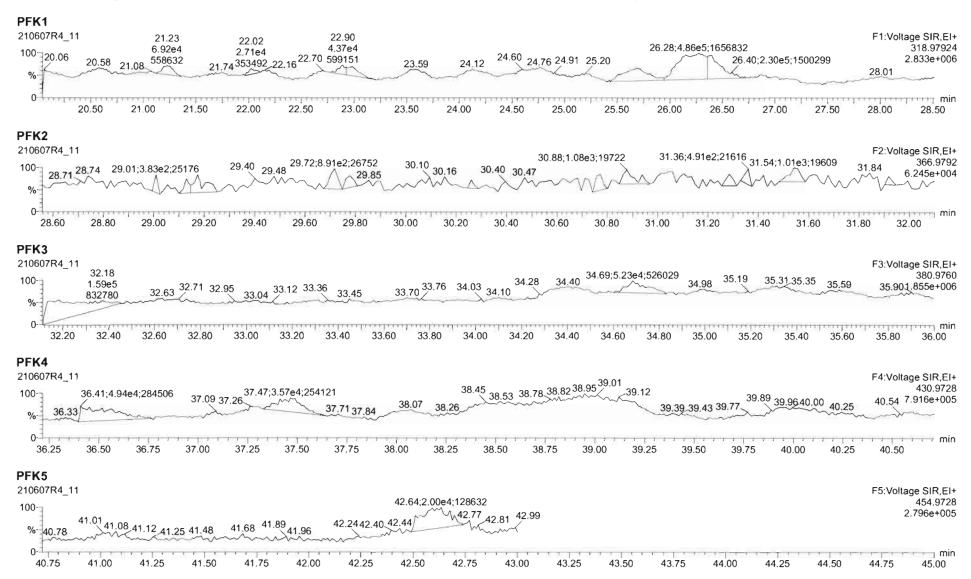
Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time




Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time



Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_11.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time	

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_11.qld

Last Altered:	Tuesday, June 08, 2021 11:36:53 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 11:37:15 Pacific Daylight Time

CONTINUING CALIBRATION

HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: S72/0524PL			Reviewed By:	2021	
End Calibration ID:			Initials & Date		
J 1 2105 24K 2 _ 2	Beg.	End	Mass resolution >	Beg.	End
Concentrations within criteria?	1		□ 5k □ 6-8K □ 8K ☑ 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%	7	~	Intergrated peaks display correctly?		
First and last eluters present?	1	1	GC Break <20%		
Retention Times within criteria?	/	1	8280 CS1 End Standard:		
Verification Std. named correctly?	/	1	- Ratios within limits, S/N <2.5:1, CS1 within 12 hours		NA
(ST-Year-Month-Day-VG ID)					
Forms signed and dated?	1	1	Comments:		
Correct ICAL referenced?	HM	LIN			
Run Log:	1				
- Correct instrument listed?		1			
- Samples within 12 hour clock?	(9	N			
- Bottle position verfied?	FIN				

Vista Analytical Laboratory El Dorado Hills, CA 95762
 Quantify Sample Summary Report
 MassLynx 4.1 SCN815

 Vista Analytical Laboratory
 MassLynx 4.1 SCN815

Dataset: U:\VG12.PRO\Results\210524R1\210524R1_1.qld

Last Altered: Tuesday, May 25, 2021 09:04:00 Pacific Daylight Time Printed: Tuesday, May 25, 2021 09:04:27 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021/17:33:38 / Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Name: 210524R1_1, Date: 24-May-2021, Time: 11:58:43, ID: ST210524R1_1 1613 CS3 21C0105, Description: 1613 CS3 21C0105

	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
1	1 2,3,7,8-TCDD	1.16e5	1.24e6	0.77	NO	0.929	26.71	26.71	NO	1.001	1.001	10.151	102	NO
2	2 1,2,3,7,8-PeCDD	4.00e5	9.26e5	0.60	NO	0.826	31.14	31.12	NO	1.001	1.000	52.334	105	NO
3	3 1,2,3,4,7,8-HxCDD	3.55e5	6.63e5	1.27	NO	0.972	34.47	34.47	NO	1.001	1.001	54.968	110	NO
4	4 1,2,3,6,7,8-HxCDD	3.71e5	7.88e5	1.29	NO	0.877	34.60	34.59	NO	1.001	1.000	53.610	107	NO
5	5 1,2,3,7,8,9-HxCDD	3.67e5	7.65e5	1.30	NO	0.874	34.87	34.87	NO	1.000	1.000	54.919	110	NO
6	6 1,2,3,4,6,7,8-HpCDD	2.75e5	5.76e5	1.04	NO	0.899	38.25	38.26	NO	1.000	1.001	53.217	106	NO
7	7 OCDD	4.34e5	9.54e5	0.88	NO	0.852	41.31	41.32	NO	1.000	1.000	106.76	107	NO
8	8 2,3,7,8-TCDF	1.44e5	1.77e6	0.76	NO	0.747	26.06	26.09	NO	1.000	1.001	10.869	109	NO
9	9 1,2,3,7,8-PeCDF	6.07e5	1.25e6	1.57	NO	0.877	29.93	29.93	NO	1.000	1.000	55.451	111	NO
10	10 2,3,4,7,8-PeCDF	6.83e5	1.32e6	1.57	NO	0.962	30.95	30.94	NO	1.001	1.000	53.954	108	NO
11	11 1,2,3,4,7,8-HxCDF	4.61e5	9.40e5	1.22	NO	0.920	33.52	33.52	NO	1.000	1.000	53.276	107	NO
12	12 1,2,3,6,7,8-HxCDF	5.22e5	1.05e6	1.22	NO	0.936	33.67	33.67	NO	1.001	1.001	52.867	106	NO
13	13 2,3,4,6,7,8-HxCDF	4.58e5	8.79e5	1.25	NO	0.973	34.36	34.36	NO	1.001	1.001	53.596	107	NO
14	14 1,2,3,7,8,9-HxCDF	3.80e5	7.57e5	1.25	NO	0.940	35.43	35.44	NO	1.000	1.001	53.397	107	NO
15	15 1,2,3,4,6,7,8-HpCDF	3.61e5	6.59e5	1.03	NO	1.05	37.05	37.05	NO	1.000	1.000	52.298	105	NO
16	16 1,2,3,4,7,8,9-HpCDF	3.02e5	5.50e5	1.01	NO	1.05	38.91	38.90	NO	1.000	1.000	52.496	105	NO
17	17 OCDF	5.09e5	1.24e6	0.88	NO	0.771	41.65	41.65	NO	1.000	1.000	106.36	106	NO
18	18 13C-2,3,7,8-TCDD	1.24e6	1.09e6	0.78	NO	1.10	26.67	26.68	NO	1.027	1.027	103.02	103	NO
19	19 13C-1,2,3,7,8-PeCDD	9.26e5	1.09e6	0.63	NO	0.864	31.05	31.10	NO	1.196	1.198	98.745	98.7	NO
20	20 13C-1,2,3,4,7,8-HxCDD	6.63e5	1.01e6	1.29	NO	0.746	34.44	34.44	NO	1.014	1.014	87.873	87.9	NO
21	21 13C-1,2,3,6,7,8-HxCDD	7.88e5	1.01e6	1.29	NO	0.847	34.56	34.58	NO	1.017	1.018	91.990	92.0	NO
22	22 13C-1,2,3,7,8,9-HxCDD	7.65e5	1.01e6	1.26	NO	0.868	34.86	34.86	NO	1.026	1.026	87.116	87.1	NO
23	23 13C-1,2,3,4,6,7,8-HpCDD	5.76e5	1.01e6	1.06	NO	0.664	38.21	38.24	NO	1.125	1.125	85.700	85.7	NO
24	24 13C-OCDD	9.54e5	1.01e6	0.90	NO	0.561	41.15	41.31	NO	1.211	1.216	168.24	84.1	NO
25	25 13C-2,3,7,8-TCDF	1.77e6	1.66e6	0.79	NO	1.09	26.06	26.06	NO	1.003	1.003	97.696	97.7	NO
26	26 13C-1,2,3,7,8-PeCDF	1.25e6	1.66e6	1.59	NO	0.809	29.78	29.93	NO	1.147	1.152	93.055	93.1	NO
27	27 13C-2,3,4,7,8-PeCDF	1.32e6	1.66e6	1.60	NO	0.803	30.74	30.92	NO	1.184	1,191	98.874	98.9	NO
28	28 13C-1,2,3,4,7,8-HxCDF	9.40 e 5	1.01e6	0.51	NO	1.01	33.52	33.51	NO	0.987	0.986	91.894	91.9	NO
29	29 13C-1,2,3,6,7,8-HxCDF	1.05e6	1.01e6	0.51	NO	1.07	33.64	33.65	NO	0.990	0.990	97.088	97.1	NO
30	30 13C-2,3,4,6,7,8-HxCDF	8.79e5	1.01e6	0.52	NO	0.910	34.33	34.34	NO	1.011	1.011	95.488	95.5	NO
31	31 13C-1,2,3,7,8,9-HxCDF	7.57e5	1.01e6	0.50	NO	0.828	35.41	35.42	NO	1,042	1.043	90.260	90.3	NO

HIN 05/25/21 HLS: 26:2021

Quantify San Vista Analytica	n ple Summary Report al Laboratory	MassLynx 4.1 SCN815
Dataset:	U:\VG12.PRO\Results\21	0524R1\210524R1_1.qld

Page 2 of 2

Last Altered: Tuesday, May 25, 2021 09:04:00 Pacific Daylight Time

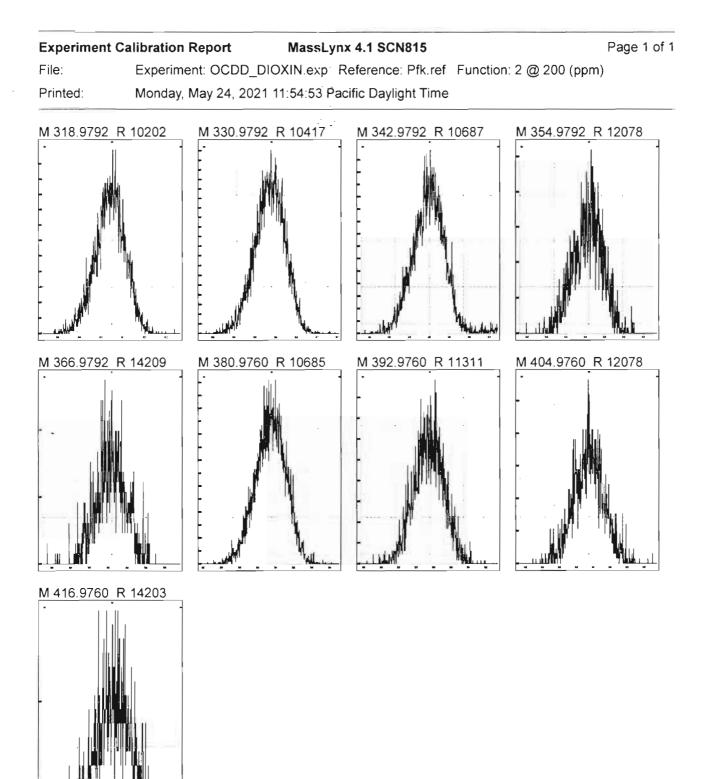
Printed: Tuesday, May 25, 2021 09:04:27 Pacific Daylight Time

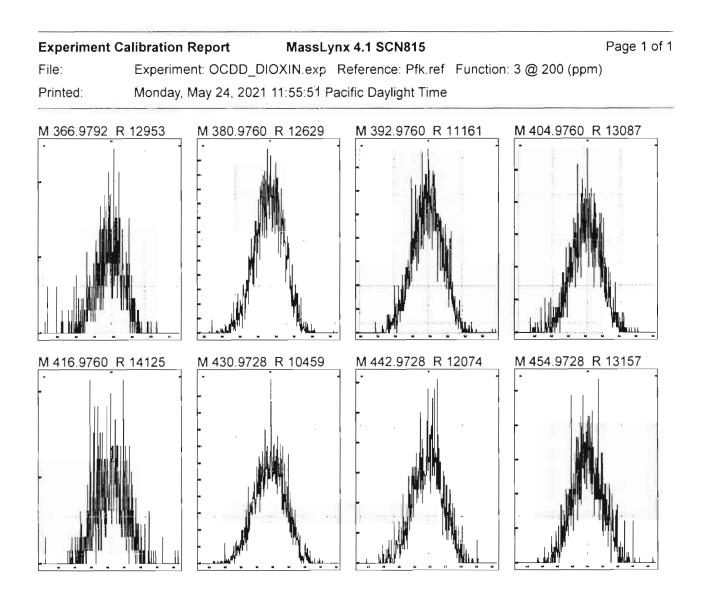
Name: 210524R1_1, Date: 24-May-2021, Time: 11:58:43, ID: ST210524R1_1 1613 CS3 21C0105, Description: 1613 CS3 21C0105

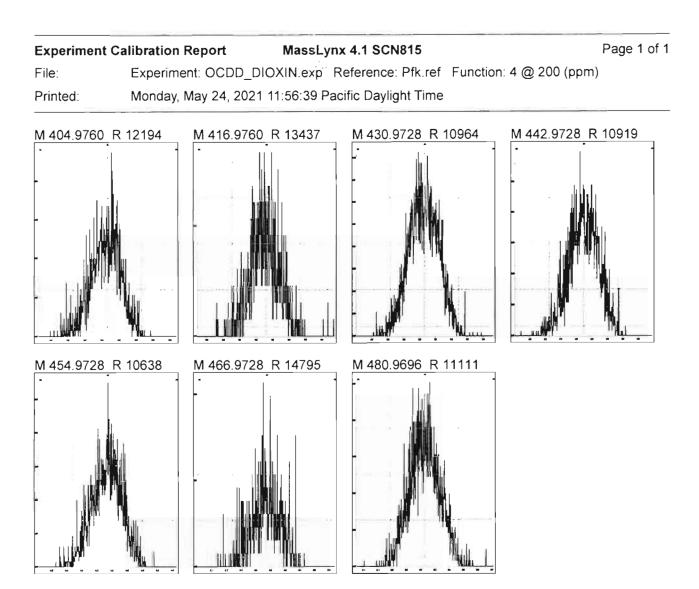
	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
32	32 13C-1,2,3,4,6,7,8-HpCDF	6.59e5	1.01e6	0.45	NO	0.661	37.02	37.04	NO	1.090	1.090	98.569	98.6	NO
33	33 13C-1,2,3,4,7,8,9-HpCDF	5.50e5	1.01e6	0.43	NO	0.566	38.78	38.89	NO	1.141	1.145	96.150	96.1	NO
34	34 13C-OCDF	1.24e6	1.01e6	0.90	NO	0.663	41.54	41.64	NO	1.223	1.226	184.99	9 2 .5	NO
35	35 37CI-2,3,7,8-TCDD	2.26e5	1.09e6			2.07	26.87	26.70	NO	1.035	1.028	10.084	101	NO
36	36 13C-1,2,3,4-TCDD	1.09e6	1.09e6	0.79	NO	1.00	26.07	25.97	NO	1.000	1.000	100.00	100	NO
37	37 13C-1,2,3,4-TCDF	1.66e6	1.66e6	0.79	NO	1.00	24.76	24.64	NO	1.000	1.000	100.00	100	NO
38	38 13C-1,2,3,4,6,9-HxCDF	1.01e6	1.01e6	0.51	NO	1.00	34.04	33.97	NO	1.000	1.000	100.00	100	YESUK

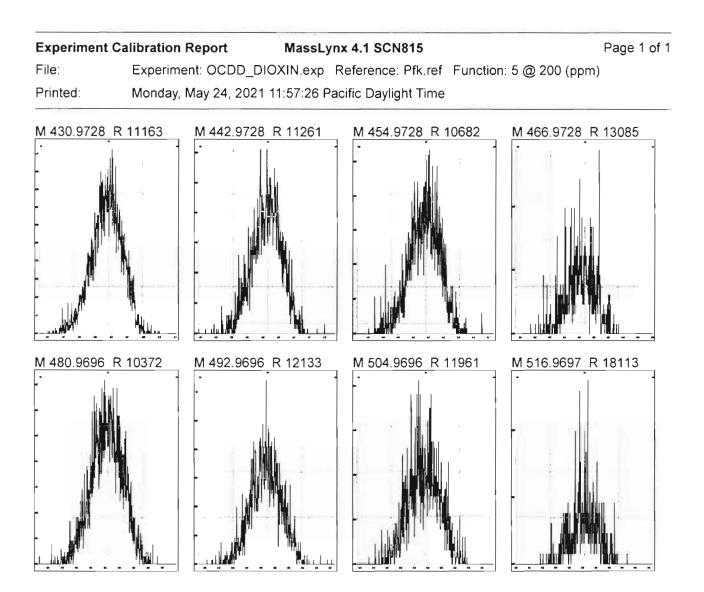
Quantify Compound Summary ReportMassLynx 4.1 SCN815Vista Analytical Laboratory VG-11


Dataset: Untitled


Last Altered:Tuesday, May 25, 2021 09:07:20 Pacific Daylight TimePrinted:Tuesday, May 25, 2021 09:07:33 Pacific Daylight Time


Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26


Compound name: 2,3,7,8-TCDD

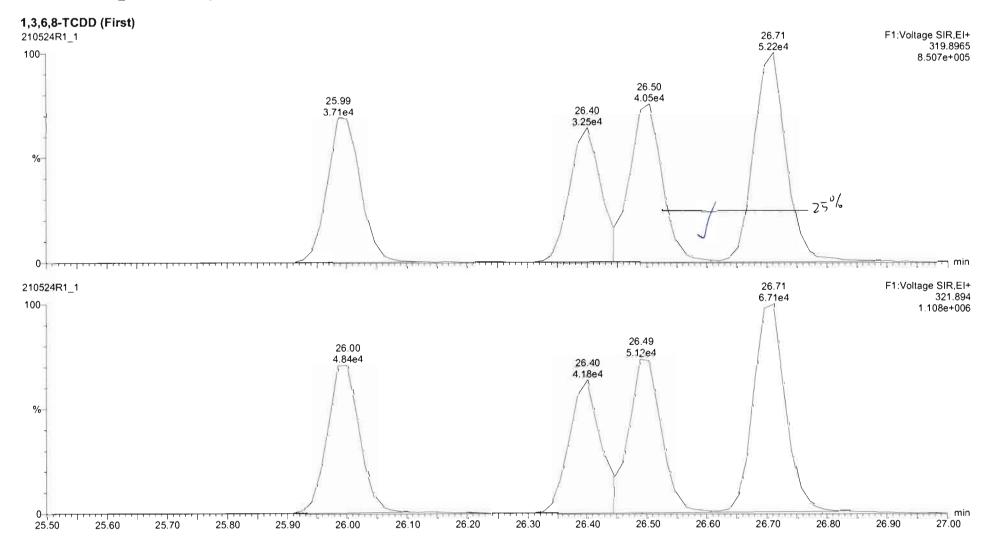

- A/25	Name	ID	Acq.Date	Acq.Time
1	210524R1_1	ST210524R1_1 1613 CS3 21C0105	24-May-21	11:58:43
2	210524R1_2	SOLVENT BLANK	24-May-21	12:47:32
3	210524R1_3	B1E0143-BLK1 Method Blank 1	24-May-21	13:33:13
4	210524R1_4	B1E0184-BLK1 Method Blank 1	24-May-21	14:19:27
5	210524R1_5	B1E0183-BLK1 Method Blank 1	24-May-21	15:05:02
6	210524R1_6	B1E0193-BLK1 Method Blank 1	24-May-21	15:52:08
7	210524R1_7	B1E0184-BS1 OPR 1	24-May-21	16:38:54
8	210524R1_8	B1E0193-BS1 OPR 1	24-May-21	17:23:08
9	210524R1_9	B1E0183-BS1 OPR 1	24-May-21	18:07:22
10	210524R1_10	B1E0183-MS1 Matrix Spike 1002.19	24-May-21	18:51:38
11	210524R1_11	B1E0183-MSD1 Matrix Spike Dup 1018.06	24-May-21	19:35:53
12	210524R1_12	SOLVENT BLANK	24-May-21	20:20:07
13	210524R1_13	2105037-01 SC-FB-2105030940 1.00168	24-May-21	21:04:21
14	210524R1_14	2105037-02 SC-RB-2105030901 1.02432	24-May-21	21:48:35
15	210524R1_15	2105101-01 Well 01 0.99682	24-May-21	22:32:49
16	210524R1_16	2105101-02 Well 02 1.02588	24-May-21	23:17:05
17	210524R2_1	SOLVENT BLANK	25-May-21	00:10:18
18	210524R2_2	ST210524R2_1 1613 CS3 21C0105	25-May-21	00:54:36

•	al Laboratory VG-11	MassLynx 4.1 SCN815	Page 1 of 1
Dataset:	U:\VG12.PRO\Results\2	0524R1\210524R1_CPSM.qld	
Last Altered: Printed:		9:00:18 Pacific Daylight Time 9:00:56 Pacific Daylight Time	

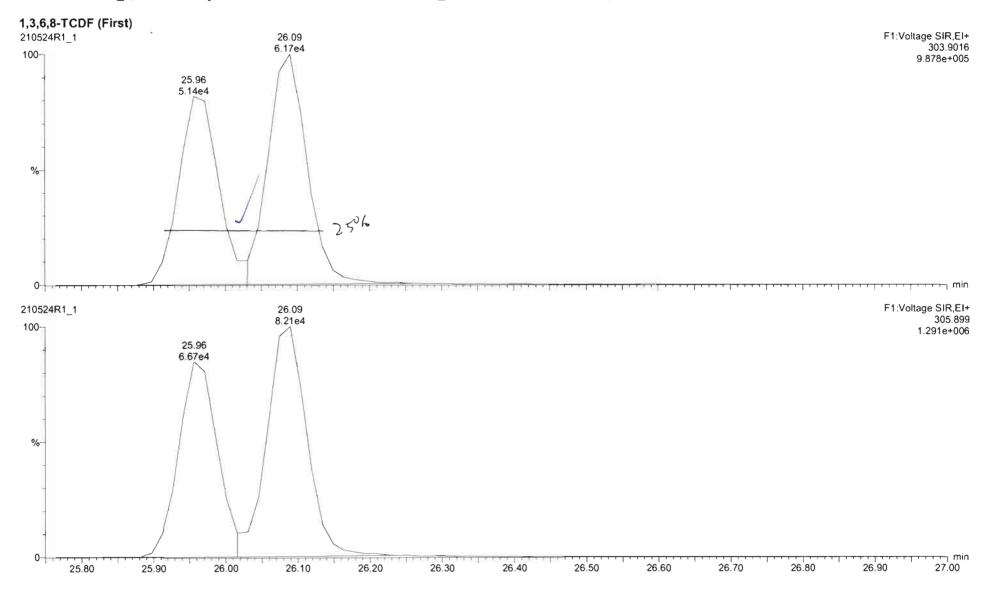
Method: U:\VG12.PRO\MethDB\CPSM.mdb 18 May 2021 09:49:43 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Name: 210524R1_1, Date: 24-May-2021, Time: 11:58:43, ID: ST210524R1_1 1613 CS3 21C0105, Description: 1613 CS3 21C0105

1 - 1 -	# Name	RT
1	1 1,3,6,8-TCDD (First)	23.28
2	2 1,2,8,9-TCDD (Last)	27.54
3	3 1,2,4,7,9-PeCDD (First)	28.95
4	4 1,2,3,8,9-PeCDD (Last)	31.47
5	5 1,2,4,6,7,9-HxCDD (First)	32.74
6	6 1,2,3,7,8,9-HxCDD (Last)	34.87
7	7 1,2,3,4,6,7,9-HpCDD (First)	37.37
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.26
9	9 1,3,6,8-TCDF (First)	21.15
10	10 1,2,8,9-TCDF (Last)	27.85
11	11 1,3,4,6,8-PeCDF (First)	27.39
12	12 1,2,3,8,9-PeCDF (Last)	31.83
13	13 1,2,3,4,6,8-HxCDF (First)	32.20
14	14 1,2,3,7,8,9-HxCDF (Last)	35.44
15	15 1,2,3,4,6,7,8-HpCDF (First)	37.05
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.91

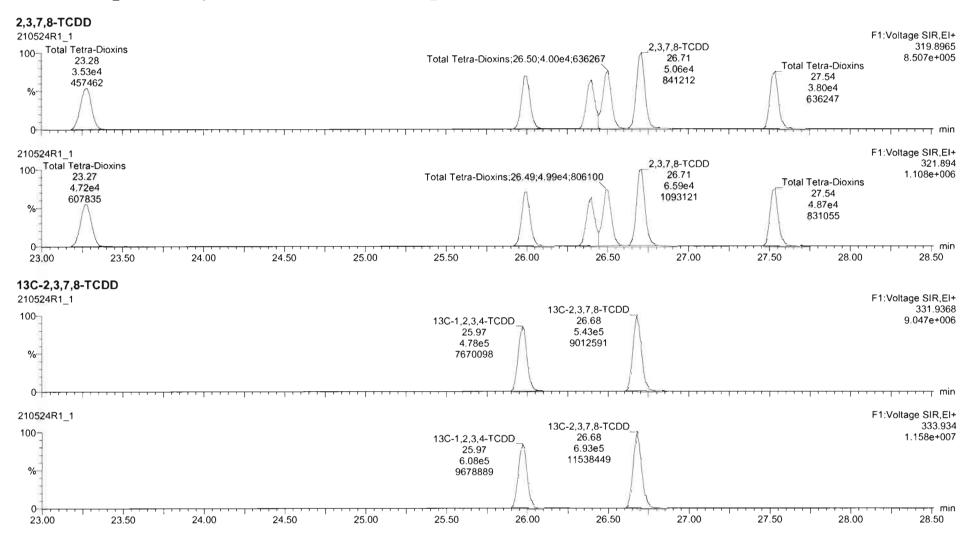

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory VG-11

Dataset: U:\VG12.PRO\Results\210524R1\210524R1_CPSM.qld

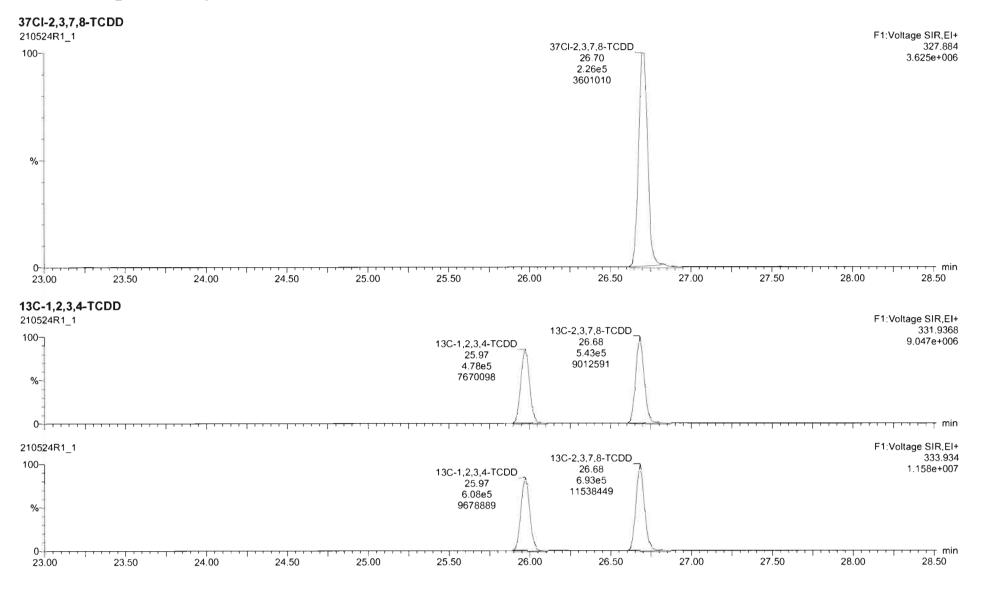

Last Altered: Tuesday, May 25, 2021 09:00:18 Pacific Daylight Time Printed: Tuesday, May 25, 2021 09:00:56 Pacific Daylight Time

41N05/25/21

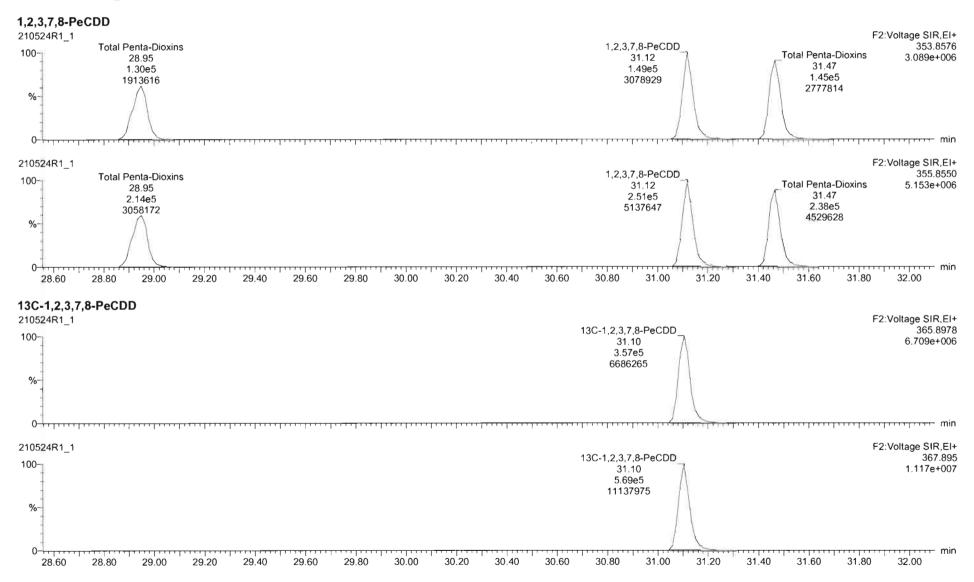
Method: U:\VG12.PRO\MethDB\CPSM.mdb 18 May 2021 09:49:43 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26



Quantify Sam Vista Analytica	nple Report MassLynx 4.1 SCN815 al Laboratory VG-11		Page 2 of 2
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_CPSM.qld		
Last Altered: Printed:	Tuesday, May 25, 2021 09:00:18 Pacific Daylight Time Tuesday, May 25, 2021 09:00:56 Pacific Daylight Time	LIN 05/25/21	

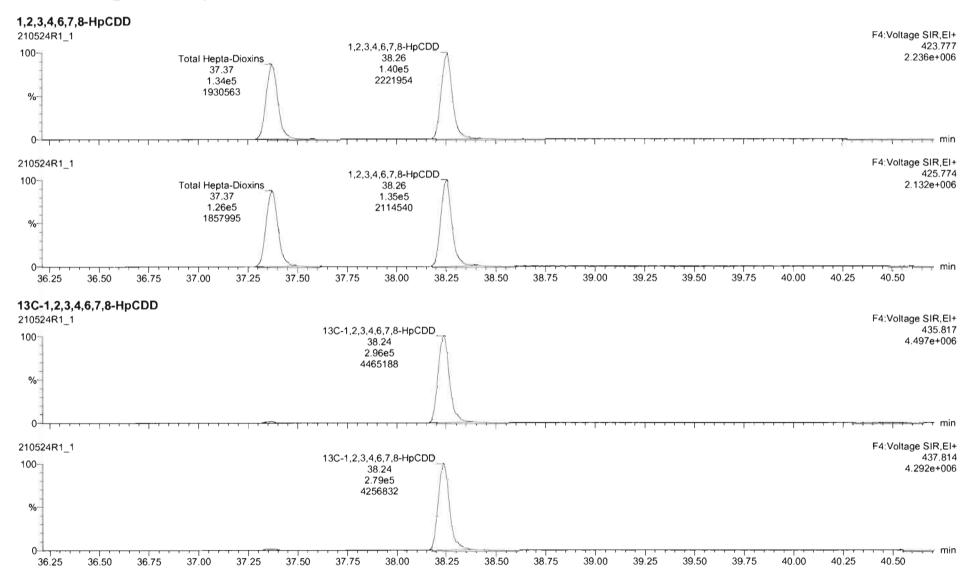


Quantify Sam Vista Analytica		Page 1 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

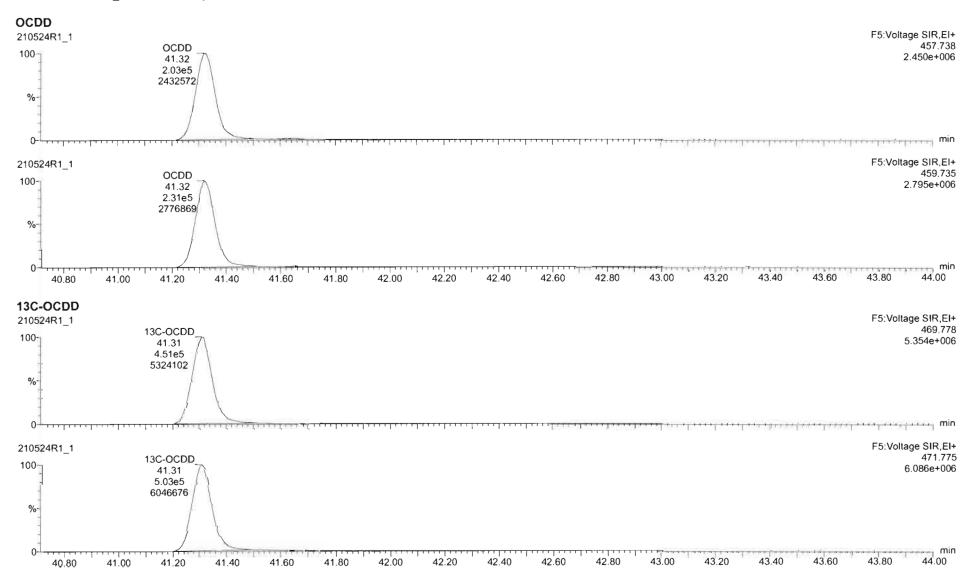

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDlOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

Quantify Sam Vista Analytica		Page 3 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	



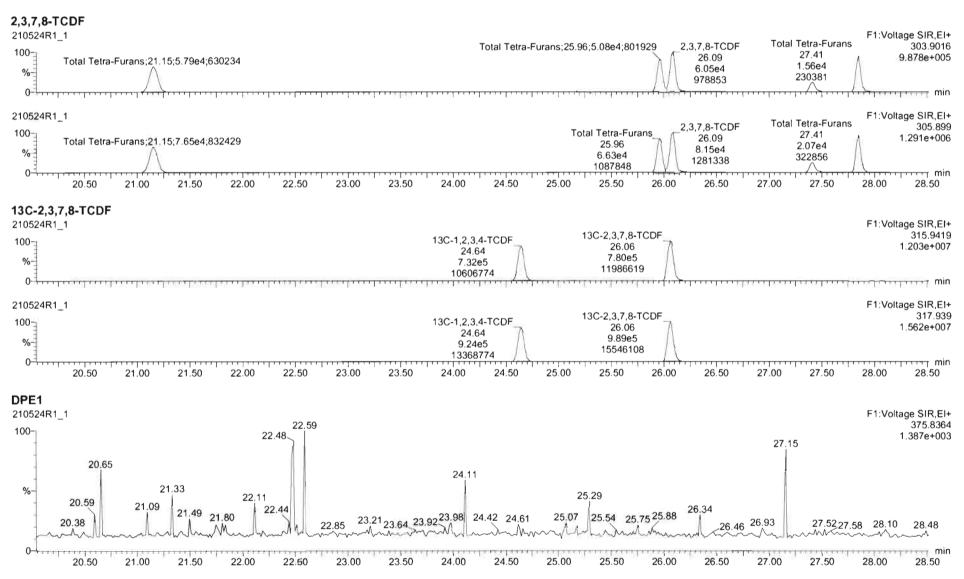
Quantify Sam Vista Analytica		Page 4 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

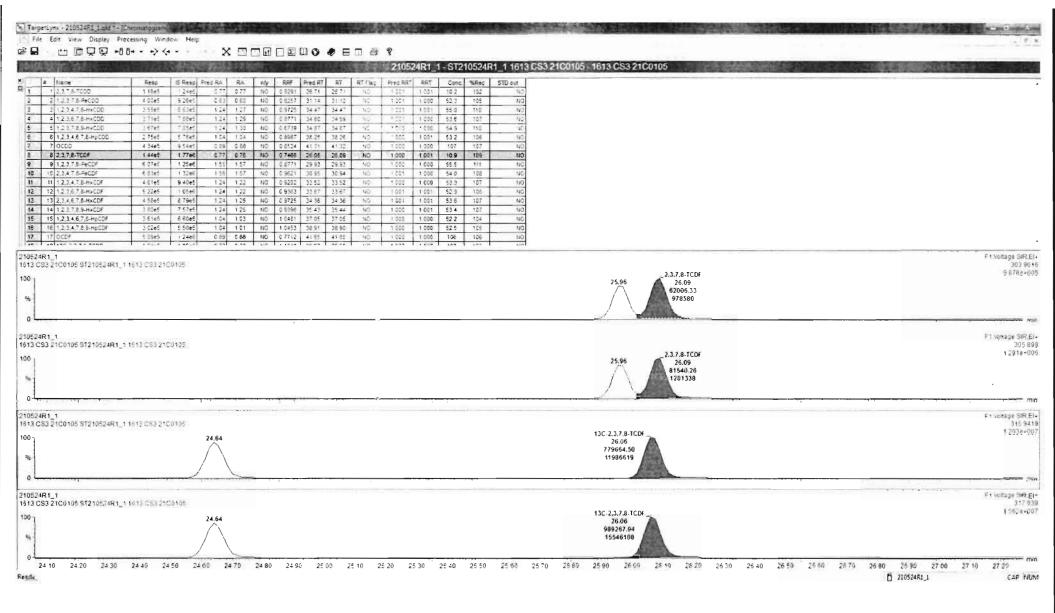


4 1 2 3 4			ALC: N	1100	-0.1	4	Section in the		12-1		2105	24R1_1	- ST21	10524R	1_1 1613 CS	53 21C01	05 - 1613	3 CS3 21	C0105	Section -	CELLS.	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1.2.3. 1.2.3. 1.2.3.	8-TCDD	Resp		Pred RA	RA	nly	197	Pred R1		RT Flag			Conc.		STD aut									
1234		t téef	1.24e6	\$ 77	_	NO	C 9291	26.71	28.71	NO.	1.00%	1 00 1	10.2	102	NO									
1238	7.8-PeC00	4 00e5	9.2645		0.50	NQ :	0.8297	31 14		NO	1 001	1 000	52.2	105	180 NG									
	4.7 8-HxCDD 8.7,8-HxCDD	3.55e5	6.63e5	1.24	1.27	110	0 8725	34.60	34.58	N0 110	1 001	1.001	65 0 53 6	110	140									
123	7.8.9-HXCDD	3.67e5	7 6565		1.30		0 8739		34.87	NO	1.000			110	NO									
	4 6.7.8-HpCDD	2 75e5	5 78e5	1.04		NC	0 8987	38.25	38.24	NO.	1 000	1.001	53.2	106	:NO									
OCDC	0	4.34e5	9 54e5	0.69	3.58	NO:	0.8524		41.32	.95	1,000	1.000	107	707	140									
	8-TCDF	1 42e5	1 77e6		0.74	NO	0.7466	the second se	_	NO	• 800		10.8	196	NO.									
	7.8-PeCOF	6 07e5	1.25e0		1 57		0 8771			NO	1.000		55.5	111	165									
	7.8-PeCD# 4.7.8-HACOF	6 83e5 4 61e5	1 32e6 9 40e5	1 55	1.57	160 NO	0 9621		30 94	NCI NC	1 001			108	NO NO									
	.4.7.8-HxCDF	4.61e5	9.40e5 1.05e6	1 24		NO NO	0 9202	33 52	33.52	NC.	1 000	1 000	53.3	107	NG NG									
	.6.7.8-HxCDF	4 5845	8 79e6	124			0 9725		34 36	NO.	1 501			107	NO									
	7 8.9-H+COF	3 80#5	7 57e5		1.25		.0 9396			NO	1 200		53.4	107	NO									
1234	4.6.7.8-HpCDF	3.61e5	6 60e5	1.04	1.03	NO	1 0481	37 05	37.05	NO	1.000	1 000	52.2	104	NO									
	4.7.8.9-HoCDF	3 02e5	5.50e5		1.01	NO :	1 0453		38.90	NO .	1 000		52.5	105	NO									
OCDF.		5 09e5	1.2405	0.89	0.86	10	0 7712	41.85	41.65	ND	1 809	1 000	106	105	9K									
B	OF STONDED D	1613 005 04	Class.				in the second	na è					-								 		 	 r 3 Ve
	05 ST210524R1_1		C0105 8.9-HxCD0	:34.37;15				manie															 	
ана П.,	105 ST210524R1_1			:34.37:15																			 	
C010	105 \$1210524R1_1	1.2.3.7 1613 C83 21	8.9-HxCD0		9647.44;	229002	6														 		 	
C010	105 \$1210524R1_1	1.2,3,7	8.9-HxCD0		9647.44;	229002	6																 	
C010	105 \$1210524R1_1	1.2.3.7 1613 C83 21	8.9-HxCD0		9647.44;	229002	6																 	
C010	105 \$1210524R1_1	1.2.3.7 1613 C83 21	8.9-HxCD0		9647.44;	229002	6														 	· · ·	 	F 3 Ver
C010	105 \$1210524R1_1	1.2.3,7, 1613 CS3 27 13C-1.2.3,7,4	8.9-HxCD0		9647.44;	229002	6														 	· · ·	 	F3 Vol
C010	105 ST210524R1_1	1.2.3,7, 1613 CS3 27 13C-1.2.3,7,4	C0105 C0105 C0105	34 86:427	177.88;6	139761	6																 	F3 Vpl
C010	105 ST210524R1_1	1.2.3.7. 1613 CS3 27 13C-1.2.3.7,4	C0105 C0105 C0105	34 86:427	177.88;6	139761	6																 	F3 vei

Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

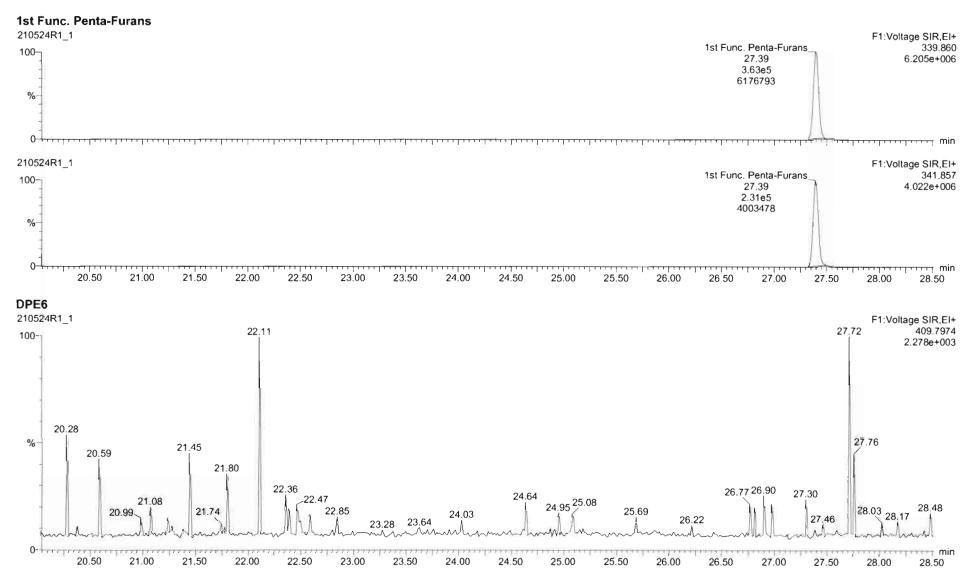
Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	_

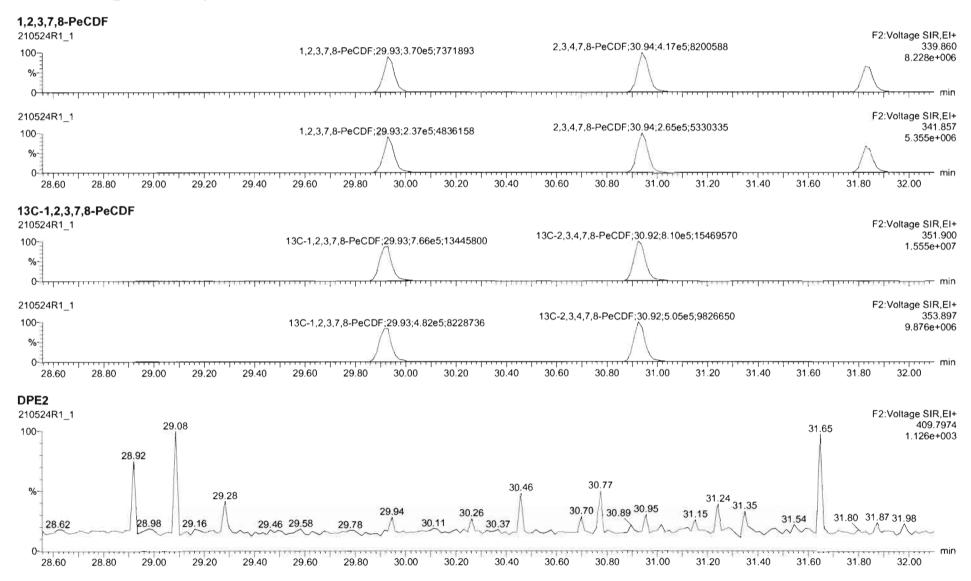



Quantify Sample Report MassLynx 4.1 SCN815

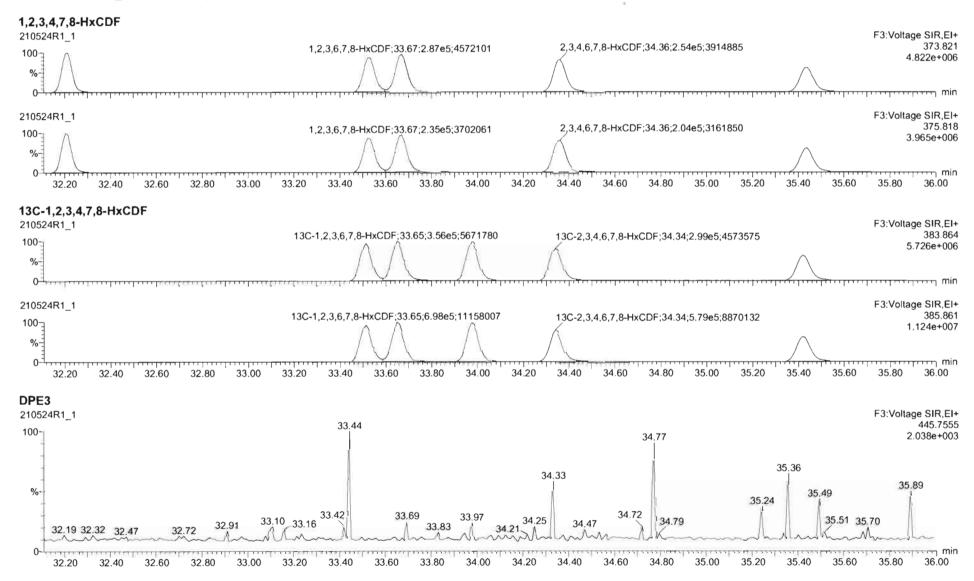
Vista Analytical Laboratory

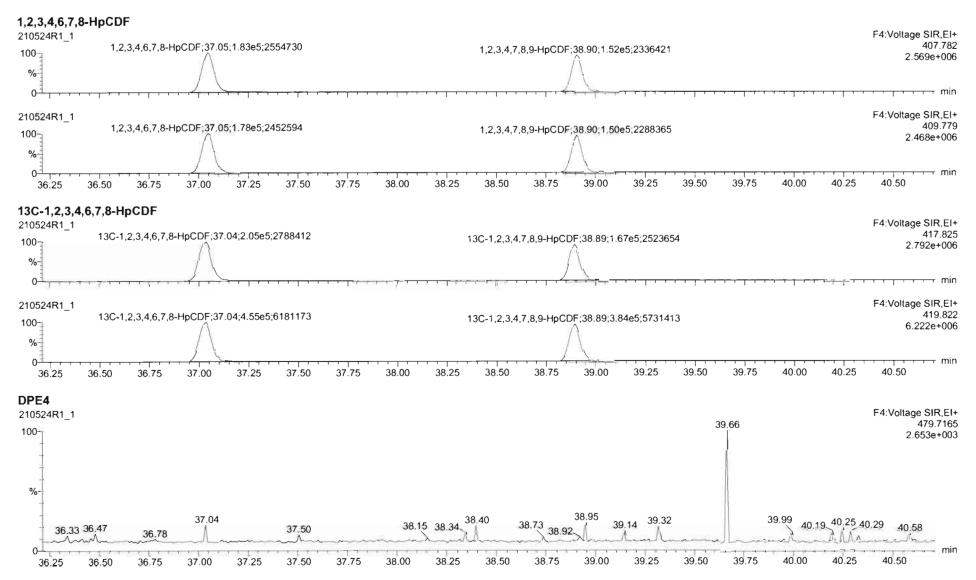
Dataset: U:\VG12.PRO\Results\210524R1\210524R1 1.qld


Last Altered: Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time Printed:



		2010-22		ND.		21.02	PARY		21052	24R1_1 -	ST21052	4R1_1 1613 CS3 21C0105 - 1613 C	CS3 21C0105		
tiame	Resp	IS Resp. Pred	RA RA	nly	RRF	Pred.RT	RT	RT Flag	Prec RRT	RRT	Conc. %Re	c STD out			
37 13C-1.2.3.4-TCDF	1.66eč		0.77 0.7			24 76		NO	1,000		100 10				
38 13C-1 2 3 4 6 9-HxCOF	1 01e6	10100	0.51 0.5	1011	1 0000	34:04	33 97	110	1 000	1 000	100 100	YEE			
39 Total Tetra-Dicxets	1	2466			0.9291	24.62		NO.	0.000	C	46.6	100			
40 Tolai Penta-Didunis		9 2645			0.8257	29.96		390	0'008		147	110			
41 Total Hexa-Dioxins	T	0 00eC			0.877.1	33.63		NO	000 0		222	NO			
42 Total Hepta-Dioxina		5 76e5			0.8987	37.64		NO.	0000		1.03	710			
43 Total Tetra-Furans		1 77e0		1	0 748E	23 61		ND	0.000		41.6	NO:			
44 1st Func Penta-Furans		0 00e0			0.8771	27 62		140	0.009		52.6	NO			
45 Total Fenta-Furans		0 00e0			0.8771	29 27		NO	0.000		152	NQ			
46 Total Hexa-Furans		0.0040		-	0.9725	33.56		140	0.000		265	:40			
47 Total Hepta-Furans		0.00e0		-	1 0481	37 83		NO	0.000		105	10			
48 PFK1	1	-	_	-	-	-		_		-	-				
49 PFK2				-	-					-	_				
SO PEKS		+				-	+ +			-	-				
51 PFK4				-	-	-					-				
52 PEKS				-	-	-		_	-		-				
S3 DPE1	-			-	-		+ +								
1_1 21C0105 \$1210524R1_1	1613 CS3 210	C0105								13C-1.2,3, 24.6 924701 13373	4 7.44			26,06	Elv
							1			24.6 924701 13373 13373 13C-1.2,3, 24.6	4 7.44 479 4.TCDF 4			Λ	ETV
3 21C0105 91210524R1_1							1			24.6 924701 13373	4 7.44 479 4-TCDF 4 0,00			26.06	
3 21C0105 91210524R1_1	1613 CS3 210	20195					1			24.6 924701 13373 136-1.2,3, 24.6 731720	4 72 4.720 4.7CDF 4 0.00 774 4.7CDF 4 4.7CDF 4 4.7CDF			Λ	


Quantify Sam Vista Analytica		Page 8 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

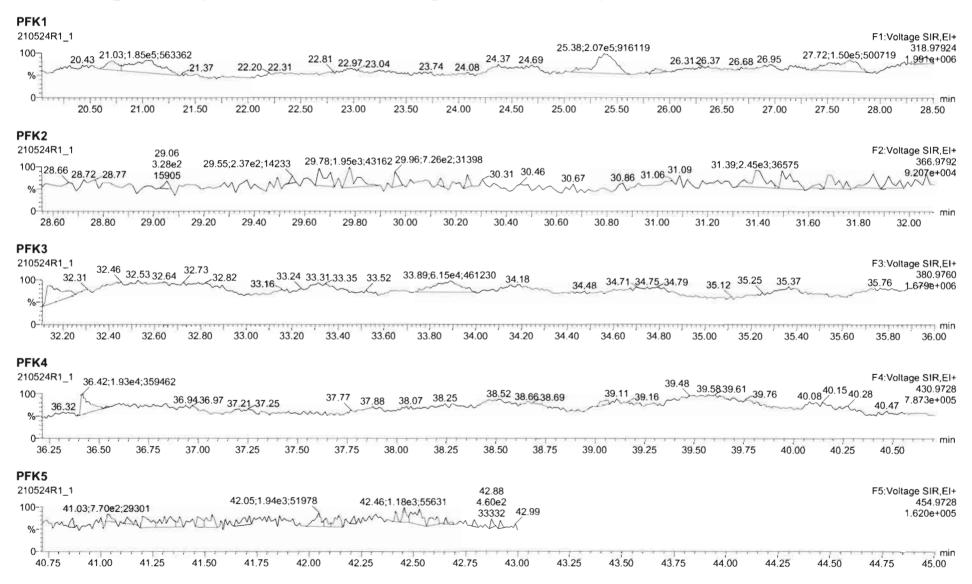

Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

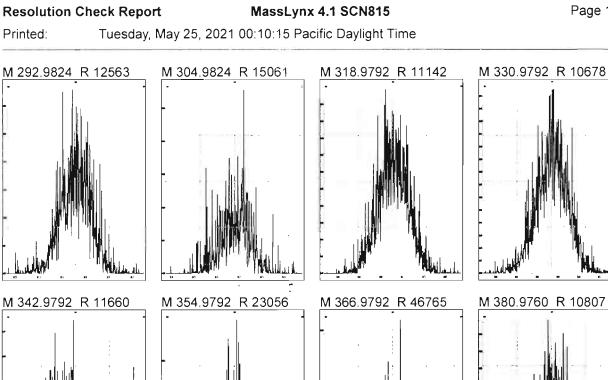
Quantify Sam Vista Analytica		Page 10 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

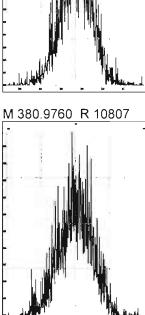


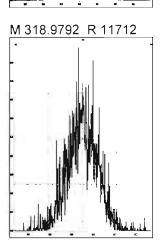
Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

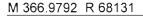
and the second	CONTRACTOR OF A				and the second		1000	Maria P.		-	2193	24R1_1	10012	1002-114	
# Name		Resp	S Resp P	Pred RA	R A	aly	FIRE	Pred RT	RT	RT Flag	Pred RRT	RRT	Conc	SRec	STD out
12,37,8-7000	00	1 1665	124e6	0.77	2 77		0.9291	28.71	28:71	NO	1.001	1.001	10.2	102	NC
2 1.2.7 1.8-Pec		4.00e5	9.2645	0.63		10	0 8257	31.14	31.12	10	1001	T 000	52.3	105	110
3122478-8		3 55e5	5 6 3 4 5	1.24	11.22	40	0.9725	34.47	34.47	NO	1 001	1.021	55.0	110	140
4 1.2.3.8.7.8-H	HXCDD	171e5	7.83e5	1.24	1.29	110	0.8779	34.60	34 59	NO	1:001	1.000	52.6	107	NC
5 1.2.378 S-H	HINCOD	3 67e5	7 65e5	1.24	1.30	NO	0 8739	34.87	34.57	NO	1-0601	1 000	54.9	110	NO
8 1,2,3,4,6,7,8	8-HpCDD	2.75e5	5 7665	1.04	1)贫乏	NO	0 8987	38.25	38.26	NO	1.000	1.355	53.2	106	10
7 0000		4 34e5	\$ 5.105	3 89	58.2	NC.	6.8524	41.21	41 32	10	1.000	1 000	107	107	110
8 2.3.7.8-TCDF	DF	1 44e5	17768	0.77	0.76	NO	0 746E	26.08	25.09	NC	1.000	1.001	10.9	109	NO
9 12378-96		6 07e5	125e8	1.55	1.57	NO.	0.8771	29.93	29.93	NO	1.000	1 000	56.5	111	100
10 2.3.4.7.8-Pet		6.83e5	1.32e6	1.55			0.9621	20.95	30.94	NÖ.	1.001	1.000	54.0	108	30
11 1.2.3.4.7.8-1	HxCOF.	461e5	9 4005	1.24	1.22	00	0 9202	33 52	33.52	NQ	1 000	1.000	63.3	107	NG.
12 1,23万,78-1		5 22e5	1.05e6	8.24		ND	0.9363	33.67	23 67	NO	1.001	1.001	52.9	105	40
13 2.3 4 6.7.8-1		4 58e5	8 79e5	1.24	1.25	190	0 9725	34.38	54 38	ND	1001	1 001	63 6	607	NO
14 123785-H		3 60e5	7.57.85	124			0.9396	35 43		NO	1 000	1 001	53.4	107	110
12.3.4.6.7.8		3.61e5	6 5965				1 0481		37.05	NO	1 000	1 000	52 3		NO
16 1,2,3,4,7,8,9	9-HOCOF	3.02e5	5 50 #5				1 0493	38.91	38.96	MC	1 006	1 000	52.5	195	NIC
7 OCDF		5 09e5	1.2466	0.09	0.88	115	0 7712	41.65	41.65	ND	1.000	1.000	106	106	
	1210524R1_1 1						1	.2,3.4.6,7	.8-HoCDf	37.95:10	83334.55:2	554730			NO
321C0105 ST:		613 C93 210	C0105			1111	1,	,2,3.4.6,7	.8-HpCDF	5:37.05:10	83334.55.29	554730			**
2100105 812	1210524R1_1 1	613 C93 210	C0105	1		1111					77905.13;24				***
2100105 812		613 C93 210	C0105												746
2100105 813		613 C93 210	C0105	1											745
1_1 1_1	T210524R1_1 tr	613 C\$3 210 613 C\$3 210	C0105												74
21C0105 ST		613 C\$3 210 613 C\$3 210	C0105	1			1.	.2.3.4.6.7	7.8-HpCDF	F:37.05:11		152594			100
21C0105 ST	T210524R1_1 tr	613 C\$3 210 613 C\$3 210	C0105				1.	.2.3.4.6.7	7.8-HpCDF	F:37.05:11	77905.13;24	152594			746 417
21C0105 ST	T210524R1_1 tr	613 C\$3 210 613 C\$3 210	C0105				1.	.2.3,4,6,7 1.2,3,4,6,	7.8-HpCDf	F:37.05:11	77905.13;24	152594 788768			746
21C0105 ST2 121 21C0105 ST2 121 21C0105 ST2	T210524R1_1 tr	613 C\$3 210 613 C\$3 210	C0105				1.	.2.3,4,6,7 1.2,3,4,6,	7.8-HpCDf	F:37.05:11	77905.13;24	152594 788768			746
21C0105 ST2 21C0105 ST2 21C0105 ST2	T210524R1_1 tr	613 CS3 210 613 CS3 210 613 CS3 210	C0105 C0105 C0105				136-1	.2,3,4,6,7	7.8-нрСОР 7.8-нрСОР	F:37.05:17	03941.69-2	788768			746
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1210524R1_1 1 T210524R1_1 1	613 CS3 210 613 CS3 210 613 CS3 210	C0105 C0105 C0105				136-1	.2,3,4,6,7	7.8-нрСОР 7.8-нрСОР	F:37.05:17	77905.13;24	788768			746
1_1 321C0105 ST	1210524R1_1 1 T210524R1_1 1	613 CS3 210 613 CS3 210 613 CS3 210	C0105 C0105 C0105				136-1	.2,3,4,6,7	7.8-нрСОР 7.8-нрСОР	F:37.05:17	03941.69-2	788768			745 417
R1_1 321C0105 ST R1_1 321C0105 ST 321C0105 ST	1210524R1_1 1 T210524R1_1 1	613 CS3 210 613 CS3 210 613 CS3 210	C0105 C0105 C0105				136-1	.2,3,4,6,7	7.8-нрСОР 7.8-нрСОР	F:37.05:17	03941.69-2	788768			746 477

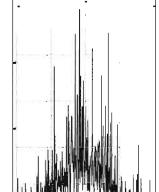

Quantify Sam Vista Analytica		Page 12 of 13
Dataset:	U:\VG12.PRO\Results\210524R1\210524R1_1.qld	
Last Altered: Printed:	Monday, May 24, 2021 12:43:32 Pacific Daylight Time Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time	

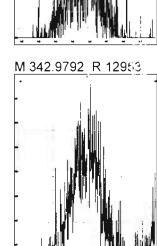

Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	


Dataset: U:\VG12.PRO\Results\210524R1\210524R1_1.qld

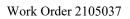

Last Altered: Monday, May 24, 2021 12:43:32 Pacific Daylight Time Printed: Tuesday, May 25, 2021 09:01:14 Pacific Daylight Time

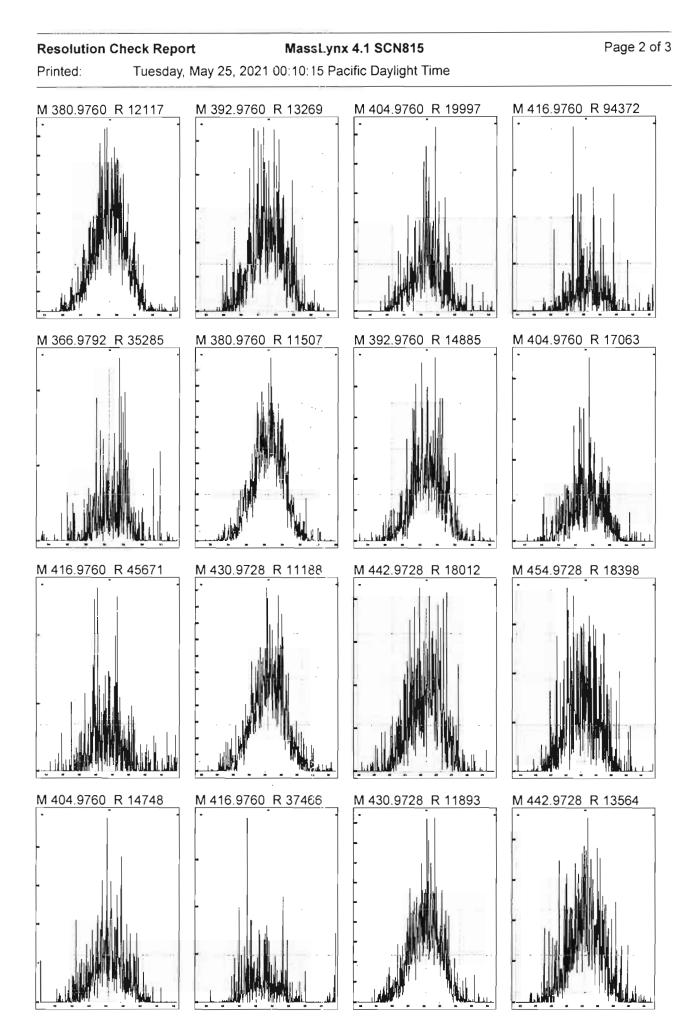



Printed:



M 330.9792 R 10988

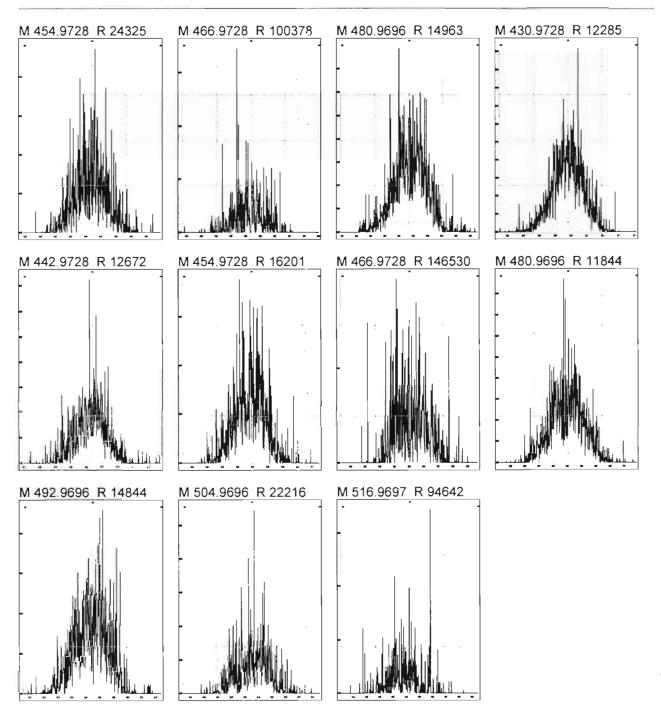

M 392.9760 R 14853



M 404.9760 R 20702

M 416.9760 R 494792

M 354.9792 R 20046



Resolution Check Report

Massi.ynx 4.1 SCN815

Printed:

Tuesday, May 25, 2021 00:10:15 Pacific Daylight Time

HRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: <u>57210607 R 4-1</u>		F	Reviewed By: <u><u><u>P</u>F66/08/21</u></u>	_
End Calibration ID: S7210607RS-1			Initials & Date	
Ion abundance within QC limits?	Beg.	End	Mass resolution >	Beg. End
Concentrations within criteria?	\square		□ 5k □ 6-8K □ 8K ☑ 10K 1614 1699 429 1613/1668/8280	
TCDD/TCDF Valleys <25%	\square		Intergrated peaks display correctly?	\square
First and last eluters present?	\square		GC Break <20%	
Retention Times within criteria?			8280 CS1 End Standard:	
Verification Std. named correctly?			- Ratios within limits, S/N <2.5:1, CS1 within 12 hours	NA
(ST-Year-Month-Day-VG ID)		,		
Forms signed and dated?	Ŕ		Comments:	
Correct ICAL referenced?	FIN	FIN		
Run Log:				
- Correct instrument listed?				
- Samples within 12 hour clock?	Ý	N		
 Bottle position verfied? 	+11	N		

Vista Analytical Laboratory El Dorado Hills, CA 95762

Quantify Sam Vista Analytica	ple Summary Report al Laboratory	MassLynx 4.1 SCN815	
Dataset:	U:\VG12.PRO\Results\21	0607R4\210607R4_1.qld	
Last Altered: Printed:		0:47:15 Pacific Daylight Time 0:48:37 Pacific Daylight Time	

11N 06/08/21 DF06/08/21

Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

1	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
1	1 2,3,7,8-TCDD	2.49e4	2.83e5	0.72	NO	0.929	26.70	26.70	NO	1.001	1.001	9.4797	94.8	NO
2	2 1,2,3,7,8-PeCDD	8.13e4	1.99e5	0.59	NO	0.826	31.15	31.14	NO	1.001	1.000	49.590	99.2	NO
3	3 1,2,3,4,7,8-HxCDD	6.59e4	1.35e5	1.27	NO	0.972	34.49	34.48	NO	1.001	1.000	50.316	101	NO
4	4 1,2,3,6,7,8-HxCDD	6.69e4	1.55e5	1.23	NO	0.877	34.61	34.61	NO	1.001	1.001	49.293	98.6	NO
5	5 1,2,3,7,8,9-HxCDD	6.61e4	1.52e5	1.29	NO	0.874	34.90	34.90	NO	1.000	1.000	49.863	99.7	NO
6	6 1,2,3,4,6,7,8-HpCDD	4.74e4	1.06e5	1.08	NO	0.899	38.30	38.30	NO	1.000	1.000	49.670	99.3	NO
7	7 OCDD	7.22e4	1.71e5	0.88	NO	0.852	41.36	41.37	NO	1.000	1.001	98.977	99.0	NO
8	8 2,3,7,8-TCDF	3.01e4	4.35e5	0.73	NO	0.747	26.05	26.06	NO	1.000	1.001	9.2602	92.6	NO
9	9 1,2,3,7,8-PeCDF	1.33e5	2.79e5	1.61	NO	0.877	29.93	29.94	NO	1.000	1.001	54.194	108	NO
10	10 2,3,4,7,8-PeCDF	1.34e5	2.65e5	1.59	NO	0.962	30.96	30.95	NO	1.001	1.000	52.700	105	NO
11	11 1,2,3,4,7,8-HxCDF	8.64e4	1.89e5	1.23	NO	0.920	33.53	33.54	NO	1.000	1.001	49.793	99.6	NO
12	12 1,2,3,6,7,8-HxCDF	9.27e4	2.00e5	1.26	NO	0.936	33.69	33.68	NO	1.001	1.000	49.498	99.0	NO
13	13 2,3,4,6,7,8-HxCDF	8.56e4	1.76e5	1.22	NO	0.973	34.38	34.37	NO	1.001	1.000	49.893	99.8	NO
14	14 1,2,3,7,8,9-HxCDF	6.84e4	1.50e5	1.26	NO	0.940	35.45	35.45	NO	1.000	1.000	48.522	97.0	NO
15	15 1,2,3,4,6,7,8-HpCDF	6.31e4	1.23e5	0.99	NO	1.05	37.08	37.08	NO	1.000	1.001	49.135	98.3	NO
16	16 1,2,3,4,7,8,9-HpCDF	5.25e4	9.91e4	1.03	NO	1.05	38.95	38.95	NO	1.000	1.000	50.695	101	NO
17	17 OCDF	8.70e4	2.32e5	0.86	NO	0.771	41.69	41.70	NO	1.000	1.001	97.181	97.2	NO
18	18 13C-2,3,7,8-TCDD	2.83e5	2.59e5	0.77	NO	1.10	26.66	26.67	NO	1.027	1.027	99.021	99.0	NO
19	19 13C-1,2,3,7,8-PeCDD	1.99e5	2.59e5	0.61	NO	0.864	31.03	31.12	NO	1.196	1.199	88.922	88.9	NO
20	20 13C-1,2,3,4,7,8-HxCDD	1.35e5	2.04e5	1.27	NO	0.746	34.46	34.47	NO	1.014	1.014	88.481	88.5	NO
21	21 13C-1,2,3,6,7,8-HxCDD	1.55e5	2.04e5	1.30	NO	0.847	34.58	34.59	NO	1.017	1.018	89.622	89.6	NO
22	22 13C-1,2,3,7,8,9-HxCDD	1.52e5	2.04e5	1.24	NO	0.868	34.88	34.88	NO	1.026	1.026	85.582	85.6	NO
23	23 13C-1,2,3,4,6,7,8-HpCDD	1.06e5	2.04e5	1.05	NO	0.664	38.23	38.29	NO	1.125	1.126	78.373	78.4	NO
24	24 13C-OCDD	1.71e5	2.04e5	0.88	NO	0.561	41.18	41.35	NO	1.211	1.216	149.65	74.8	NO
25	25 13C-2,3,7,8-TCDF	4.35e5	4.12e5	0.78	NO	1.09	26.05	26.05	NO	1.003	1.003	96.625	96.6	NO
26	26 13C-1,2,3,7,8-PeCDF	2.79e5	4.12e5	1.62	NO	0.809	29.76	29.93	NO	1.147	1.153	83.733	83.7	NO
27	27 13C-2,3,4,7,8-PeCDF	2.65e5	4.12e5	1.61	NO	0.803	30.73	30.94	NO	1.184	1.192	80.181	80.2	NO
28	28 13C-1,2,3,4,7,8-HxCDF	1.89e5	2.04e5	0.49	NO	1.01	33.54	33.52	NO	0.987	0.986	91.403	91.4	NO
29	29 13C-1,2,3,6,7,8-HxCDF	2.00e5	2.04e5	0.49	NO	1.07	33.67	33.67	NO	0.990	0.990	91.305	91.3	NO
30	30 13C-2,3,4,6,7,8-HxCDF	1.76e5	2.04e5	0.50	NO	0.910	34.36	34.36	NO	1.011	1.011	95.032	95.0	NO
31	31 13C-1,2,3,7,8,9-HxCDF	1.50e5	2.04e5	0.51	NO	0.828	35.43	35.44	NO	1.042	1.042	88.801	88.8	NO

Quantify Sample Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory MassLynx 4.1 SCN815

Dataset: U:\VG12.PRO\Results\210607R4\210607R4_1.qld

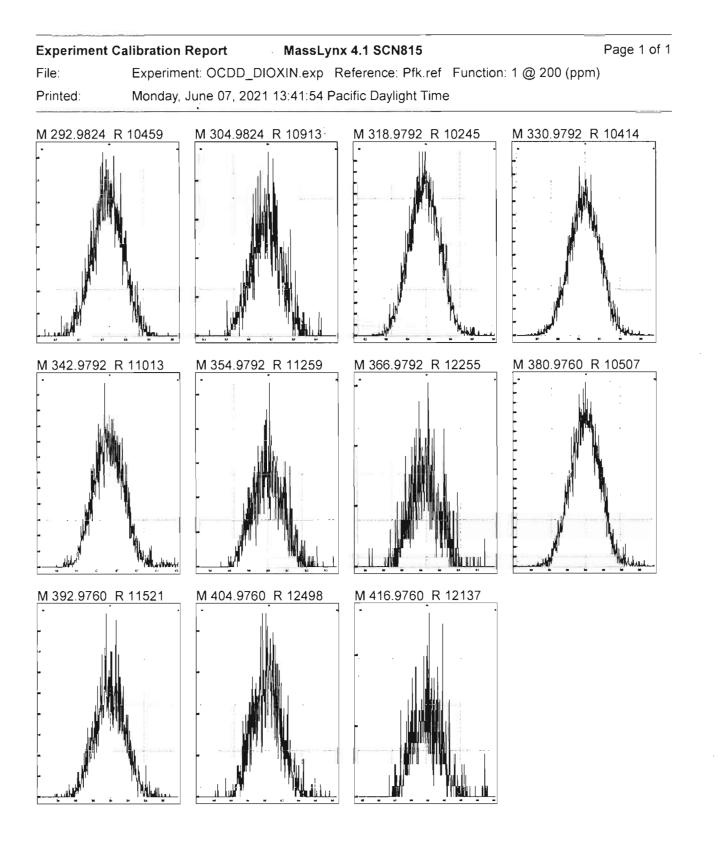
Last Altered:	Tuesday, June 08, 2021 10:47:15 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 10:48:37 Pacific Daylight Time

100	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
32	32 13C-1,2,3,4,6,7,8-HpCDF	1.23e5	2.04e5	0.42	NO	0.661	37.04	37.06	NO	1.090	1.090	90.936	90.9	NO
33	33 13C-1,2,3,4,7,8,9-HpCDF	9.91e4	2.04 e 5	0.40	NO	0.566	38.80	38.94	NO	1.141	1.145	85.852	85.9	NO
34	34 13C-OCDF	2.32e5	2.04e5	0.87	NO	0.663	41.57	41.68	NO	1.223	1.226	171.78	85.9	NO
35	35 37CI-2,3,7,8-TCDD	4.89e4	2.59e5			2.07	26.86	26.70	NO	1.035	1.028	9.1478	91.5	NO
36	36 13C-1,2,3,4-TCDD	2.59e5	2.59e5	0.78	NO	1.00	26.07	25.96	NO	1.000	1.000	100.00	100	NO
37	37 13C-1,2,3,4-TCDF	4.12e5	4.12e5	0.77	NO	1.00	24.76	24.61	NO	1.000	1.000	100.00	100	NO
38	38 13C-1,2,3,4,6,9-HxCDF	2.04 e 5	2.04e5	0.49	NO	1.00	34.04	33.99	NO	1.000	1.000	100.00	100	YES

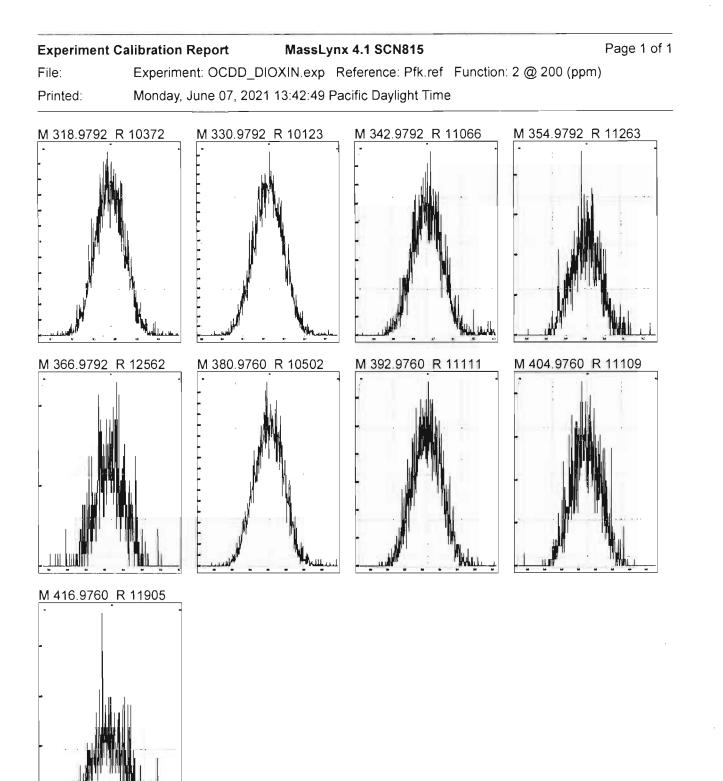
Quantify Compound Summary ReportMassLynx 4.1 SCN815Vista Analytical Laboratory VG-11

- - -

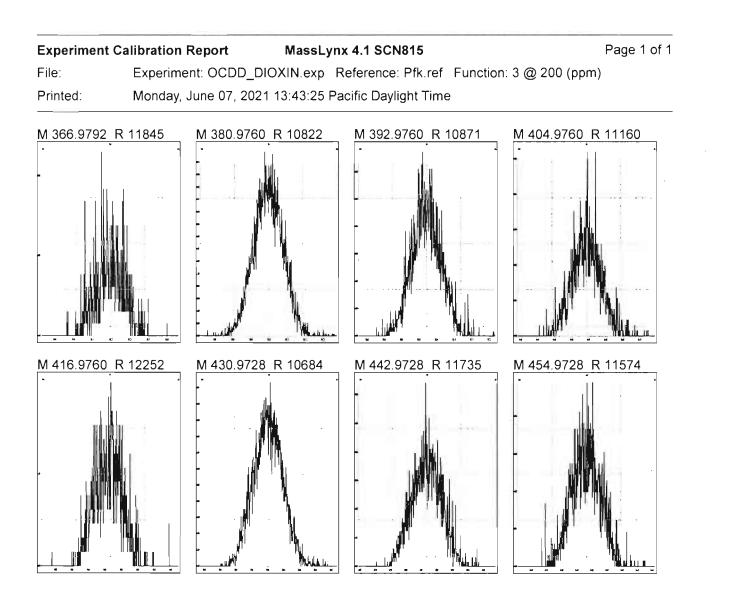
Dataset: Untitled


Last Altered:Tuesday, June 08, 2021 10:48:52 Pacific Daylight TimePrinted:Tuesday, June 08, 2021 10:49:08 Pacific Daylight Time

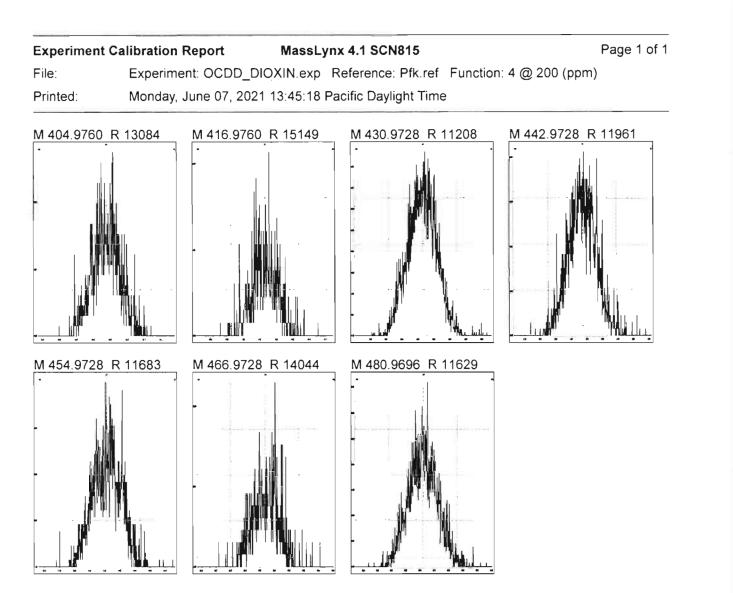
Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

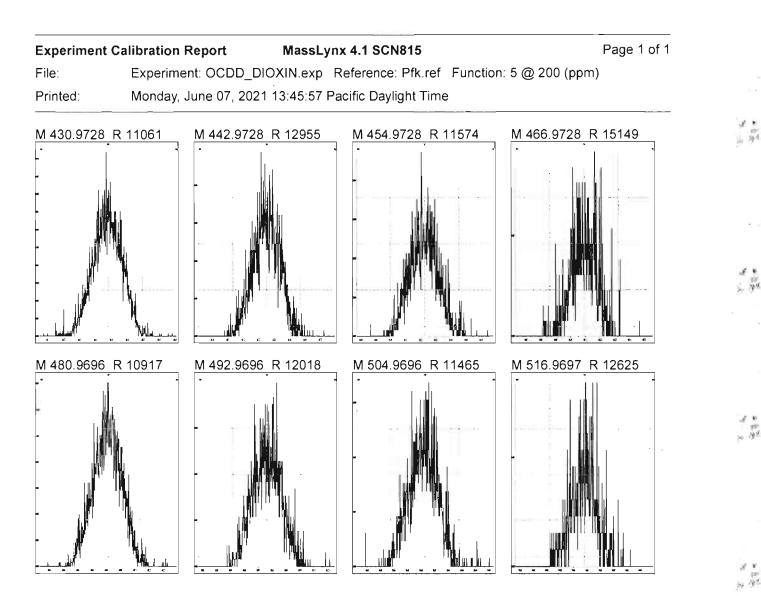

Compound name: 2,3,7,8-TCDD

	Name	ID	Acq.Date	Acq.Time
1	210607R4_1	ST210607R4_1 1613 CS3 21C0105	07-Jun-21	13:47:05
2	210607R4_2	B1F0027-BS1 OPR 1	07-Jun-21	14:35:10
3	210607R4_3	SOLVENT BLANK	07-Jun-21	15:24:39
4	210607R4_4	B1F0027-BLK1 Method Blank 1	07-Jun-21	16:09:54
5	210607R4_5	2105037-01RE1 SC-FB-2105030940 1.0001	07-Jun-21	17:00:14
6	210607R4_6	2105037-02RE1 SC-RB-2105030901 1.03522	07-Jun-21	17:46:08
7	210607R4_7	HRMS-210603-05	07-Jun-21	18:30:27
8	210607R4_8	SOLVENT BLANK	07-Jun-21	19:14:42
9	210607R4_9	B1E0193-BLK1 Method Blank 1	07-Jun-21	19:58:57
10	210607R4_10	2105037-01 SC-FB-2105030940 1.00168	07-Jun-21	20:43:11
11	210607R4_11	2105037-02 SC-RB-2105030901 1.02432	07-Jun-21	21:27:26
12	210607R4_12	2105089-01RE1 Ads A 1.03068	07-Jun-21	22:11:40
13	210607R4_13 🤇	Ð		
14	210607R4_14	T'		
15	210607R4_15			
16	210607R5_1	,		
17	210607R5_2	ST210607R5_1 1613 CS3 21C0105	08-Jun-21	08:55:38


DInstrument paused, end C(al injected & end resolution check printed FIN 06/08/21

1 1



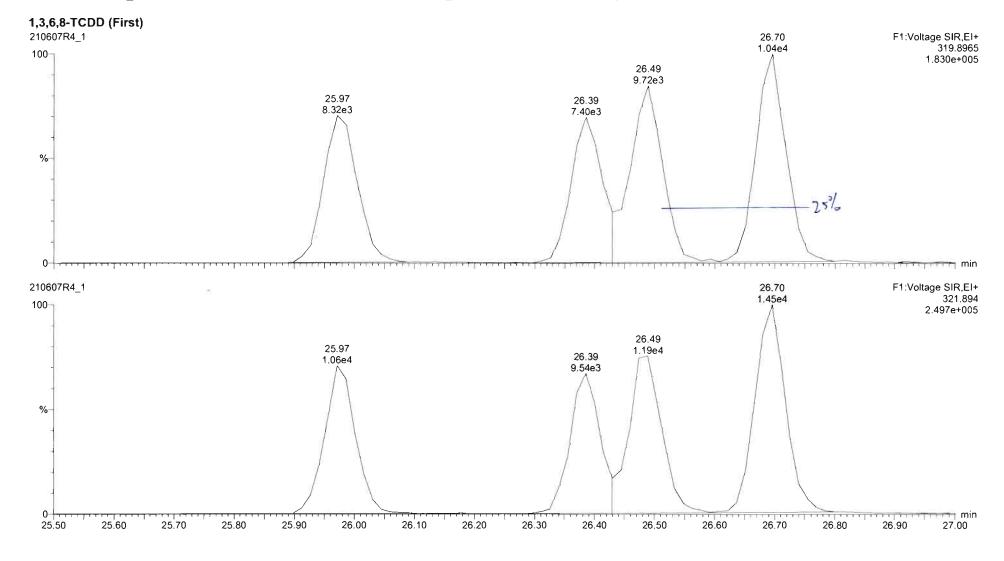

10

ý,

1

•	mple Summary Report MassLynx 4.1 SCN815 cal Laboratory VG-11	
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_CPSM.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:31:12 Pacific Daylight Time Tuesday, June 08, 2021 10:31:36 Pacific Daylight Time	

Method: U:\VG12.PRO\MethDB\CPSM.mdb 18 May 2021 09:49:43 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

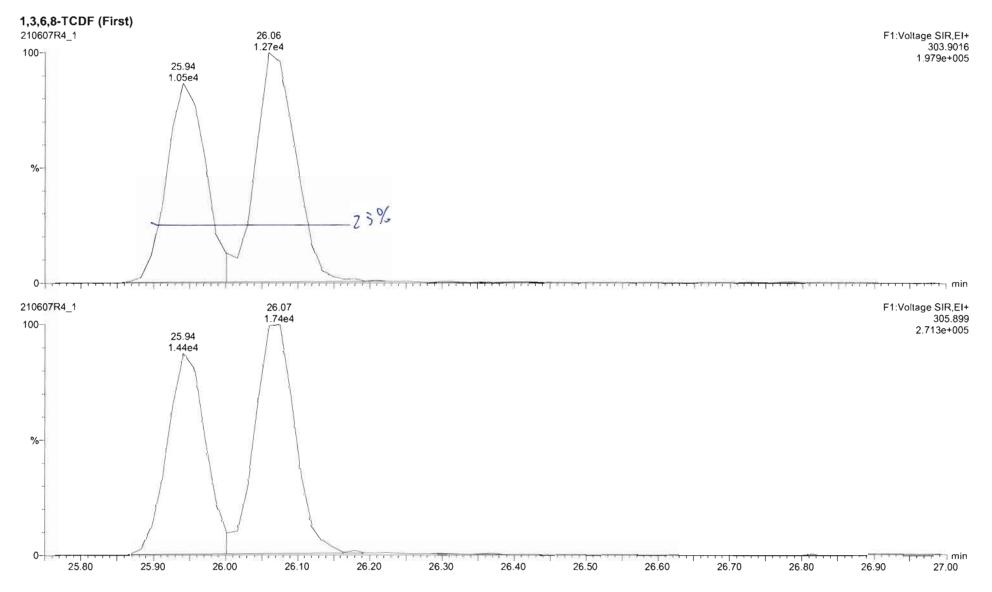

1	# Name	RT
1	1 1,3,6,8-TCDD (First)	23.24
2	2 1,2,8,9-TCDD (Last)	27.54
3	3 1,2,4,7,9-PeCDD (First)	28.95
4	4 1,2,3,8,9-PeCDD (Last)	31.48
5	5 1,2,4,6,7,9-HxCDD (First)	32.76
6	6 1,2,3,7,8,9-HxCDD (Last)	34.90
7	7 1,2,3,4,6,7,9-HpCDD (First)	37.41
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.30
9	9 1,3,6,8-TCDF (First)	21.08
10	10 1,2,8,9-TCDF (Last)	27.85
11	11 1,3,4,6,8-PeCDF (First)	27.39
12	12 1,2,3,8,9-PeCDF (Last)	31.84
13	13 1,2,3,4,6,8-HxCDF (First)	32.23
14	14 1,2,3,7,8,9-HxCDF (Last)	35.45
15	15 1,2,3,4,6,7,8-HpCDF (First)	37.08
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.95

Quantify Sample ReportMassLynx 4.1 SCN815Vista Analytical Laboratory VG-11

Printed:	Tuesday, June 08, 2021 10:31:36 Pacific Daylight Time	LIN
Last Altered:	Tuesday, June 08, 2021 10:31:12 Pacific Daylight Time	
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_CPSM.qld	

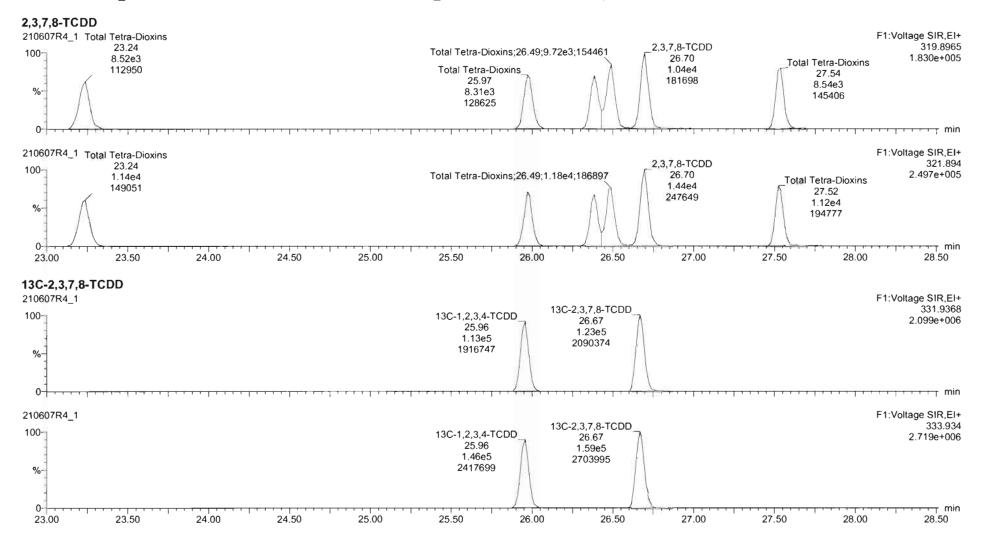
LIN 06/08/21

Method: U:\VG12.PRO\MethDB\CPSM.mdb 18 May 2021 09:49:43 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

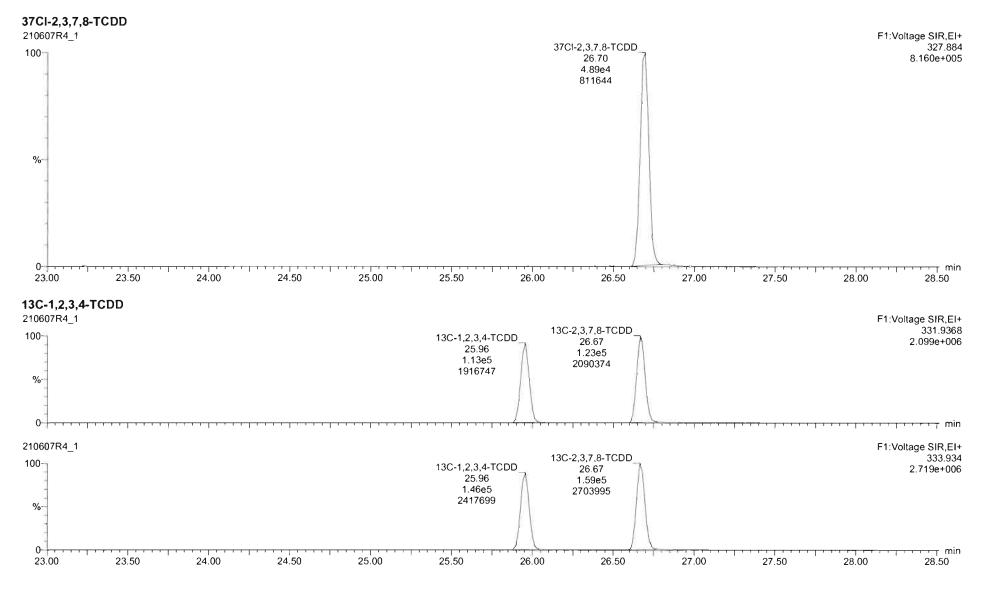


Quantify Sample ReportMassLynx 4.1 SCN815Vista Analytical Laboratory VG-11

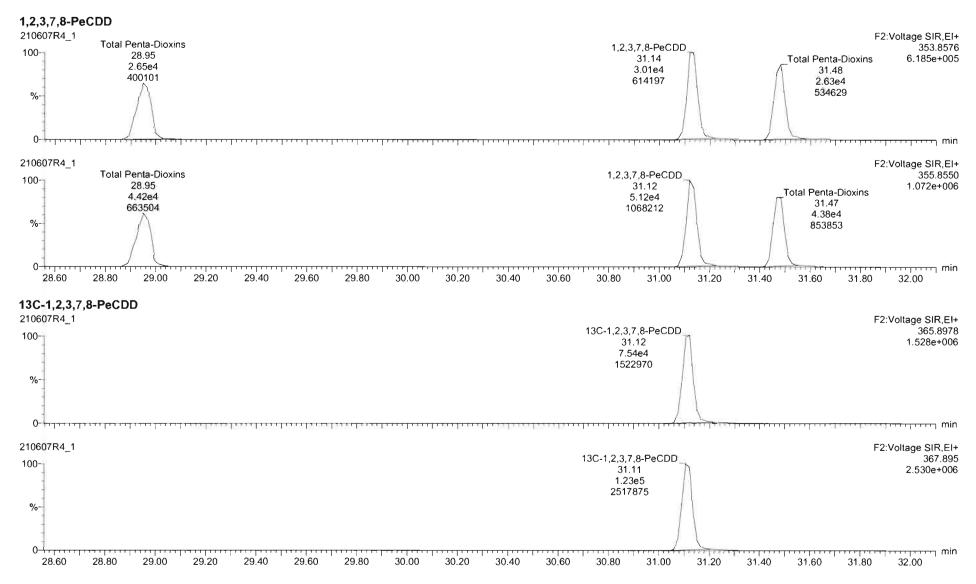
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_CPSM.gld

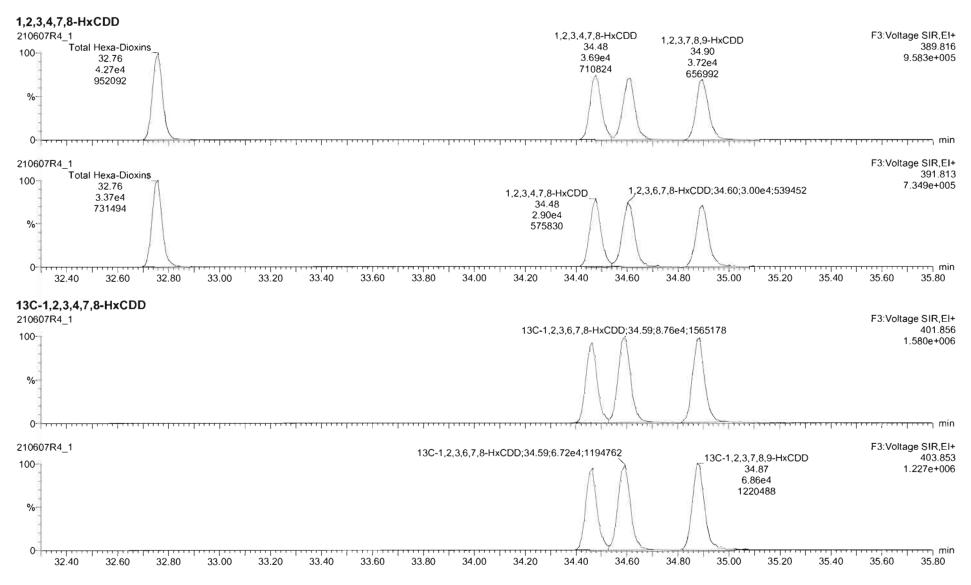

Last Altered: Tuesday, June 08, 2021 10:31:12 Pacific Daylight Time Printed: Tuesday, June 08, 2021 10:31:36 Pacific Daylight Time

FIN 06/08/21



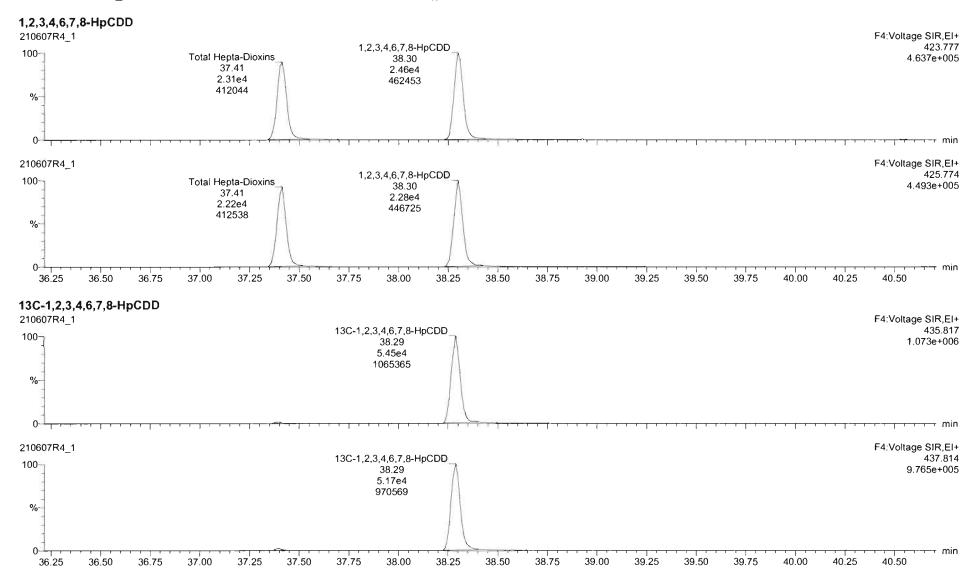
Quantify Sam Vista Analytica	· · ·	Page 1 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	


Method: U:\VG12.PRO\MethDB\1613rrt-04-27-21.mdb 27 Apr 2021 17:33:38 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

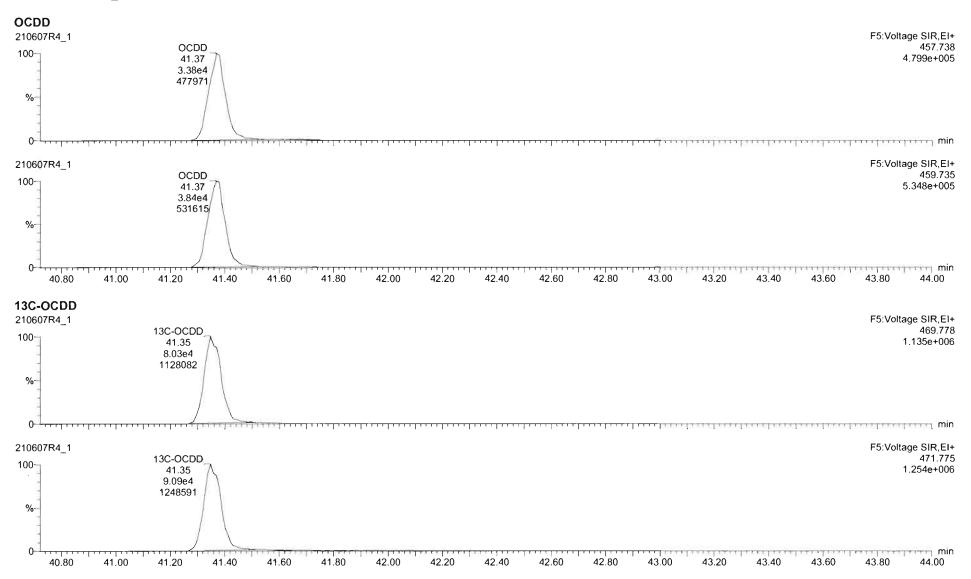

Quantify Sam Vista Analytica		Page 2 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	

Quantify San Vista Analytica		Page 3 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	

Quantify San Vista Analytic		Page 4 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	

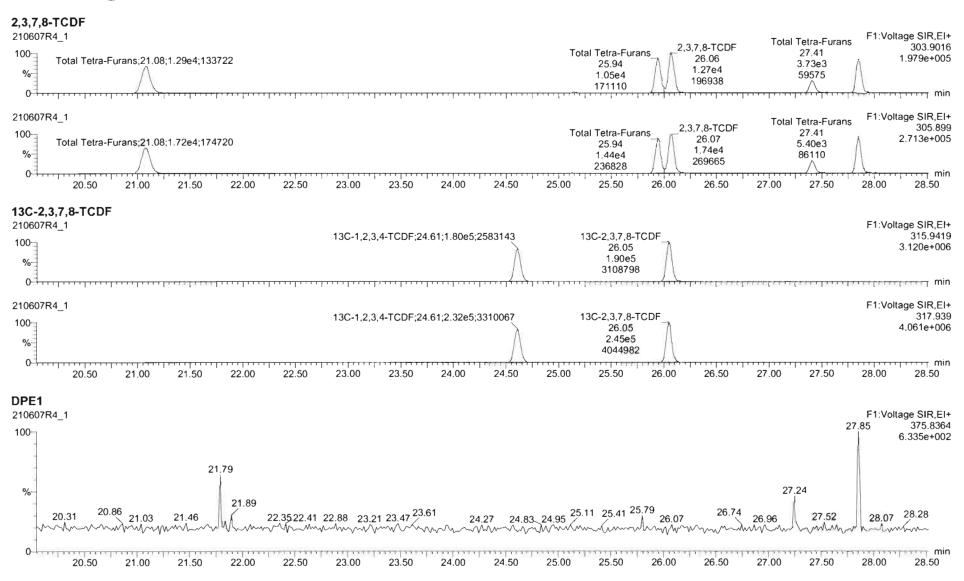


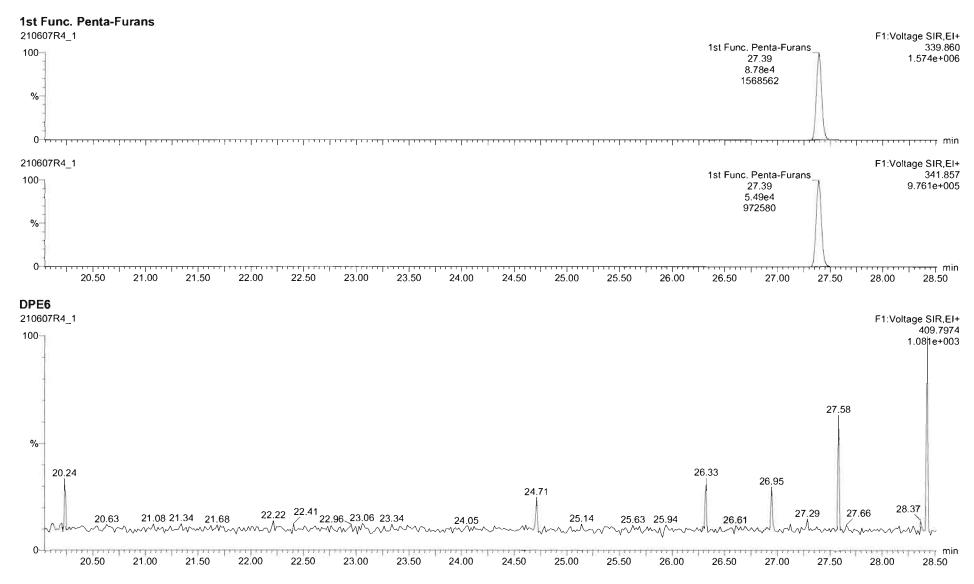
By S Resp. Pred RA RA my RRF Pred RT RT 124 283e5 0.77 0.72 NO 0.9291 26.70 26.70 124 1.9985 0.63 0.59 1.00 0.8251 31.15 31.14 124 1.9985 0.63 0.59 1.00 0.8257 31.44 34.48 124 1.5285 1.24 1.27 NO 0.9775 34.40 34.48 144 1.5285 1.24 1.29 NO 0.8977 34.30 38.30 38.30 144 1.5285 1.24 1.29 NO 0.8987 36.30 38.30	RT Fieg Pred RRT RT Conc. %Rec STD out NO 1.001 1.001 9.48 9.48 NO NO 1.001 1.000 49.6 99.2 NO NO 1.001 1.000 50.3 1.01 NO NO 1.001 1.000 50.3 1.01 NO NO 1.001 1.000 49.3 99.6 HO NO 1.000 1.000 49.9 99.7 HO NO 1.000 1.000 49.7 99.0 NO NO 1.000 1.001 49.7 99.0 NO NO 1.000 1.001 92.6 NO NO NO 1.000 1.001 52.7 1.08 NO NO 1.001 1.001 52.7 1.08 NO NO 1.001 1.000 49.5 99.0 NO NO 1.001 1.000 49.5		
Pet 283e5 0.77 072 N0 0.9291 26.70 26.70 ke4 1.99e5 0.63 0.59 N0 0.8251 31.15 31.14 ke4 1.99e5 0.63 0.59 N0 0.8721 34.44 34.48 ke4 1.55e5 1.24 1.27 NO 0.8771 34.61 34.61 ke4 1.55e5 1.24 1.23 NO 0.8771 34.61 34.61 ke4 1.55e5 1.24 1.29 NO 0.8971 34.61 34.61 ke4 1.55e5 1.24 1.28 NO 0.8977 36.31 38.30 ke4 1.05e5 1.64 1.08 NO 0.8927 36.53 31.54 ke5 2.79e5 1.55 1.51 NO 0.8971 39.29 34.65 ke5 2.79e5 1.55 1.51 NO 0.9621 30.65 30.95 ke4 1.89e5	NO 1.001 1.001 9.48 9.48 NO NO 1.001 1.000 49.6 99.2 NO NO 1.001 1.000 49.6 99.2 NO NO 1.001 1.000 50.3 101 NO MO 1.001 1.000 49.3 98.6 MO MO 1.000 1.000 49.7 99.3 MO NO 1.000 1.000 49.7 99.3 MO NO 1.000 1.001 99.0 NO NO 1.000 1.001 52.6 NO NO 1.000 1.001 52.7 10.8 NO NO 1.001 1.001 52.7 10.5 NO NO 1.001 1.001 52.7 10.5 NO NO 1.001 1.001 49.5 99.0 NO NO 1.001 1.000 49.5 99.0 NO NO NO 1.001		
bed 135e5 124 127 NO 0 9725 34 49 34 48 bed 155e5 124 123 NO 0 8771 34 61 36 61 bed 155e5 124 123 NO 0 8736 34 49 34 48 bed 155e5 124 123 NO 0 8736 34 40 34 80 bed 106e5 124 128 MO 0 8736 34 40 34 80 bed 106e5 1.04 108 NO 0.8973 34 40 38 30 bed 171e5 0.89 0.88 NO 0.8924 41 36 41 37 bed 171e5 0.89 0.88 NO 0.8721 29 93 29 94 bes 279e5 1.55 156 NO 0.9721 30 95 36 86 bes 2.85e5 1.55 159 NO 0.9621 30 95 35 86 33.54 bes 1.24 <td< td=""><td>NO 1.001 1.000 50.3 101 NO NO 1.001 1.001 49.3 98.6 NO NO 1.000 1.000 49.3 99.6 NO NO 1.000 1.000 49.9 99.7 NO NO 1.000 1.000 49.7 99.3 NO NO 1.000 1.001 92.0 92.6 NO NO 1.000 1.001 54.2 108 NO NO 1.000 1.001 49.5 99.6 NO NO 1.001 1.000 49.5 99.6 NO</td><td></td><td></td></td<>	NO 1.001 1.000 50.3 101 NO NO 1.001 1.001 49.3 98.6 NO NO 1.000 1.000 49.3 99.6 NO NO 1.000 1.000 49.9 99.7 NO NO 1.000 1.000 49.7 99.3 NO NO 1.000 1.001 92.0 92.6 NO NO 1.000 1.001 54.2 108 NO NO 1.000 1.001 49.5 99.6 NO NO 1.001 1.000 49.5 99.6 NO		
ist 124 123 NO 0.8771 34.61 34.61 ist 15265 124 129 NO 0.8771 34.61 34.61 ist 15265 124 129 NO 0.8771 34.61 34.61 ist 1065 124 129 NO 0.8977 34.60 34.80 ist 10655 124 128 NO 0.8987 33.0 33.30 33.30 ist 1715 0.89 0.88 NO 0.8987 43.30 38.30 ist 1715 0.89 0.88 NO 0.8927 43.33 38.30 ist 1715 0.89 0.88 NO 0.8924 41.36 41.37 ist 51.51 150 NO 0.9721 30.95 32.94 66 30.95 ist 1895 124 123 NO 0.9722 33.53 33.54 ist 2005 124	NO 1.001 1.001 49.3 98.6 HC NO 1.000 1.000 49.7 99.7 NC NO 1.000 1.000 49.7 99.3 HC NO 1.000 1000 49.7 99.3 HC NO 1.000 1001 99.0 NC NO 1.000 1001 92.6 92.6 NO NO 1.001 1001 52.7 105 NO NO 1.001 1001 49.5 99.6 NO NO 1.001 1.000 49.5 99.0 NO NO 1.001 1.000 49.8 99.6 INO NO 1.001 1.000 49.5 99.0 NO NO 1.001 1.000 49.9 99.8 NO		
i+i 1.52e5 1.2i 1.2g NO 0.8736 34.100 34.90 iet 1.06e5 1.04 1.08 NO 0.8736 34.100 34.90 iet 1.06e5 1.04 1.08 NO 0.8736 34.100 34.90 iet 1.06e5 1.04 1.08 NO 0.8927 36.30 38.30 iet 1.755 0.88 NO 0.8524 11.36 41.37 iet 4.35e5 0.77 0.73 NO 0.8524 11.36 41.37 iet 2.75e5 1.55 1.51 1.61 10.0877 29.32 29.44 ie5 2.65c5 1.55 1.59 NO 0.9202 33.53 33.54 ie4 1.89e5 1.24 1.25 NO 0.9202 33.53 33.68 ie4 1.50e5 1.24 1.26 NO 0.9306 35.43 34.75 ie4 1.50e5 1.24	NO 1.000 7.000 49.9 99.7 NO NO 1.000 1.000 49.7 99.3 NO NO 1.000 1.001 99.0 NO NO NO 1.000 1.001 99.0 99.0 NO NO 1.000 1.001 92.6 NO NO 1.000 1.001 54.2 1.08 NO NO 1.001 1.000 52.7 105 NO NO 1.001 1.000 49.5 99.6 NO		
iei 108e5 1.04 1.08 NO 0.8987 38.30 38.30 iei 1.71e5 0.89 0.88 NO 0.824 41.35 41.37 iei 4.35e5 0.77 0.73 NO 0.7466 26.05 26.66 iei 2.35e5 1.55 1.51 1.00 0.877 29.93 29.94 iei 2.65e5 1.55 1.59 NO 0.921 30.66 30.95 iei 1.8965 1.24 1.23 NO 0.9202 3.53 33.54 iei 1.7665 1.24 1.26 NO 0.9303 33.59 33.64 iei 1.7665 1.24 1.22 NO 0.9725 34.38 34.37 iei 1.565 1.24 1.26 NO 0.9333 33.64 iei 1.565 1.24 1.26 NO 0.9336 35.45 iei 1.565 1.24 1.26 NO <td>NO 1.000 1000 49.7 99.3 MO NO 1.000 1.001 99.0 99.0 NO NO 1.000 1.001 92.0 92.6 NO NO 1.001 1.001 54.2 1.08 NO NO 1.001 1.000 52.7 1.05 NO NO 1.001 1.000 52.7 1.05 NO NO 1.001 1.000 49.8 99.6 NO NO 1.001 1.000 49.5 99.0 NO NO 1.001 1.000 49.5 99.0 NO</td> <td></td> <td></td>	NO 1.000 1000 49.7 99.3 MO NO 1.000 1.001 99.0 99.0 NO NO 1.000 1.001 92.0 92.6 NO NO 1.001 1.001 54.2 1.08 NO NO 1.001 1.000 52.7 1.05 NO NO 1.001 1.000 52.7 1.05 NO NO 1.001 1.000 49.8 99.6 NO NO 1.001 1.000 49.5 99.0 NO NO 1.001 1.000 49.5 99.0 NO		
Ref 1 71e5 0 89 0 88 NO 0 8524 41 36 41 37 Ref 4 35e5 0 77 0.73 NO 0 7466 26 55 26 66 S5 2.79e5 155 151 NO 0 8771 293 293 44 Ref 2.85e5 155 159 NO 0 9821 30 96 30 95 Ref 1.89e5 1.24 1.23 NO 0.9202 3.53.53 33.54 Ref 2.09e5 1.24 1.23 NO 0.9203 33.69 33.86 Ref 1.76e5 1.24 1.23 NO 0.9203 33.54 33.54 Ref 1.76e5 1.24 1.22 NO 0.9725 34.38 34.37 Ref 1.50e5 1.24 1.26 NO 0.9336 35.45 35.45 Ref 1.50e5 1.24 1.26 NO 0.9364 35.45 35.45	NO 1000 1001 990 990 NO NO 1000 1001 928 92.6 NO NO 1000 1001 928 92.6 NO NO 1001 1000 54.2 108 NO NO 1001 1000 52.7 105 NO NO 1001 1000 49.8 99.6 HO NO 1001 1000 49.5 99.0 NO NO 1001 1000 49.9 99.8 NO NO 1001 1000 49.9 99.8 NO		
e4 4 35e5 0 77 0.73 H0 0 7466 26 05 26 06 45 2 73e5 1.55 1.61 H0 0 877 29 33 29 84 162 2 6 565 1.55 1.51 159 H0 0 9421 30 06 30 95 164 1 89e5 1 24 1 23 H0 0.9202 33.53 33.54 164 2 00e5 1 24 1 22 H0 0.9202 33.53 33.54 164 1 50e5 1.24 1 22 H0 0.9275 34 38 34 37 164 1 50e5 1.24 1 26 H0 0 9396 35 43 34 37 164 1 50e5 1.24 1 26 H0 0 9396 35 45 35 45 13 21C0105 140 150 140 160 160 160 170	NO 1000 1001 926 92.6 NO NO 1000 1001 54.2 108 NO NO 1001 1000 52.7 105 NO NO 1001 1000 52.7 105 NO NO 1001 1000 49.8 99.6 NO NO 1001 1000 49.5 99.0 NO NO 1001 1000 49.5 99.0 NO NO 1001 1000 49.5 99.0 NO		
Les 2 79e5 1 55 1 61 H0 0 8771 29 93 29 94 Les 2 85e5 1 55 1 59 HO 0 9621 30 66 30 95 Le4 1 89e5 1 24 1 23 HO 0 9202 33 53 33 54 Le4 1 89e5 1 24 1 23 HO 0 9303 33 69 33 68 Le4 2 00e5 1 24 1 23 HO 0 9303 33 69 33 68 Le4 1 76e5 1 24 1 22 HO 0 9383 33 69 33 68 Le4 1 50e5 1 .24 1 22 HO 0 9396 35 45 35 45 Le4 1 50e5 1 .24 1 20 HO 0 9396 35 45 35 45 Le4 1 50e5 1 .24 1 20 HO 0 939 35 45 35 45 Le4 1 50e5 1 .24 1 20 HO 0 936 35 45 35 45 Le4 1 50e5	NO 1 000 1 001 54 2 108 NO NO 1 001 1 000 52 7 105 NO NO 1 000 1 001 49.8 99.6 NO NO 1 001 1 000 49.5 99.0 NO NO 1 001 1 000 49.5 99.0 NO NO 1 000 1 000 49.5 99.0 NO NO 1 000 49.5 99.0 NO		
ies 2 85e5 1 55 1 59 NO 0 9621 30 96 30 95 ie4 1 89e5 1 24 1 23 NO 0 9621 33.53 33.54 ie4 1 89e5 1 24 1 23 NO 0 9921 33.53 33.54 ie4 1 76e5 1 24 1 26 NO 0 9383 33.59 33.84 ie4 1 76e5 1 .24 1 22 NO 0 9383 33.54 35.45 ie4 1 50e5 1 .24 1 22 NO 0 93936 35.45 35.45 ie4 1 50e5 1 .24 1 26 NO 0 93936 35.45 35.45 ie4 1 50e5 1 .24 1 26 NO 0 9396 35.45 35.45 i3 21C0105 14 14 150e5 14 14 150e5 14	NO 1001 1000 52.7 105 NO NO 1000 1001 49.8 99.6 NO NO 1001 1000 49.5 99.0 NO NO 1.001 1000 49.5 99.0 NO NO 1.001 1000 49.7 99.8 NO NO 1.001 1000 49.5 97.0 NO		
iei 189e5 124 123 NO 0.9202 33.53 33.54 iei 200e5 1.24 1.26 NO 0.9202 33.53 33.54 iei 1765 1.24 1.26 NO 0.9202 33.54 33.54 iei 1765 1.24 1.26 NO 0.9275 34.88 34.37 iei 150c5 1.24 1.26 NO 0.9275 34.88 34.37 iei 150c5 1.24 1.26 NO 0.9396 35.45 35.45 iiii 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	HO 1000 1001 49.8 99.6 HO NO 1001 1000 49.5 59.0 NO HO 1.001 1000 49.9 59.8 NO NO 1.001 1000 49.9 59.8 NO NO 1.001 1000 48.5 97.0 NO		
reat 2 00e5 1 24 1 26 NO 0 9363 33 69 33 68 5e4 1 76e5 1.24 1 22 NO 0.9725 34 38 34 37 se4 1 50e5 1.24 1 22 NO 0.9725 34 38 34 37 se4 1 50e5 1.24 1 26 NO 0.9396 35 45 35 45 3 21C0105 100 100 100 100 100 100 100 100	NO 1 001 1 000 49 5 99 0 NO NO 1.001 1 000 49.9 99.8 NO NO 1 000 1 000 48.5 97.0 NO		
iei 176e5 1.24 122 NO 0.9725 34 38 34 37 iei 150e5 1.24 126 NO 0.9396 35 45 35 45 isi 21C0105 100 100 100 100 100 100 100	NO 1.001 1.000 49.9 99.8 NO NO 1.000 1.000 48.5 97.0 NO		
ied 150e5 1.24 126 NO 0.9336 35.45 35.45 3.3 21C0105	NO 1000 1.000 48.5 97.0 NO		
3 21C0105			
			F3 Voltage
34,48 34,61			7,14
	1,2,3,7,8,9-HxCDD;34_90;37166.48;656992		7.14
· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	1.2.3.7.8.9-HxCDD		F3 Voltage
3 2 1 C 0 1 0 5	34.90		3
			5 78
\wedge	512560		
			F3 Voltage
34.47 34.59	13C-1.2.3.7,8,9-HxCDD;34.88;83978.99;1529583		1.58
\wedge \wedge			
	Contraction of the second s		
			- 411040
200000			F3 Voltage
	43C 4 3 3 7 8 6 UNCOR 34 67-57630 05-4340704		1 22
34,47 34,59	13C-1,2,3,7,8,9-1XCDD;54.87,87630.98;1219704		
		5 10 35 15 35 20 35.25 35 30 35 35 35 35.40 35 45 35 50 35 55 35 60 35 85 35.70 3	35.75 35.80 35
	3 21C0105	321C0105 34.47 34.47 34.59 34.47 34.59 34.47 34.59 34.47 34.59 34.47 34.59 32.100105 34.47 34.59 34.60 32.100105 34.47 34.59 34.50 3	34.80 34.48 34.80 34.80 34.80 34.80 34.80 34.80 34.80 34.7 34.59 34.47 34.59 13C-1.2.3,7,8,9-HxCDD;34.88;83978.99;1529583 13C-1.2.3,7,8,9-HxCDD;34.88;83978.99;152958 13C-1.2.3,7,8,9-HxCDD;34.88;83978.99;1529 13C-1.2.3,7,8,9-HxCDD;34.88;83978 13C-1.2.3,7,8,9-HxCDD;34.88;83978 13C-1.2.3,7,8,9-HxCDD;34.88;83978 13C-1.2.3,7,8,9-HxCDD;34.88;83978 13C-1.2.3,7,8,9-HxCDD;34.88;83978 13C-1.2.3,7,8,9-HxCDD;34.88;83978 13C-1.2.3,7,8,9-HxCDD;34.88;8378 13C-1.2.3,7,8,9-HxCDD;34.88;8378 13C-1.2.3,7,8,9-HxCDD;34.88;8378 13C-1.2.3,7,8,9-HxCDD;34.88;8378 13C-1.2.3,7,8,9-HxCDD;34.88;8378 13C-1.2.3,7,7,7,8,9-HxCDD;34.88;7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,


1 TargetLynx - 210607R4_Lold * - (Chromatogram

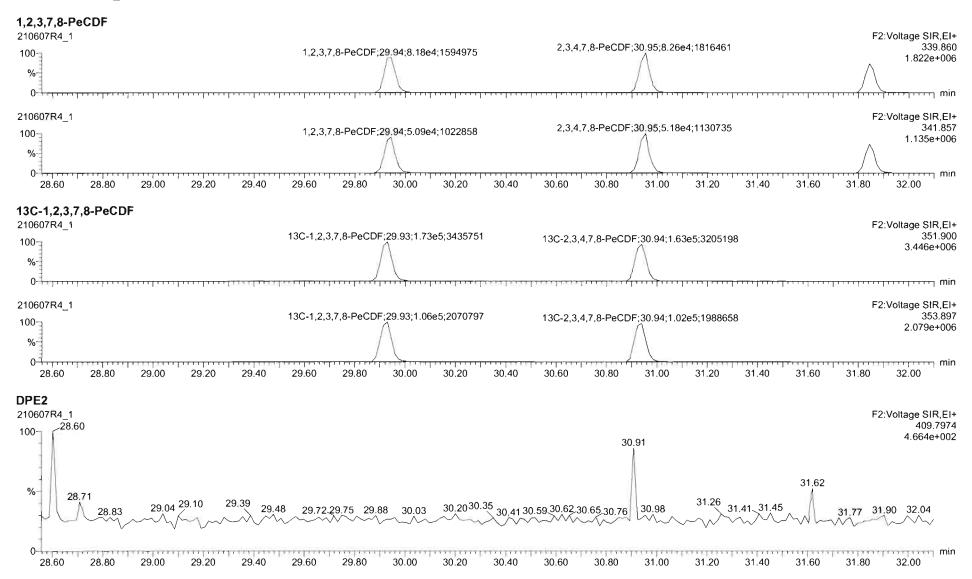
- 0 ×

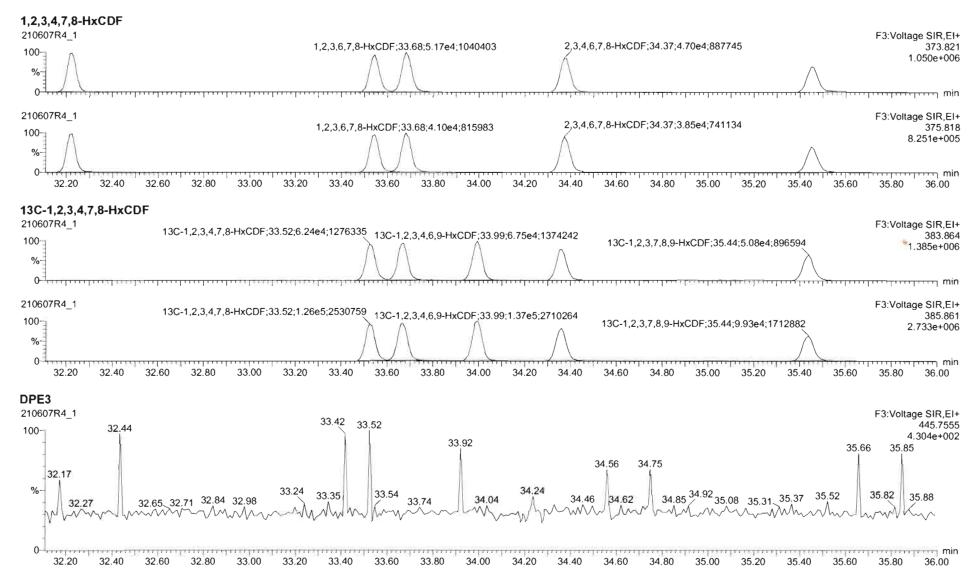
Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	

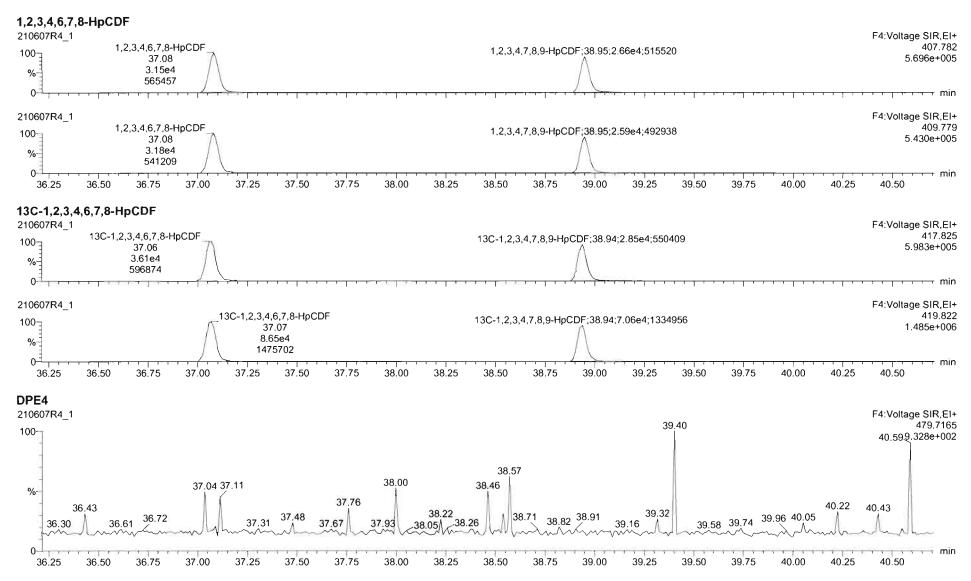

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	


Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

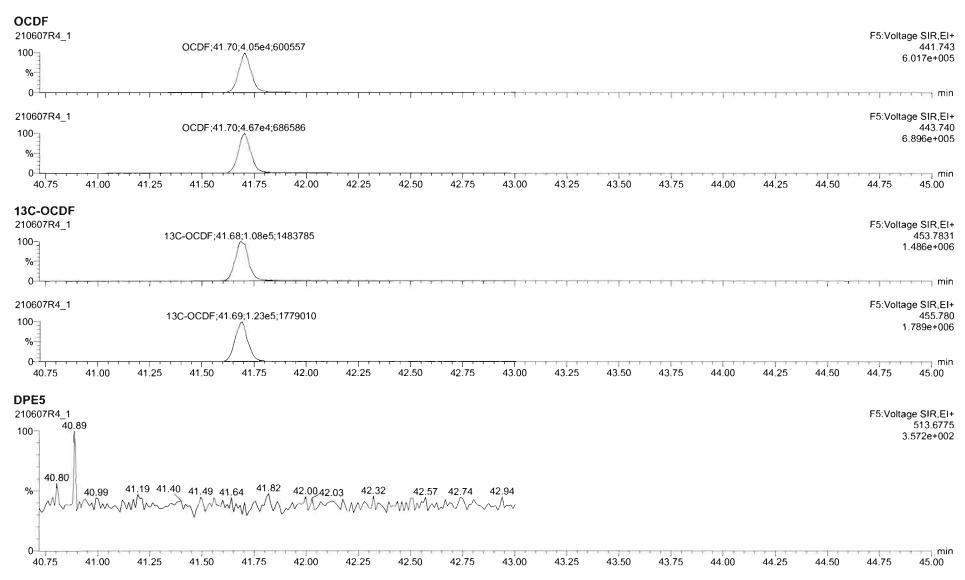
Dataset: U:\VG12.PRO\Results\210607R4\210607R4_1.qld


Last Altered:Tuesday, June 08, 2021 10:27:41 Pacific Daylight TimePrinted:Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time


Quantify San Vista Analytica		Page 8 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	


Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	

lts\210607R4\210607R4_1.qld	
2	ults\210607R4\210607R4_1.qld 2021 10:27:41 Pacific Daylight Time 2021 10:30:33 Pacific Daylight Time



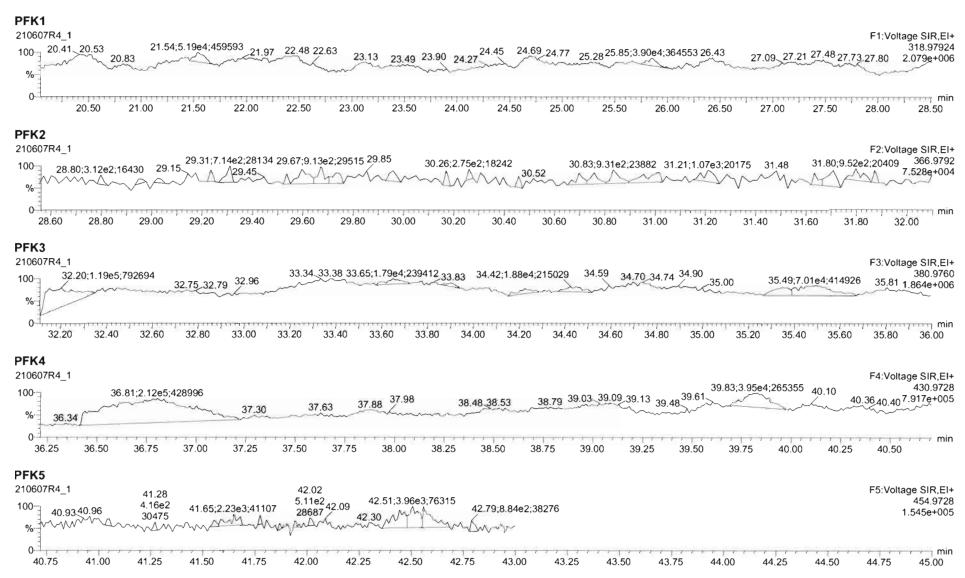
Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	

										210(607R4_	1 - ST2	21060	7R4_1 16	13 CS3 21	1C0105 -	1613 CS	53 21C01	05						
lame	Resp	IS Resp	Pred RA	RA	nly	RRF	Pred R	RT	RT Flag	Pred RR	RRT	Conc	. %Rec	c STD out	T T				_			 			
3.7,8-TCDD	2.49e4	2 83e5	0.77					26 70	NO	1 001	1 001														
,2.3,7,8-PeCDD	8 13e4	1 99e5	0 63			0 8257		31.14	NO	1 001	1 000														
,2,3,4,7,8-HxCDD ,2,3,6,7,8-HxCDD	6 59e4 6 69e4	1 35e5 1 55e5	1 24		NO NO	0 9725		34 48 34 61	NO NO	1.001	1 000 1		101 98.6												
2,3,7,8,9-HxCDD	6 61e4	1 52e5	1 24		NO	0 8739		34 90	NO	1 000	1 000		99 7												
2,3,4,6,7,8-HpC00	4 74e4	1 06e5	1.04		NO	0.8987			NO	1.000															
CDO	7 22 #4	171e5	0.89			0 8524			NO	1 000			99.0												
.3.7.8-TCDF	3 01e4	4 35e5	0.77		NO	0.7466			NO	1 000	1 001		92.6												
.2.3.7.8-PeCDF	1 33e5	2 79e5	155			0 8771			0 N	1 000	1.001														
.3.4.7.8-PeCDF	1 34e5	2 65e5		1 59		0.9621			NO NO	1.001															
,2,3,4,7,8-HxCDF ,2,3,6,7,8-HxCDF	8 64 e4	1 69e5 2 00e5	1.24	1 23	NO NO	0 9202		33.54 33.68	NO	1.000	1 001														
3.4.8.7.8-HxCDF	8,56e4	1 76e5	1 24		NO	0.9725			NO	1.001	1 000		99.8												
2.3.7.8.9-HxCDF	6 84e4	1.50e5	1.24			0 9396		35.45	NO	1.000	1 000	48 5													
				= ^^	t on t			1 25 24	1	1 555			CARTE		편					 					
																									F4 \
C0105 ST210607R4_	1 1613 CS3 210	0105																							
															1,2,3,4,6,7,	.8-HpCDF;3	7.08:31478	.75;565457							
															-			-							
											· . ·	'					1.0.9			 	1	 . ,			
C0105 ST210607R4_																									F4 \
C01055121000/R4_	1 1013 033 210	.0105													123467	.8-HpCDF:3	7 09-31860	27-541417							
															1,4,0,4,0,7,	10-110-001,5	1.00,51005								
									<u> </u>											 		 			
					_										***********					 		 	****		
C0105 ST210607R4_	1 1812 052 210	0105																							F4 V
0010331210007R4_	1 1013 033 210	0103												130.5	,2,3,4,6,7,8-+	HoCDE:37.0	6:36145.23	596874							
														100	21074101110			100001							
															6										
																				 -		 <u> </u>			
					_															 		 			
		0.105																							F4 \
	1 1613 053 210	.0105												13/	1,2,3,4,6,7,6	6 UNC DC-37	07-06470	46.4475707							
C0105 ST210607R4_														1.0	-1,2,3,4,0,7,6	a-npcor 5/	.01,804/9.	40;1475702							
C0105 ST210607R4_																									
C0105 ST210607R4_																	1.0								
C0105 ST210607R4_																	1 C C								

Quantify San Vista Analytica		Page 12 of 13
Dataset:	U:\VG12.PRO\Results\210607R4\210607R4_1.qld	
Last Altered: Printed:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time	

								2106	07R4_1+	ST21060	7R4_1 161	
# Name	Resp IS Resp	Pred RA R	A My	RRF	Pred RT	RT	RT Flag	Pred RRT	RRT	Conc %Re	c STD out	
16 1,2.3,4.7.8.9-HpCOF	5.25e4 9.91e4		03 NO				NO	1.000		07 10		
17 000	8 7044 2 3265	0.89 0.0			2 41 69		NO	1.000		72 97		
18 13C-2.3.7.8-TCDD 19 13C-1.2.3.7.8-PeCDD	2 83e5 2 59e5	0 77 0					NO	1.027		90 99 89 88		
19 13C-1,2,3,7,8-PeCDD 20 13C-1,2,3,4,7,8-HxCDD	1 99e5 2 59e5 1 35e5 2 04e5					34 47	NO	1,190		89 88 85 88		
21 13C-1,2,3,6,7,8-HxCDD	1 55e5 2.04e5	1.24 1					NO	1.017		98 89.4		
22 13C-1,2,3,7,8,9-HxCDD	1 52e5 2.04e5	1.24 1		_		34 88	NO	1.026		5.6 85		
23 13C-1.2.3.4.6.7.8-HoCDD		1.04 1.0					NO	1 125		84 78		
24 13C-0CDD	1 71e5 2 04e5	0.89 07	88 NO	0 5607	7 41 18	41 35	NO	1 211	1 216	50 74	NC	
25 13C-2,3,7,8-TCDF	4 35e5 4 12e5						NO	1.003		66 96		
26 13C-1.2.3.7.8-PeCDF	2.79e5 4.12e5	1.55 1 0		_	_		NO	1 147		3.7 83		
27 13C-2,3,4,7,8-PeCDF	2 65e5 4 12e5	1.55 1 0				30 94	NO	1 184		02 80:		
28 13C-1.2.3.4.7.8-HxCDF 29 13C-1.2.3.6.7.8-HxCDF	1.89e5 2.04e5			_		33.52	NO	0,987		1.4 91		
29 13C-1.2.3.6.7.8-HxCDF	2 00e5 2 04e5	0.51 0	49 NO			33 67	NO	0 990		13 91:		
			the state and	1. 1.1.2.2	30.1		0.00					FC tallact
'R4_1 S3 21C0105 ST210607R4_*	1 1613 CS3 21C0105											F5 Voltage
									OCDF:41.	0;40136.90	600914	6.01
		4-41-114-1	1							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
7R4 1												F5 Voltage
S3 21C0105 ST210607R4_	1 1613 CS3 21C0105											Protocological and a second
									OCDF;41	0;46882.0	688272	6.89
										``````````````````````````````````````		
			····		<b></b>							·····
······			.1						-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
										*****	1889-941 - <b>7</b> 97 1999-91199-9	
	1 1613 CS3 <b>2</b> 1C0105				+++							4
	1 1813 CS3 21C0105							13C-	OCDF;41.68	108353.89	1483785	
	1 1613 CS3 21C0105							13C-	OCDF:41.68	108353.89	1483785	4
	1 1613 CS3 21C0105							13C-	OCDF:41.68	108353.89	1483785	4
7R4_1 \$3 21C0 105 ST210607R4_	1 1613 CS3 21C0105	<del></del>						13C-	OCDF;41.68	108353.89	1483785	F5 Voltage 4 1.46
	1 1613 CS3 21C0105							13C-	OCDF:41.68	108353.89	1483785	4
	1 1813 CS3 21C0105							13C-	OCDF:41.68	108353.89	1483785	
33 21C0105 ST210607R4_	1 1613 CS3 21C0105		<del></del>					13C-	OCDF:41.68	108353.89	1483785	1.4
33 2 1C0 105 ST2 10607R4_ 	· · · · · · · · · · · · · · · · · · ·		·····,-					13C-	OCDF:41.68	108353.89	1483785	۰۰۰۰ ۲. ۲.4 ۶5 yottage
\$321C0105 \$T210607R4_ +++++	· · · · · · · · · · · · · · · · · · ·							· · · · ·				4 1.48 
	· · · · · · · · · · · · · · · · · · ·		<b></b>					· · · · ·	OCDF;41.68			4
	· · · · · · · · · · · · · · · · · · ·		+	•••••				· · · · ·				4 1.48 
\$321C0105 \$T210607R4_ +++++	· · · · · · · · · · · · · · · · · · ·		·1 · · · · · · ·					· · · · ·				4 1.41
\$3 21C0 105 ST2 10607R4_ 	· · · · · · · · · · · · · · · · · · ·		·F ·····					· · · · ·				4 1.48 
\$3 21C0 105 ST2 10607R4_ 	· · · · · · · · · · · · · · · · · · ·		. <del></del>				- · · · · .	· · · · ·				4 1.48 

5 TargetLynx - 210607R4_1.qid * - [Chromatogram


1.1 al.

×

Quantify Sample Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory	

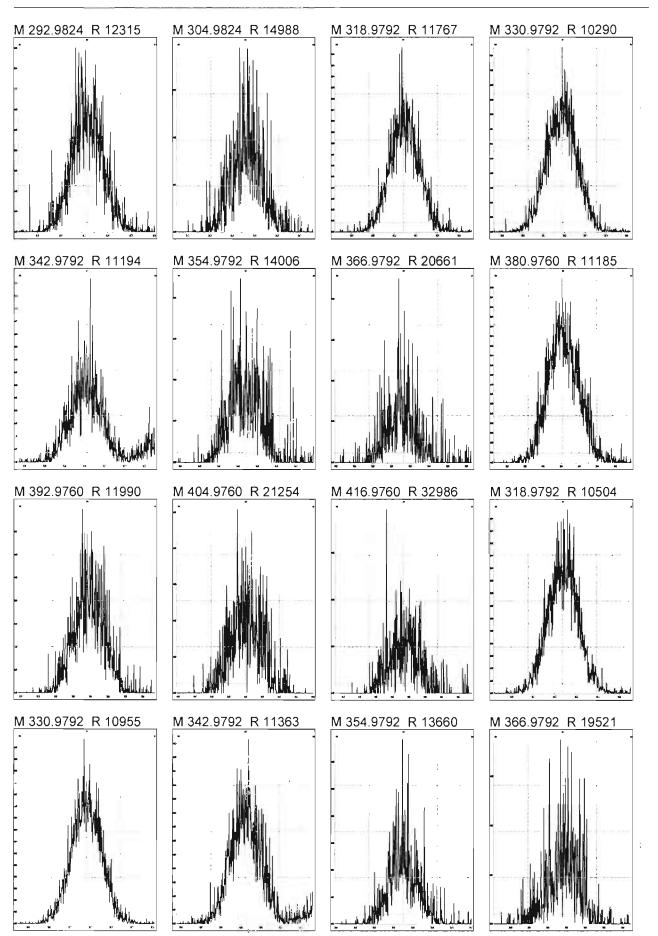
#### Dataset: U:\VG12.PRO\Results\210607R4\210607R4_1.qld

Last Altered:	Tuesday, June 08, 2021 10:27:41 Pacific Daylight Time
Printed:	Tuesday, June 08, 2021 10:30:33 Pacific Daylight Time

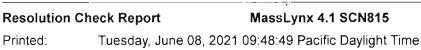


# **Resolution Check Report**

# MassLynx 4.1 SCN815

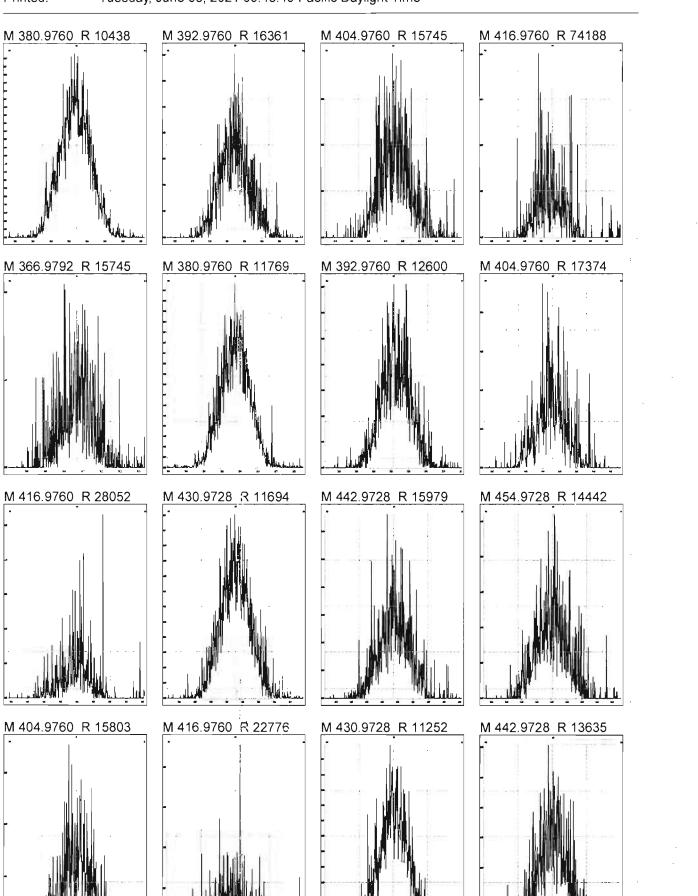

Page 1 of 3

1.20


12

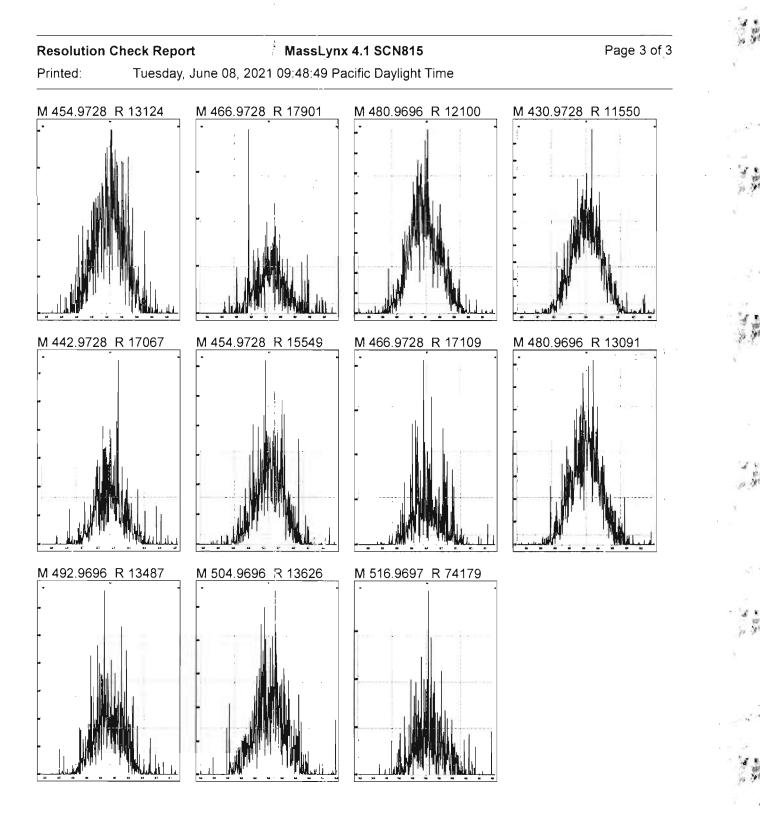
Printed:

# Tuesday, June 08, 2021 09:48:49 Pacific Daylight Time




Work Order 2105037




Page 2 of 3

1. 191



Work Order 2105037

S.



# **INITIAL CALIBRATION**

#### Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

HN 04/15/21 DF 04/15/21

Í

#### Method: U:\VG12.PRO\MethDB\1613rrt-04-06-21.mdb 06 Apr 2021 08:35:23 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

#### Compound name: 2,3,7,8-TCDD

Response Factor: 0.92906 RRF SD: 0.0829232, Relative SD: 8.9255 / Response type: Internal Std ( Ref 18 ), Area * ( IS Coric. / IS Area ) Curve type: RF

		4												
and the second	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped		
1	210414R1_1	0.250	0.69	NO	26.94	1.001	2.81e3	1.31e6	0.231	-7.8	0.857	MM		
2	210414R1_2	0.500	0.82	NO	26.96	1.001	6.87e3	1.46 <b>e</b> 6	0.507	1.4	0.942	MM		
3	210414R1_3	2.00	0.76	NO	26.94	1.001	2.40e4	1.48e6	1.75	-12.6	0.812	bb		
4	210414R1_4	40.0	0.77	NO	26.93	1.001	6.51e5	1.59e6	43.9	9.8	1.02	bb		
5	210414R1_5	300	0.77	NO	26.94	1.001	4.47e6	1.47e6	327	8.9	1.01	bb		
6	210414R1_6	10.0	0.78	NO	26.94	1.000	1.54e5	1.66e6	10.0	0.2	0.931	bb		

#### Compound name: 1,2,3,7,8-PeCDD Response Factor: 0.825708 RRF SD: 0.0482142, Relative SD: 5.83913 Response type: Internal Std ( Ref 19 ), Area * ( IS Coric. / IS Area ) Curve type: RF

2.000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	0.68	NO	31.27	1.001	1.03e4	1.03e6	1.22	-2.7	0.804	bb
2	210414R1_2	2.50	0.60	NO	31.27	1.000	2.37e4	1.16e6	2.48	-0.9	0.818	bb
3	210414R1_3	10.0	0.63	NO	31.27	1.000	8.36e4	1.11e6	9.09	-9.1	0.750	bb
4	210414R1_4	200	0.62	NO	31.26	1.000	2.19e6	1.24e6	215	7.4	0.887	bb
5	210414R1_5	1500	0.62	NO	31.27	1.000	1.58 <b>e</b> 7	1.22e6	1570	5.0	0.867	bb
6	210414R1_6	50.0	0.61	NO	31.27	1.000	5.16e5	1.25e6	50.1	0.3	0.828	ხხ

Page 1 of 16

#### Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 1,2,3,4,7,8-HxCDD

Response Factor: 0.972464 RRF SD: 0.0862714, Relative SD: 8.87143 Response type: Internal Std ( Ref 20 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1.1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.23	NO	34.61	1.001	7.39e3	6.55 <b>e</b> 5	1.16	-7.2	0.903	bd
2	210414R1_2	2.50	1.23	NO	34.62	1.000	1.65e4	7.11e5	2.38	-4.7	0.927	bd
3	210414R1_3	10.0	1.24	NO	34.62	1.001	6.42e4	7.40e5	8.92	-10.8	0.867	bd
4	210414R1_4	200	1.23	NO	34.61	1.001	1.78e6	8.23e5	223	11.4	1.08	bd
5	210414R1_5	1500	1.23	NO	34.62	1.001	1.34e7	8.49e5	1620	7.9	1.05	bd
6	210414R1_6	50.0	1.24	NO	34.62	1.000	4.13e5	8.23e5	51.7	3.3	1.00	bd

#### Compound name: 1,2,3,6,7,8-HxCDD

Response Factor: 0.877085 RRF SD: 0.0559574, Relative SD: 6.37993 Response type: Internal Std ( Ref 21 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.13	NO	34.73	1.000	8.05e3	7.49e5	1.23	-2.0	0.860	MM
2	210414R1_2	2.50	1.24	NO	34.76	1.001	1.71e4	8.03e5	2.42	-3.0	0.850	db
3	210414R1_3	10.0	1.23	NO	34.74	1.000	6.53e4	8.25e5	9.02	-9.8	0.791	db
4	210414R1_4	200	1.23	NO	34.73	1.000	1.79e6	9.47e5	216	8.0	0.947	db
5	210414R1_5	1500	1.23	NO	34.74	1.000	1.34e7	9.70e5	1580	5.2	0.923	db
6	210414R1_6	50.0	1.24	NO	34.76	1.001	4.13e5	9.27 <b>e</b> 5	50.8	1.7	0.892	db

#### Compound name: 1,2,3,7,8,9-HxCDD

Response Factor: 0.873924 RRF SD: 0.0774391, Relative SD: 8.86108 Response type: Internal Std ( Ref 22 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.22	NO	35.03	1.000	7.66e3	7.49e5	1.17	-6.5	0.818	MM
2	210414R1_2	2.50	1.29	NO	35.04	1.000	1.84e4	8.90e5	2.37	-5.3	0.828	bb

Page 2 of 16

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered:	Thursday, April 15, 2021 09:26:26 Pacific Daylight Time
Printed:	Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

### Compound name: 1,2,3,7,8,9-HxCDD

1995	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	210414R1_3	10.0	1.28	NO	35.04	1.000	6.56e4	8.45e5	8.89	-11.1	0.777	bb
4	210414R1_4	200	1.23	NO	35.03	1.001	1.84e6	9.50e5	222	11.1	0.971	bb
5	210414R1_5	1500	1.21	NO	35.04	1.001	1.39 <b>e</b> 7	9.79e5	1620	8.0	0.943	bb
6	210414R1_6	50.0	1.24	NO	35.05	1.001	4.26e5	9.39e5	51.9	3.8	0.907	bb

#### Compound name: 1,2,3,4,6,7,8-HpCDD

Response Factor: 0.898742 RRF SD: 0.0677039, Relative SD: 7.53319 Response type: Internal Std ( Ref 23 ), Area * ( IS Conc. / IS Area ) Curve type: RF

100	Name	Std. Conic	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.02	NO	38.31	1.001	6.55e3	6.08e5	1.20	-4.2	0.861	MM
2	210414R1_2	2.50	1.02	NO	38.32	1.001	1.72e4	7.70e5	2.48	-0.8	0.891	bb
3	210414R1_3	10.0	1.00	NO	38.31	1.000	4.86 <b>e</b> 4	6.13e5	8.82	-11.8	0.793	bb
4	210414R1_4	200	1.02	NO	38.29	1.000	1.34e6	6.81e5	218	9.2	0.981	bb
5	210414R1_5	1500	1.02	NO	38.31	1.000	1.03e7	7.20e5	1600	6.5	0.957	bb
6	210414R1_6	50.0	1.02	NO	38.31	1.000	3.16e5	6.96e5	50.6	1.1	0.909	bb

#### Compound name: OCDD

Response Factor: 0.852404 RRF SD: 0.0637924, Relative SD: 7.48382 Response type: Internal Std ( Ref 24 ), Area * ( IS Conc. / IS Area ) Curve type: RF

105.25	Nante	Sitd. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Ciono,	%Dev	RRF	X=: dropped
1	210414R1_1	2.50	0.86	NO	41.31	1.000	1.11e4	1.09e6	2.38	-4.9	0.811	bb
2	210414R1_2	5.00	0.88	NO	41.33	1.000	2.60e4	1.27e6	4.79	-4.2	0.816	bb
3	210414R1_3	20.0	0.88	NO	41.3 <b>3</b>	1.000	7.75e4	1.01e6	18.0	-10.0	0.767	MM
4	210414R1_4	400	0.88	NO	41.31	1.000	2.13e6	1.15e6	436	9.1	0.930	bb
5	210414R1_5	3000	0.88	NO	41.32	1.000	1.66 <b>e</b> 7	1.21e6	3200	6.7	0.909	bb
6	210414R1_6	100	0.88	NO	41.33	1.000	5.13e5	1.16 <b>e</b> 6	103	3.4	0.881	bb

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

Compound name: 2,3,7,8-TCDF Response Factor: 0.746581 RRF SD: 0.0693432, Relative SD: 9.2881 Response type: Internal Std ( Ref 25 ), Area * ( IS Conc. / IS Area ) Curve type: RF

03800	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	0.250	0.79	NO	26.35	1.001	3.87e3	2.17e6	0.239	-4.3	0.715	MM
2	210414R1_2	0.500	0.71	NO	26.35	1.001	7.34e3	2.13e6	0.461	-7.9	0.688	MM
3	210414R1_3	2.00	0.79	NO	26.35	1.001	2.64e4	2.00e6	1.77	-11.5	0.661	bb
4	210414R1_4	40.0	0.75	NO	26.34	1.001	7.03e5	2.14e6	44.0	10.0	0.821	bb
5	210414R1_5	300	0.76	NO	26.34	1.001	4.78e6	1.93e6	331	10.4	0.824	bb
6	210414R1_6	10.0	0.74	NO	26.34	1.001	1.75e5	2.27e6	10.3	3.2	0.771	db

Compound name: 1,2,3,7,8-PeCDF

Response Factor: 0.877118 RRF SD: 0.0717768, Relative SD: 8.18326 Response type: Internal Std ( Ref 26 ), Area * ( IS Conc. / IS Area ) Curve type: RF

- Par -	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.52	NO	30.10	1.000	1.34e4	1.36e6	1.13	-9.9	0.790	bb
2	210414R1_2	2.50	1.55	NO	30.11	1.000	3.37e4	1.58e6	2.44	-2.6	0.855	MM
3	210414R1_3	10.0	1.62	NO	30.11	1.000	1.20e5	1.49e6	9.20	-8.0	0.807	bb
4 .	210414R1_4	200	1.54	NO	30.10	1.000	3.16e6	1.64 <b>e</b> 6	220	10.2	0.967	bb
5	210414R1_5	1500	1.56	NO	30.10	1.000	2.26e7	1.60e6	1610	7.2	0.940	bb
6	210414R1_6	50.0	1.56	NO	30.11	1.000	7.73e5	1.71e6	51.5	3.0	0.904	bb

#### Compound name: 2,3,4,7,8-PeCDF

Response Factor: 0.962056 RRF SD: 0.0674767, Relative SD: 7.0138 Response type: Internal Std ( Ref 27 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.48	NO	31.09	1.000	1.69e4	1.46e6	1.20	-3.8	0.926	MM
2	210414R1_2	2.50	1.58	NO	31.11	1.000	3.69 <b>e</b> 4	1.61e6	2.38	-4.7	0.917	bd

#### Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

### Compound name: 2,3,4,7,8-PeCDF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	210414R1_3	10.0	1.52	NO	31.11	1.000	1.29e5	1.48e6	9.10	-9.0	0.876	bb
4	210414R1_4	200	1.55	NO	31.09	1.000	3.30e6	1.58e6	218	8.8	1.05	bb
5	210414R1_5	1500	1.54	NO	31.09	1.000	2.35e7	1.52e6	1600	6.9	1.03	bb
6	210414R1_6	50.0	1.54	NO	31.11	1.000	8.04e5	1.64e6	50.8	1.7	0.978	bb

Compound name: 1,2,3,4,7,8-HxCDF Response Factor: 0.92023 RRF SD: 0.0757729, Relative SD: 8.23412 Response type: Internal Std ( Ref 28 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.17	NO	33.67	1.000	1.13e4	1.06e6	1.16	-7.6	0.850	bd
2	210414R1_2	2.50	1.18	NO	33.69	1.001	2.33e4	1.06e6	2.38	-4.7	0.877	bd
3	210414R1_3	10.0	1.23	NO	33.69	1.001	7.99e4	9.58e5	9.06	-9.4	0.834	bd
4	210414R1_4	200	1.22	NO	33.67	1.000	2.12e6	1.05e6	219	9.6	1.01	bd
5	210414R1_5	1500	1.22	NO	33.68	1.000	1.52e7	1.02e6	1620	7.8	0.992	bd
6	210414R1_6	50.0	1.22	NO	33.69	1.000	5.12 <b>e</b> 5	1.07e6	52.2	4.3	0.960	bd

#### Compound name: 1,2,3,6,7,8-HxCDF

Response Factor: 0.936295 RRF SD: 0.0726577, Relative SD: 7.76013 Response type: Internal Std ( Ref 29 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1.0.7	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.25	NO	33.81	1.001	1.19e4	1.11e6	1.15	-8.2	0.859	db
2	210414R1_2	2.50	1.21	NO	33.82	1.000	2.49e4	1.10e6	2.41	-3.5	0.904	db
3	210414R1_3	10.0	1.22	NO	33.82	1.000	8.72e4	1.01e6	9.21	-7.9	0.862	db
4	210414R1_4	200	1.22	NO	33.81	1.000	2.31e6	1.12e6	220	10.2	1.03	db
5	210414R1_5	1500	1.21	NO	33.82	1.000	1.70e7	1.13e6	1610	7.1	1.00	db
6	210414R1_6	50.0	1.21	NO	33.83	1.001	5.45e5	1.14e6	51.2	2.3	0.958	db

#### Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 2,3,4,6,7,8-HxCDF

Response Factor: 0.972549 RRF SD: 0.0818215, Relative SD: 8.4131 Response type: Internal Std ( Ref 30 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1800	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.22	NO	34.50	1.001	9.59e3	8.62e5	1.14	-8.5	0.890	MM
2	210414R1_2	2.50	1.25	NO	34.52	1.001	2.14e4	9.20e5	2.39	-4.5	0.928	bb
3	210414R1_3	10.0	1.23	NO	34.51	1.000	7.85e4	8.85e5	9.11	-8.9	0.886	bb
4	210414R1_4	200	1.21	NO	34.50	1.000	2.09e6	9.78e5	219	9.7	1.07	bb
5	210414R1_5	1500	1.21	NO	34.51	1.000	1.54e7	9.70e5	1630	8.6	1.06	bb
6	210414R1_6	50.0	1.22	NO	34.52	1.001	4.98e5	9.88e5	51.8	3.7	1.01	bb

#### Compound name: 1,2,3,7,8,9-HxCDF

Response Factor: 0.939556 RRF SD: 0.0783771, Relative SD: 8.34193 Response type: Internal Std ( Ref 31 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.15	NO	35.59	1.000	9.36e3	8.35e5	1.19	-4.6	0.896	MM
2	210414R1_2	2.50	1.16	NO	35.61	1.001	1.85e4	8.23e5	2.39	-4.3	0.899	bb
3	210414R1_3	10.0	1.23	NO	35.60	1.000	6.47e4	7.82e5	8.81	-11.9	0.828	bb
4	210414R1_4	200	1.22	NO	35.59	1.000	1.79e6	8.67e5	220	9.9	1.03	bb
5	210414R1_5	1500	1.23	NO	35.60	1.000	1.35e7	8.86e5	1620	7.7	1.01	bb
6	210414R1_6	50.0	1.24	NO	35.61	1.001	4.40e5	9.08e5	51.6	3.2	0.969	bb

#### Compound name: 1,2,3,4,6,7,8-HpCDF

Response Factor: 1.04807 RRF SD: 0.0873368, Relative SD: 8.33314 Response type: Internal Std ( Ref 32 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1.3	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	1.02	NO	37.17	1.000	7.31e3	6.01e5	1.16	-7.1	0.973	MM
2	210414R1_2	2.50	1.03	NO	37.18	1.000	1.79e4	7.19e5	2.37	-5.1	0.995	мм

#### Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:**2**6:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:**3**1:17 Pacific Daylight Time

#### Compound name: 1,2,3,4,6,7,8-HpCDF

	Name	Std. Conc	FLA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	210414R1_3	10.0	1.04	NO	37.18	1.001	6.00e4	6.30e5	9.09	-9.1	0.953	bb
4	210414R1_4	200	1.01	NO	37.17	1.001	1.61e6	6.93e5	222	10.9	1.16	bb
5	210414R1_5	1500	1.02	NO	37.18	1.001	1.21e7	7.15e5	1620	8.0	1.13	bb
6	210414R1_6	50.0	1.01	NO	37.18	1.000	3.83e5	7.13e5	51.2	2.4	1.07	bb

Compound name: 1,2,3,4,7,8,9-HpCDF Response Factor: 1.04534 RRF SD: 0.0878605, Relative SD: 8.40498 Response type: Internal Std ( Ref 33 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	1.25	0.92	NO	38.95	1.000	6.49e3	5.32e5	1.17	-6.6	0.976	bb
2	210414R1_2	2.50	1.01	NO	38.98	1.000	1.62e4	6.67e5	2.32	-7.0	0.972	bb
3	210414R1_3	10.0	0. <b>9</b> 8	NO	38.98	1.001	4.93e4	5.16e5	9.15	-8.5	0.956	bb
4	210414R1_4	200	1.01	NO	38.97	1.000	1.34 <b>e</b> 6	5.80e5	222	10.8	1.16	bb
5	210414R1_5	1500	1.01	NO	38.98	1.001	1.01e7	6.02e5	1610	7.4	1.12	bb
6	210414R1_6	50.0	1.01	NO	38.98	1.000	3.18e5	5.85e5	52.0	3.9	1.09	bb

#### Compound name: OCDF

Response Factor: 0.771237 RRF SD: 0.061207, Relative SD: 7.93621 Response type: Internal Std ( Ref 34 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	2.50	0.89	NO	41.65	1.000	1.23e4	1.36e6	2.34	-6.2	0.723	MM
2	210414R1_2	5.00	0.88	NO	41.67	1.000	2.75e4	1.47e6	4.85	-3.0	0.748	bb
3	210414R1_3	20.0	0.88	NO	41.67	1.000	8.08e4	1.17e6	17.9	-10.7	0.689	bb
4	210414R1_4	400	0.89	NO	41.65	1.000	2.29 <b>e</b> 6	1.36 <b>e</b> 6	438	9.6	0.845	bb
5	210414R1_5	3000	0.89	NO	41.66	1.000	1.76e7	1.42e6	3210	7.0	0.826	bb
6	210414R1_6	100	0.89	NO	41.67	1.000	5.44 <b>e</b> 5	1.37e6	103	3.3	0.796	bb

#### Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 13C-2,3,7,8-TCDD

Response Factor: 1.10397 RRF SD: 0.0930337, Relative SD: 8.42721 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.78	NO	26.91	1.026	1.31e6	1.37e6	86.6	-13.4	0.956	bb
2	210414R1_2	100	0.77	NO	26.93	1.026	1.46e6	1.38e6	95.7	-4.3	1.06	bb
3	210414R1_3	100	0.78	NO	26.93	1.026	1.48e6	1.33e6	101	1.1	1.12	bb
4	210414R1_4	100	0.77	NO	26.91	1.026	1.59e6	1.40e6	103	3.2	1.14	bb
5	210414R1_5	100	0.77	NO	26.91	1.026	1.47e6	1.19e6	112	12.0	1.24	bb
6	210414R1_6	100	0.77	NO	26.93	1.026	1.66e6	1.48e6	101	1.4	1.12	bb

#### Compound name: 13C-1,2,3,7,8-PeCDD

Response Factor: 0.863511 RRF SD: 0.0902578, Relative SD: 10.4524 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

100	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.64	NO	31.24	1.191	1.03e6	1.37e6	86.8	-13.2	0.749	bb
2	210414R1_2	100	0.63	NO	31.26	1.191	1.16e6	1.38e6	97.3	-2.7	0.840	bb
3	210414R1_3	100	0.62	NO	31.26	1.191	1.11e6	1.33e6	97.3	-2.7	0.840	bb
4	210414R1_4	100	0.63	NO	31.24	1.192	1.24e6	1.40e6	102	2.4	0.884	bb
5	210414R1_5	100	0.63	NO	31.26	1.192	1.22e6	1.19e6	119	18.6	1.02	bb
6	210414R1_6	100	0.62	NO	31.26	1.191	1.25e6	1.48e6	97.6	-2.4	0.843	bb

#### Compound name: 13C-1,2,3,4,7,8-HxCDD

Response Factor: 0.746138 RRF SD: 0.0651061, Relative SD: 8.72575 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	1.28	NO	34.59	1.013	6.55e5	9.77e5	89.8	-10.2	0.670	bd
2	210414R1_2	100	1.28	NO	34.61	1.014	7.11 <b>e</b> 5	1.01e6	94.8	-5.2	0.707	bd

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 13C-1,2,3,4,7,8-HxCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	210414R1_3	100	1.27	NO	34.60	1.013	7.40e5	1.01e6	98.4	-1.6	0.734	bd
4	210414R1_4	100	1.27	NO	34.59	1.013	8.23e5	1.08e6	102	1.7	0.759	bd
5	210414R1_5	100	1.27	NO	34.60	1.013	8.49e5	9.84e5	116	15.6	0.863	bd
6	210414R1_6	100	1.27	NO	34.61	1.014	8.23e5	1.11e6	99.7	-0.3	0.744	bd

Compound name: 13C-1,2,3,6,7,8-HxCDD Response Factor: 0.846795 RRF SD: 0.0772663, Relative SD: 9.12455 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	1.29	NO	34.72	1.018	7.49e5	9.77e5	90.5	-9.5	0.766	đb
2	210414R1_2	100	1.26	NO	34.73	1.018	8.03e5	1.01e6	94.3	-5.7	0.799	db
3	210414R1_3	100	1.26	NO	34.73	1.018	8.25e5	1.01e6	96.6	-3.4	0.818	db
4	210414R1_4	100	1.25	NO	34.72	1.018	9.47e5	1.08e6	103	3.1	0.873	db
5	210414R1_5	100	1.26	NO	34.73	1.018	9.70e5	9.84e5	116	16.5	0.986	db
6	210414R1_6	100	1,25	NO	34.73	1.018	9.27e5	1.11e6	99.0	-1.0	0.839	db

#### Compound name: 13C-1,2,3,7,8,9-HxCDD

Response Factor: 0.868278 RRF SD: 0.0751126, Relative SD: 8.65075 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

and second	Name	Std. Cornc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1 1	100	1.26	NO	35.02	1.026	7.49e5	9.77e5	88.3	-11.7	0.767	MM
2	210414R1_2	100	1.26	NO	35.03	1.026	8.90e5	1.01e6	102	2.0	0.886	bb
3	210414R1_3	100	1.27	NO	35.03	1.026	8.45e5	1.01e6	96.4	-3.6	0.837	bb
4	210414R1_4	100	1.25	NO	35.01	1.026	9.50e5	1.08e6	101	0.8	0.876	bb
5	210414R1 5	100	1.24	NO	35.02	1.026	9.79e5	9.84e5	115	14.6	0.995	bb
6	210414R1_6	100	1.25	NO	35.03	1.026	9.39e5	1.11e6	97.8	-2.2	0.849	bb

#### Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

Compound name: 13C-1,2,3,4,6,7,8-HpCDD Response Factor: 0.664147 RRF SD: 0.0670773, Relative SD: 10.0998 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	1.04	NO	38.28	1.122	6.08e5	9.77e5	93.7	-6.3	0.622	MM
2	210414R1_2	100	1.05	NO	38.29	1.122	7.70e5	1.01e6	115	15.4	0.766	bb
3	210414R1_3	100	1.06	NO	38.29	1.122	6.13e5	1.01e6	91.5	-8.5	0.608	bb
4	210414R1_4	100	1.05	NO	38.28	1.122	6.81e5	1.08e6	94.5	-5.5	0.628	bb
5	210414R1_5	100	1.04	NO	38.29	1.122	7.20e5	9.84e5	110	10.2	0.732	bb
6	210414R1_6	100	1.04	NO	38.29	1.122	6.96e5	1.11e6	94.7	-5.3	0.629	bb

Compound name: 13C-OCDD Response Factor: 0.560713 RRF SD: 0.0533804, Relative SD: 9.52008 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	200	0.92	NO	41.30	1.210	1.09e6	9.77e5	199	-0.5	0.558	MM
2	210414R1_2	200	0.89	NO	41.32	1.211	1.27e6	1.01e6	226	12.9	0.633	bb
3	210414R1_3	200	0.89	NO	41.31	1.210	1.01e6	1.01e6	179	-10.7	0.501	bb
4	210414R1_4	200	0.88	NO	41.30	1.210	1.15e6	1.08e6	189	-5.7	0.529	bb
5	210414R1_5	200	0.88	NO	41.31	1.210	1.21e6	9.84e5	220	10.1	0.617	bb
6	210414R1_6	200	0.89	NO	41.31	1.210	1.16e6	1.11e6	188	-6.1	0.527	bb

#### Compound name: 13C-2,3,7,8-TCDF

Response Factor: 1.09311 RRF SD: 0.0632342, Relative SD: 5.78481 Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.77	NO	26.32	1.003	2.17e6	1.78e6	111	11.3	1.22	bb
2	210414R1_2	100	0.77	NO	26.34	1.004	2.13e6	2.00e6	97.6	-2.4	1.07	bb

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_	_CRV.qld
-------------------------------------------------	----------

Last Altered:	Thursday, April 15, 2021 09:26:26 Pacific Daylight Time
Printed:	Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

### Compound name: 13C-2,3,7,8-TCDF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	210414R1_3	100	0.77	NO	26.32	1.003	2.00e6	1.90e6	96.1	-3.9	1.05	bb
4	210414R1_4	100	0.76	NO	26.31	1.003	2.14e6	2.03e6	96.5	-3.5	1.06	bb
5	210414R1_5	100	0.78	NO	26.32	1.004	1.93e6	1.76e6	101	0.7	1.10	bb
6	210414R1_6	100	0.77	NO	26.32	1.003	2.27e6	2.12e6	97.8	-2.2	1.07	bb

Compound name: 13C-1,2,3,7,8-PeCDF Response Factor: 0.809493 RRF SD: 0.0523734, Relative SD: 6.4699 Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area ) Curve type: RF

100	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	1.57	NO	30.08	1.147	1.36e6	1.78e6	94.2	-5.8	0.763	bb
2	210414R1_2	100	1.59	NO	30.10	1.147	1.58e6	2.00e6	97.4	-2.6	0.788	bb
3	210414R1_3	100	1.55	NO	30.10	1.147	1.49e6	1.90e6	96.6	-3.4	0.782	bb
4	210414R1_4	100	1.55	NO	30.08	1.147	1.64e6	2.03e6	99.7	-0.3	0.807	bb
5	210414R1_5	100	1.58	NO	30.10	1.148	1.60e6	1.76e6	113	12.5	0.911	bb
6	210414R1_6	100	1.56	NO	30.10	1.147	1.71e6	2.12e6	99.6	-0.4	0.806	bb

#### Compound name: 13C-2,3,4,7,8-PeCDF

Response Factor: 0.803072 RRF SD: 0.0359789, Relative SD: 4.48016 Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	1.59	NO	31.08	1.185	1.46e6	1.78e6	102	2.0	0.819	bb
2	210414R1_2	100	1.59	NO	31.09	1.185	1.61e6	2.00e6	100	0.2	0.804	bb
3	210414R1_3	100	1.55	NO	31.09	1.185	1.48e6	1.90e6	96.6	-3.4	0.776	bb
4	210414R1_4	100	1.58	NO	31.08	1.185	1.58e6	2.03e6	96.9	-3.1	0.778	bb
5	210414R1_5	100	1.57	NO	31.08	1.185	1.52e6	1.76e6	108	7.9	0.867	bb
6	210414R1_6	100	1.55	NO	31.09	1.185	1.64e6	2.12e6	96.5	-3.5	0.775	bb

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 13C-1,2,3,4,7,8-HxCDF

Response Factor: 1.01114 RRF SD: 0.0571822, Relative SD: 5.65524 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.51	NO	33.65	0.986	1.06e6	9.77e5	108	7.5	1.09	bd
2	210414R1_2	100	0.52	NO	33.67	0.986	1.06e6	1.01e6	105	4.7	1.06	bd
3	210414R1_3	100	0.51	NO	33.67	0.986	9.58e5	1.01e6	93.9	-6.1	0.950	bd
4	210414R1_4	100	0.51	NO	33.65	0.986	1.05e6	1.08e6	95.9	-4.1	0.970	bd
5	210414R1_5	100	0.51	NO	33.67	0.986	1.02e6	9.84e5	103	2.6	1.04	bd
6	210414R1_6	100	0.51	NO	33.68	0.987	1.07e6	1.11e6	95.4	-4.6	0.964	bd

#### Compound name: 13C-1,2,3,6,7,8-HxCDF

Response Factor: 1.07338 RRF SD: 0.0605245, Relative SD: 5.63869 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.52	NO	33.79	0.990	1.11e6	9.77e5	106	5.8	1.14	db
2	210414R1_2	100	0.52	NO	33.81	0.990	1.10e6	1.01e6	102	2.1	1.10	dd
3	210414R1_3	100	0.51	NO	33.81	0.990	1.01e6	1.01e6	93.4	-6.6	1.00	db
4	210414R1_4	100	0.51	NO	33.80	0.990	1.12e6	1.08e6	96.1	-3.9	1.03	db
5	210414R1_5	100	0.51	NO	33.81	0.990	1.13e6	9.84e5	107	6.8	1.15	db
6	210414R1_6	100	0.52	NO	33.81	0.990	1.14e6	1.11e6	95.8	-4.2	1.03	db

#### Compound name: 13C-2,3,4,6,7,8-HxCDF

Response Factor: 0.909508 RRF SD: 0.0399449, Relative SD: 4.39192 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.51	NO	34.48	1.010	8.62e5	9.77e5	97.0	-3.0	0.882	bb
2	210414R1_2	100	0.51	NO	34.50	1.011	9.20e5	1.01e6	101	0.6	0.915	bb

#### Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 13C-2,3,4,6,7,8-HxCDF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	210414R1_3	100	0.51	NO	34.50	1.011	8.85e5	1.01e6	96.5	-3.5	0.878	bb
4	210414R1_4	100	0.51	NO	34.49	1.011	9.78e5	1.08e6	99.2	-0.8	0.902	bb
5	210414R1_5	100	0.51	NO	34.50	1.011	9.70e5	9.84e5	108	8.4	0.986	bb
6	210414R1_6	100	0.51	NO	34.50	1.011	9.88e5	1.11e6	98.2	-1.8	0.894	bb

Compound name: 13C-1,2,3,7,8,9-HxCDF Response Factor: 0.828495 RRF SD: 0.0441817, Relative SD: 5.33276 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

Charles .	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.51	NO	35.58	1.043	8.35e5	9.77e5	103	3.1	0.855	bd
2	210414R1_2	100	0.50	NO	35.59	1.043	8.23e5	1.01e6	98.8	-1.2	0.819	bb
3	210414R1_3	100	0.50	NO	35.59	1.043	7.82e5	1.01e6	93.6	-6.4	0.775	bb
4	210414R1_4	100	0.51	NO	35.58	1.043	8.67e5	1.08e6	96.5	-3.5	0.800	bb
5	210414R1_5	100	0.51	NO	35.59	1.043	8.86e5	9.84e5	109	8.8	0.901	bb
6	210414R1_6	100	0.50	NO	35.59	1.043	9.08e5	1.11e6	99.1	-0.9	0.821	bb

#### Compound name: 13C-1,2,3,4,6,7,8-HpCDF

Response Factor: 0.660927 RRF SD: 0.0478014, Relative SD: 7.23248 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.43	NO	37.16	1.089	6.01e5	9.77e5	93.0	-7.0	0.615	bb
2	210414R1_2	100	0.43	NO	37.17	1.089	7.19e5	1.01e6	108	8.2	0.715	bb
3	210414R1_3	100	0.44	NO	37.16	1.089	6.30e5	1.01e6	94.5	-5.5	0.624	bb
4	210414R1_4	100	0.44	NO	37.15	1.089	6.93e5	1.08e6	96.8	-3.2	0.639	bb
5	210414R1_5	100	0.44	NO	37.16	1.089	7.15e5	9.84e5	110	10.0	0.727	bb
6	210414R1_6	100	0.43	NO	37.17	1.089	7.13e5	1.11e6	97.6	-2.4	0.645	bb

а,

#### Quantify Compound Summary Report MassLynx 4.1 SCN815 Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 13C-1,2,3,4,7,8,9-HpCDF

Response Factor: 0.565796 RRF SD: 0.0589126, Relative SD: 10.4123 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1. 1. 1.	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.44	NO	38.95	1.141	5.32e5	9.77e5	96.2	-3.8	0.544	bb
2	210414R1_2	100	0.44	NO	38.97	1.141	6.67 <b>e</b> 5	1.01e6	117	17.2	0.663	bb
3	210414R1_3	100	0.43	NO	38.95	1.141	5.16 <b>e</b> 5	1.01e6	90.4	-9.6	0.511	bb
4	210414R1_4	100	0.43	NO	38.95	1.141	5.80e5	1.08e6	94.5	-5.5	0.535	bb
5	210414R1_5	100	0.44	NO	38.95	1.141	6.02e5	9.84e5	108	8.2	0.612	bd
6	210414R1_6	100	0.43	NO	38.97	1.141	5.85e5	1.11e6	93.5	-6.5	0.529	bb

Compound name: 13C-OCDF Response Factor: 0.662528 RRF SD: 0.0621617, Relative SD: 9.3825 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	200	0.90	NO	41.64	1.220	1.36e6	9.77e5	210	5.2	0.697	bb
2	210414R1_2	200	0.88	NO	41.66	1.220	1.47e6	1.01e6	221	10.5	0.732	bb
3	210414R1_3	200	0.89	NO	41.66	1.220	1.17e6	1.01e6	176	-12.2	0.582	bb
4	210414R1_4	200	0.88	NO	41.64	1.220	1.36e6	1.08e6	189	-5.6	0.625	bb
5	210414R1_5	200	0.88	NO	41.65	1.220	1.42e6	9.84e5	218	8.8	0.721	bb
6	210414R1_6	200	0.89	NO	41.65	1.220	1.37e6	1.11e6	187	-6.7	0.618	bb

#### Compound name: 37CI-2,3,7,8-TCDD

Response Factor: 2.06778 RRF SD: 0.220438, Relative SD: 10.6606 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

+	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	0.250			26.93	1.026	6.11e3	1.37e6	0.215	-13.8	1.78	bb
2	210414R1_2	0.500			26.96	1.028	1.53e4	1.38e6	0.535	6.9	2.21	bb

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Printed: Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

#### Compound name: 37CI-2,3,7,8-TCDD

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	210414R1_3	2.00			26.94	1.027	4.90e4	1.33e6	1.79	-10.6	1.85	bb
4	210414R1_4	40.0			26.93	1.027	1.19e6	1.40e6	41.2	2.9	2.13	bb
5	210414R1_5	200			26.94	1.028	5.63e6	1.19e6	229	14.4	2.37	bb
6	210414R1_6	10.0			26.94	1.027	3.06e5	1.48e6	10.0	0.1	2.07	bb

Compound name: 13C-1,2,3,4-TCDD Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std ( Ref 36 ), Area * ( IS Conc. / IS Area ) Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.78	NO	26.23	1.000	1.37e6	1.37e6	100	0.0	1.00	bb
2	210414R1_2	100	0.78	NO	26.23	1.000	1.38e6	1.38e6	100	0.0	1.00	bb
3	210414R1_3	100	0.78	NO	26.23	1.000	1.33e6	1.33e6	100	0.0	1.00	bb
4	210414R1_4	100	0.78	NO	26.22	1.000	1.40e6	1.40e6	100	0.0	1.00	bb
5	210414R1_5	100	0.77	NO	26.22	1.000	1.19e6	1.19e6	100	0.0	1.00	bb
6	210414R1_6	100	0.78	NO	26.23	1.000	1.48e6	1.48e6	100	0.0	1.00	bb

### Compound name: 13C-1,2,3,4-TCDF

Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std ( Ref 37 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1.1.1.1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.79	NO	24.93	1.000	1.78e6	1.78e6	100	0.0	1.00	bb
2	210414R1_2	100	0.79	NO	24.95	1.000	2.00e6	2.00e6	100	0.0	1.00	bb
3	210414R1_3	100	0.78	NO	24.95	1.000	1.90e6	1.90e6	100	0.0	1.00	bb
4	210414R1_4	100	0.78	NO	24.93	1.000	2.03e6	2.03e6	100	0.0	1.00	bb
5	210414R1_5	100	0.78	NO	24.93	1.000	1.76e6	1.76e6	100	0.0	1.00	bb
6	210414R1_6	100	0.78	NO	24.95	1.000	2.12e6	2.12e6	100	0.0	1.00	bb

Dataset: U:\VG12.PRO\Results\210414R1\210414R1_CRV.qld

Last Altered: Thursday, April 15, 2021 09:26:26 Pacific Daylight Time Thursday, April 15, 2021 10:31:17 Pacific Daylight Time

## Compound name: 13C-1,2,3,4,6,9-HxCDF

Response Factor: 1 RRF SD: 0, Relative SD: 0 Response type: Internal Std ( Ref 38 ), Area * ( IS Conc. / IS Area ) Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	210414R1_1	100	0.51	NO	34.13	1.000	9.77e5	9.77e5	100	0.0	1.00	bb
2	210414R1_2	100	0.51	NO	34.14	1.000	1.01 <b>e</b> 6	1.01e6	100	0.0	1.00	bb
3	210414R1_3	100	0.51	NO	34.14	1.000	1.01 <b>e</b> 6	1.01e6	100	0.0	1.00	bb
4	210414R1_4	100	0.51	NO	34.13	1.000	1.08e6	1.08 <b>e</b> 6	100	0.0	1.00	bb
5	210414R1_5	100	0.51	NO	34.14	1.000	9.84e5	9.84e5	100	0.0	1.00	bb
6	210414R1_6	100	0.51	NO	34.14	1.000	1.11e6	1.11e6	100	0.0	1.00	bb

#### **Quantify Compound Summary Report** MassLynx 4.1 SCN815 Vista Analytical Laboratory VG-11

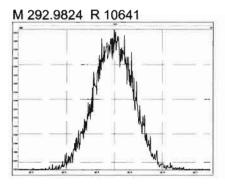
Untitled Dataset:

Thursday, April 15, 2021 10:22:19 Pacific Daylight Time Thursday, April 15, 2021 10:22:49 Pacific Daylight Time Last Altered: Printed:

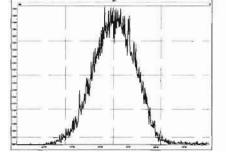
### Method: U:\VG12.PRO\MethDB\1613rrt-04-06-21.mdb 06 Apr 2021 08:35:23 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

### Compound name: 2,3,7,8-TCDD

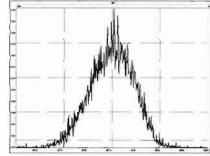
	Name	ID	Acq.Date	Acq.Time
1	210414R1_1	ST210414R1-1 1613 CS0 21D0706	14-Apr-21	09:44:53
2	210414R1_2	ST210414R1-2 1613 CS1 21D0707	14-Apr-21	10:37:34
3	210414R1_3	ST210414R1-3 1613 CS2 21C0104	14-Apr-21	11:26:41
4	210414R1_4	ST210414R1-4 1613 CS4 21C0106	14-Apr-21	12:13:44
5	210414R1_5	ST210414R1-5 1613 CS5 21C0107	14-Apr-21	12:59:55
6	210414R1_6	ST210414R1-6 1613 CS3 21C0105	14-Apr-21	13:46:07
7	210414R1_7	SS210414R1-1 1613 SSS 21C0108	14-Apr-21	14:34:13

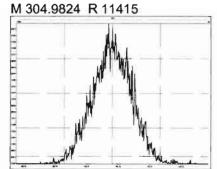

# **Experiment Calibration Report**

# MassLynx 4.1 SCN815

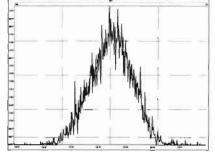

Page 1 of 1

File: Experiment: OCDD_DIOXIN.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

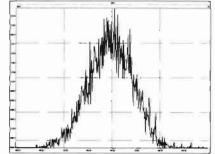

Printed: Wednesday, April 14, 2021 09:36:46 Pacific Daylight Time

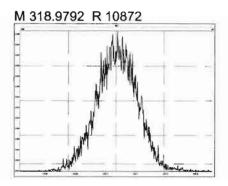



M 342.9792 R 10419

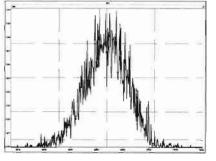



M 392.9760 R 10372

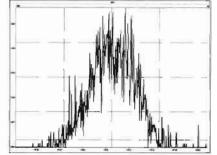


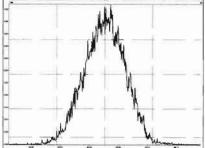

M 354.9792 R 10288



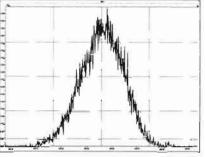

M 404.9760 R 10417







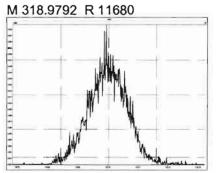


# M 416.9760 R 11626

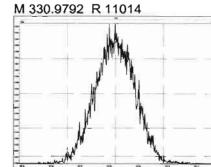


M 330.9792 R 10639

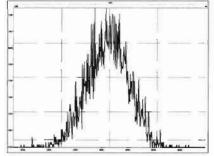


M 380.9760 R 10247

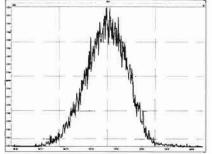




## MassLynx 4.1 SCN815

Page 1 of 1


File: Experiment: OCDD_DIOXIN.exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

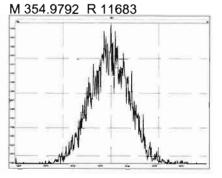
Printed: Wednesday, April 14, 2021 09:38:24 Pacific Daylight Time



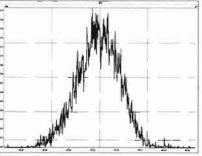



M 366.9792 R 10778

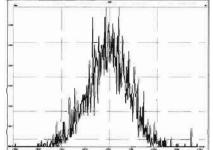




M 380.9760 R 10374




M 342.9792 R 11114

M 392.9760 R 10916

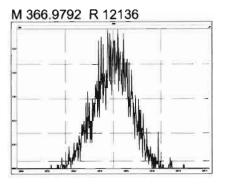




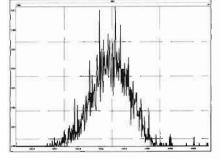

M 404.9760 R 10594

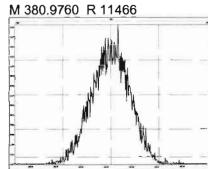


# M 416.9760 R 11847

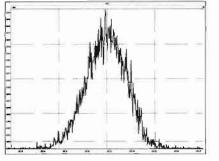


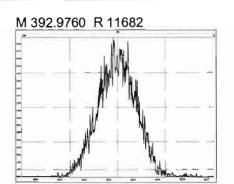

## MassLynx 4.1 SCN815


Page 1 of 1

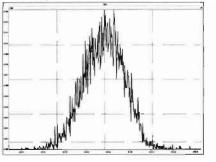

File: Experiment: OCDD_DIOXIN.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

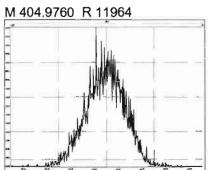
Printed: Wednesday, April 14, 2021 09:39:36 Pacific Daylight Time

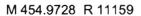


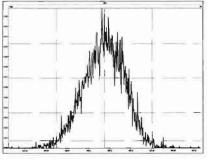







M 430.9728 R 11159



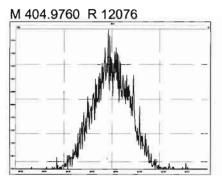



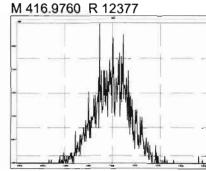

M 442.9728 R 10870



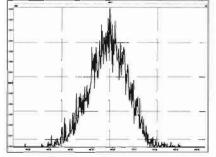




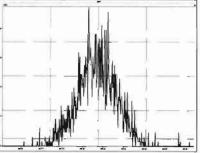




## MassLynx 4.1 SCN815

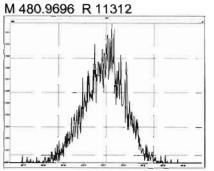
Page 1 of 1


File: Experiment: OCDD_DIOXIN.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

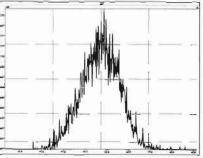
Printed: Wednesday, April 14, 2021 09:40:37 Pacific Daylight Time







## M 454.9728 R 11415



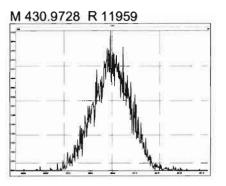

# M 466.9728 R 13091



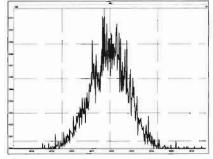
M 430.9728 R 12194

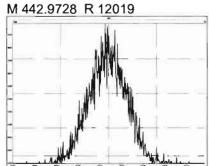


## M 442.9728 R 11571

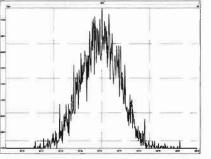


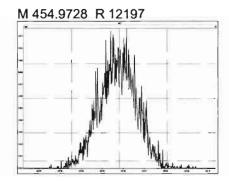

## MassLynx 4.1 SCN815


Page 1 of 1

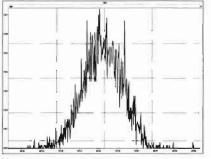

File: Experiment: OCDD_DIOXIN.exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

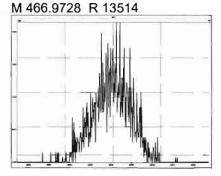
Printed: Wednesday, April 14, 2021 09:41:44 Pacific Daylight Time



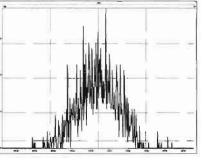


M 480.9696 R 12076







M 492.9696 R 11518






M 504.9696 R 13157



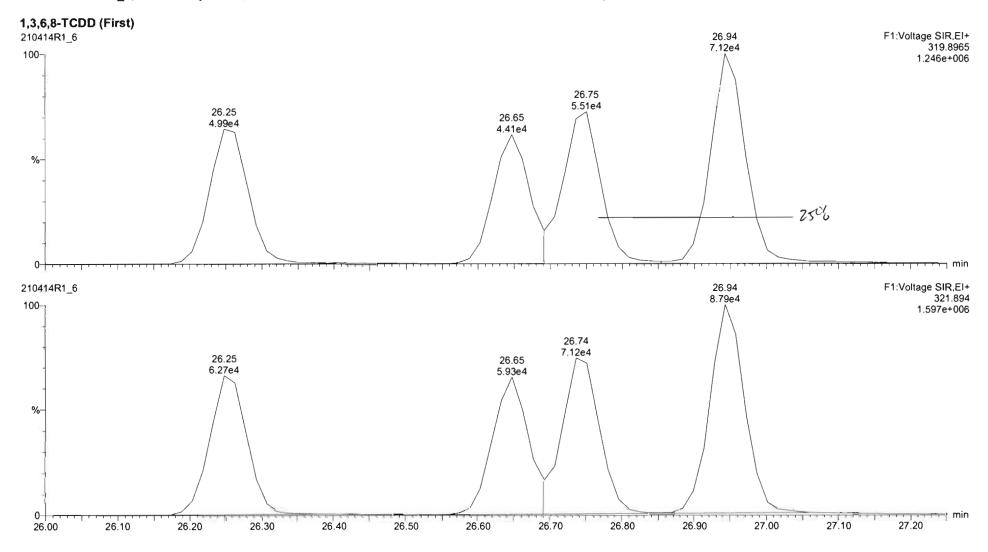


M 516.9697 R 14798



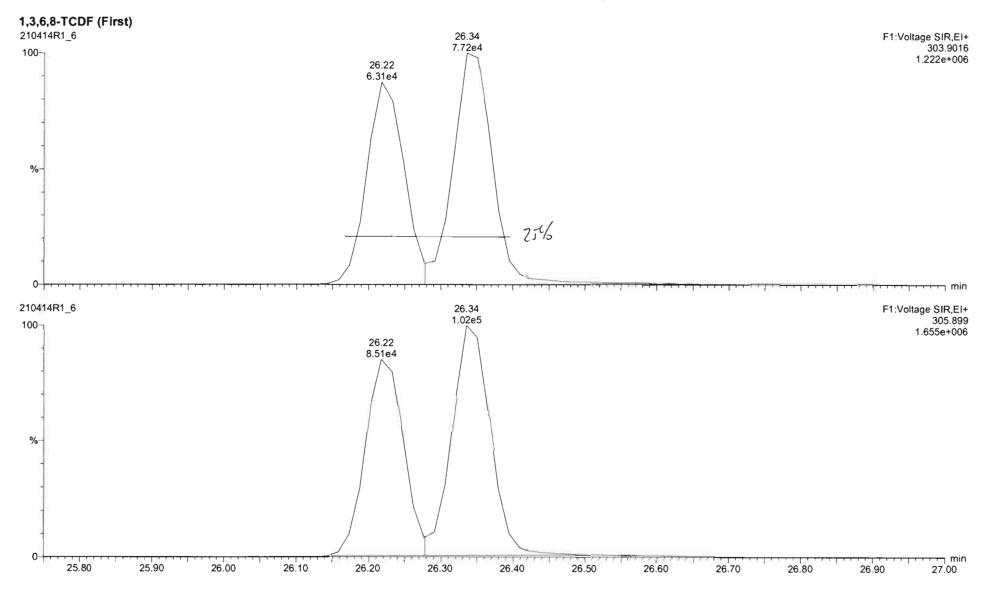
	Apple Summary Report         MassLynx 4.1 SCN815           al Laboratory VG-11         MassLynx 4.1 SCN815	Pag
Dataset:	U:\VG12.PRO\Results\210414R1\210414R1_CPSM.qld	
Last Altered: Printed:	Thursday, April 15, 2021 09:55:18 Pacific Daylight Time Thursday, April 15, 2021 09:55:55 Pacific Daylight Time	

## Method: U:\VG12.PRO\MethDB\CPSM.mdb 06 Apr 2021 16:19:34 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26


## Name: 210414R1_6, Date: 14-Apr-2021, Time: 13:46:07, ID: ST210414R1-6 1613 CS3 21C0105, Description: 1613 CS3 21C0105

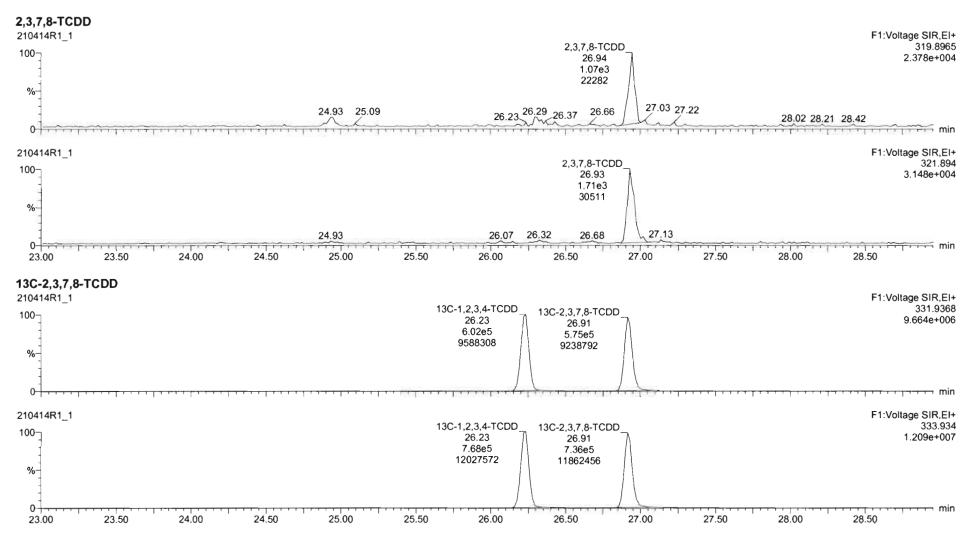
5.25	# Name	RT
1	1 1,3,6,8-TCDD (First)	23.62
2	2 1,2,8,9-TCDD (Last)	27.76
3	3 1,2,4,7,9-PeCDD (First)	29.13
4	4 1,2,3,8,9-PeCDD (Last)	31.62
5	5 1,2,4,6,7,9-HxCDD (First)	32.89
6	6 1,2,3,7,8,9-HxCDD (Last)	35.05
7	7 1,2,3,4,6,7,9-HpCDD (First)	37.47
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.31
9	9 1,3,6,8-TCDF (First)	21.61
10	10 1,2,8,9-TCDF (Last)	28.07
11	11 1,3,4,6,8-PeCDF (First)	27.62
12	12 1,2,3,8,9-PeCDF (Last)	31.98
13	13 1,2,3,4,6,8-HxCDF (First)	32.36
14	14 1,2,3,7,8,9-HxCDF (Last)	35.61
15	15 1,2,3,4,6,7,8-HpCDF (First)	37.18
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.98

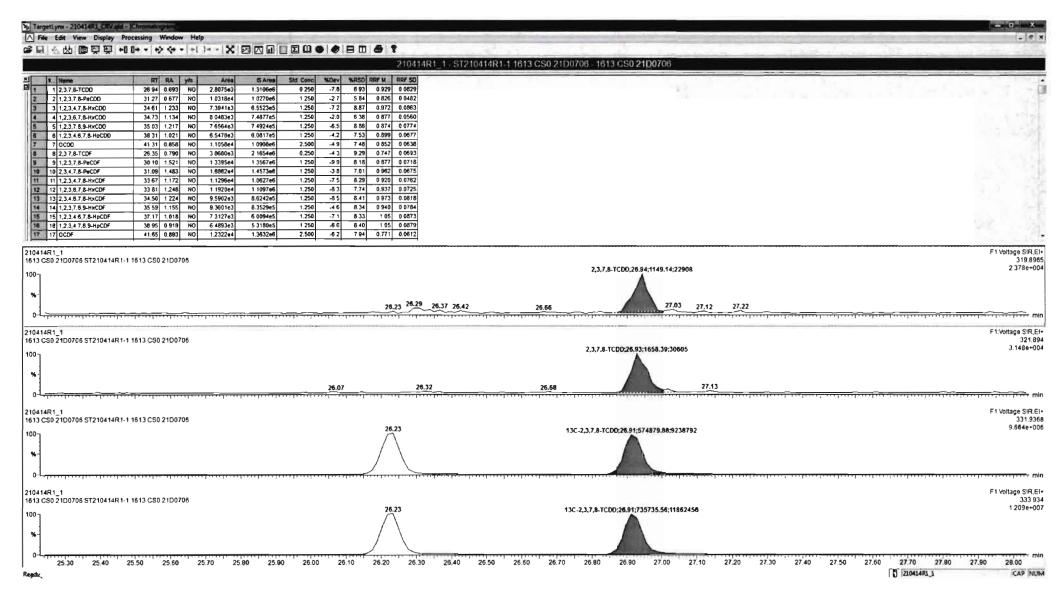
Quantify Sam Vista Analytica	aple Report MassLynx 4.1 SCN815 al Laboratory VG-11	Page 1 of 2
Dataset:	U:\VG12.PRO\Results\210414R1\210414R1_CPSM.qld	
Last Altered: Printed:	Thursday, April 15, 2021 09:55:18 Pacific Daylight Time Thursday, April 15, 2021 09:55:55 Pacific Daylight Time	FIN 04/15/21


### Method: U:\VG12.PRO\MethDB\CPSM.mdb 06 Apr 2021 16:19:34 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

Name: 210414R1_6, Date: 14-Apr-2021, Time: 13:46:07, ID: ST210414R1-6 1613 CS3 21C0105, Description: 1613 CS3 21C0105



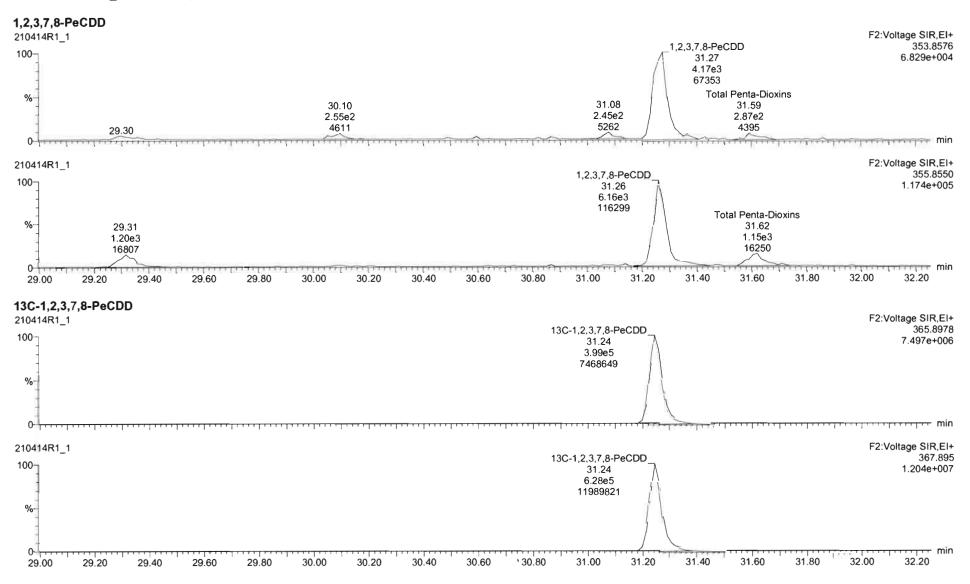

Quantify Sam Vista Analytica	nple Report MassLynx 4.1 SCN815 al Laboratory VG-11	Page 2 of 2
Dataset:	U:\VG12.PRO\Results\210414R1\210414R1_CPSM.qld	
Last Altered: Printed:	Thursday, April 15, 2021 09:55:18 Pacific Daylight Time Thursday, April 15, 2021 09:55:55 Pacific Daylight Time	
	+110 04/15/27	


## Name: 210414R1_6, Date: 14-Apr-2021, Time: 13:46:07, ID: ST210414R1-6 1613 CS3 21C0105, Description: 1613 CS3 21C0105

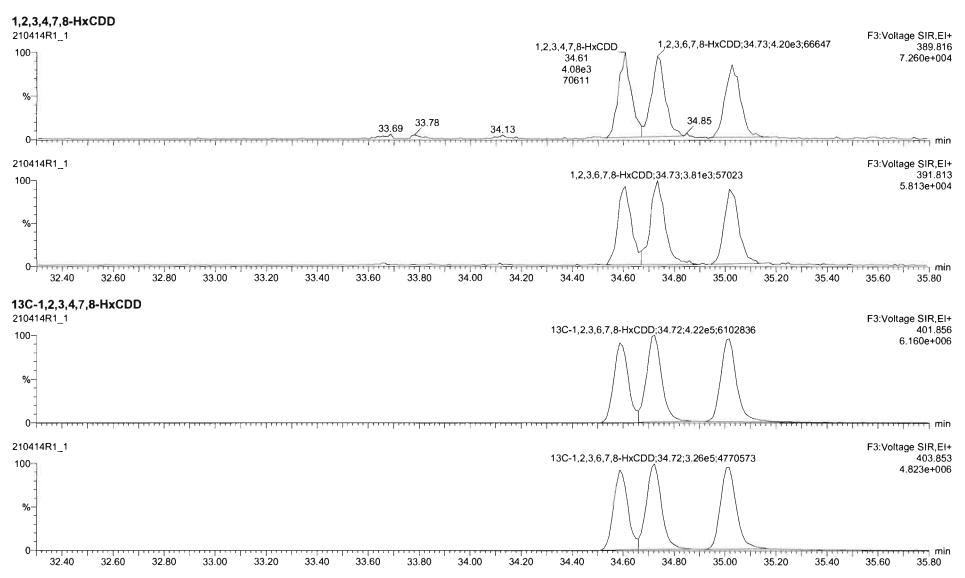


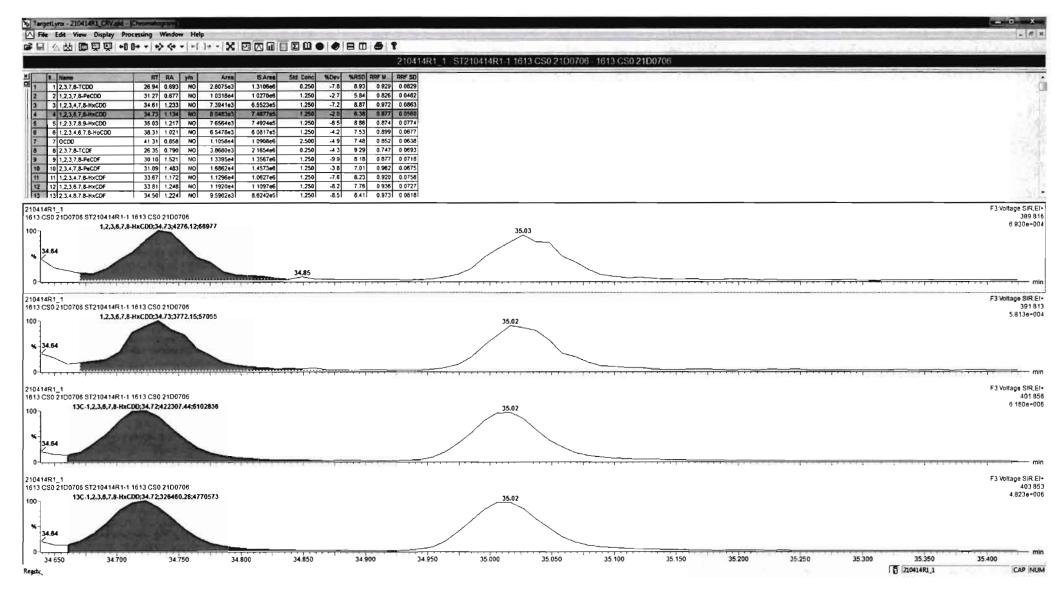
Quantify Sam Vista Analytica		Page 1 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

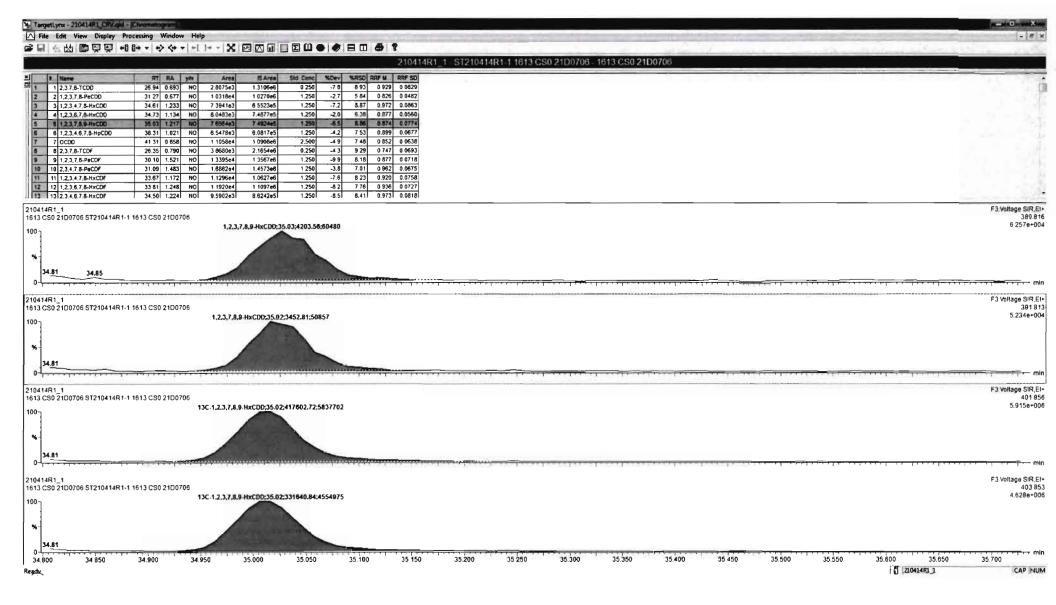
#### Method: U:\VG12.PRO\MethDB\1613rrt-04-06-21.mdb 06 Apr 2021 08:35:23 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 14 Apr 2021 14:49:28



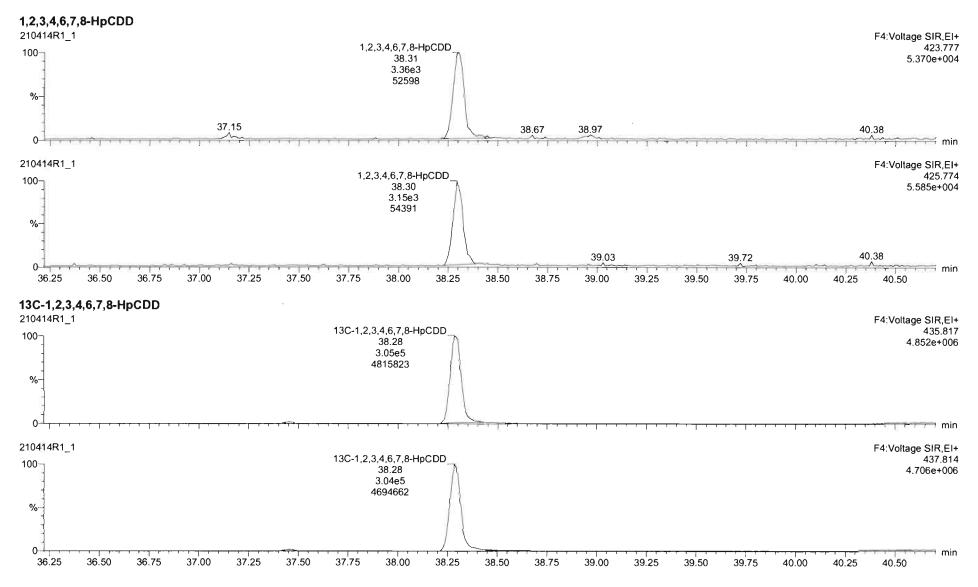


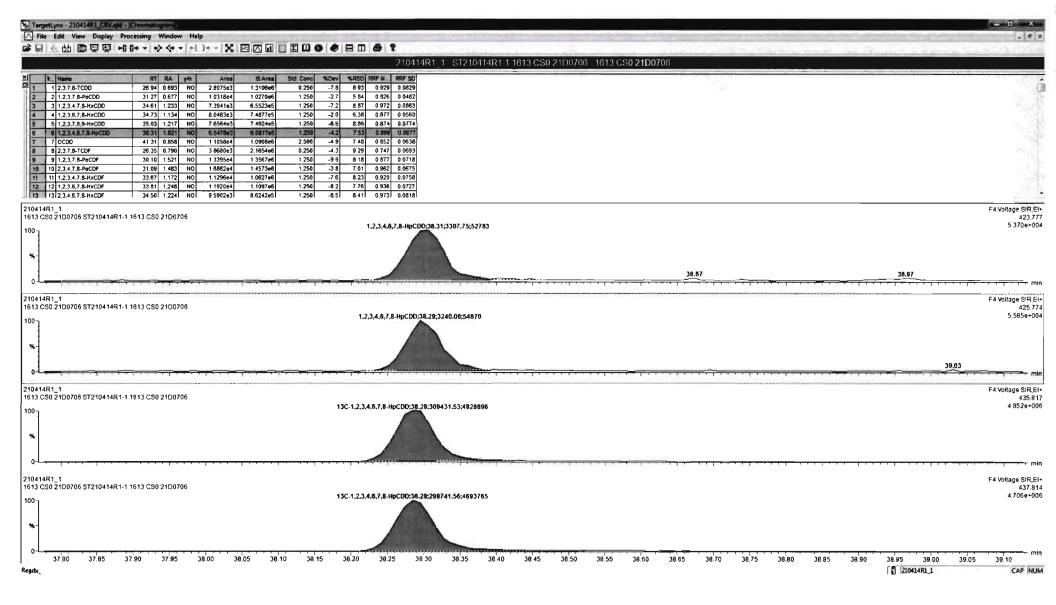


Quantify Sam Vista Analytica		Page 2 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	


37CI-2,3,7,8-TCDD 210414R1_1 F1:Voltage SIR,EI+ 37CI-2,3,7,8-TCDD_ 26.93 6.11e3 327.884 100 1.088e+005 107183 % 26.19 2.55e2 8805 M min : 0 ------24.50 25.50 26.00 26.50 27.00 27.50 28.00 28.50 23.00 23.50 24.00 25.00 13C-1,2,3,4-TCDD 210414R1_1 F1:Voltage SIR,EI+ 13C-1,2,3,4-TCDD_ 26.23 6.02e5 331.9368 13C-2,3,7,8-TCDD 100 9.664e+006 26.91 5.75e5 9588308 9238792 % 0 🖵 min F1:Voltage SIR,EI+ 210414R1_1 13C-1,2,3,4-TCDD 26.23 333.934 13C-2,3,7,8-TCDD 100 1.209e+007 26.91 7.68e5 7.36e5 12027572 11862456 %-0----- min 26.00 26.50 27.00 27.50 28.00 28.50 23.50 24.00 24.50 25.00 25.50 23.00

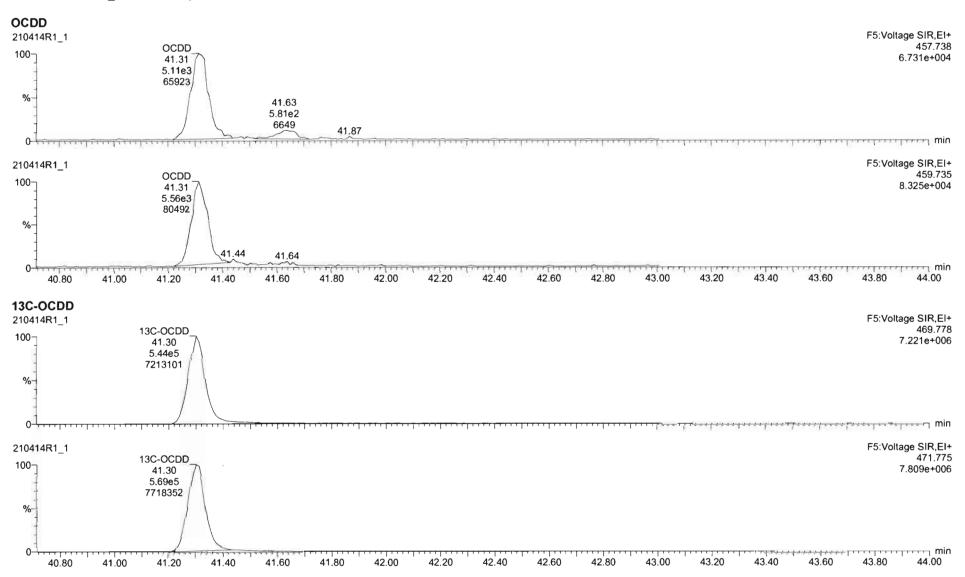

Quantify Sam Vista Analytica		Page 3 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

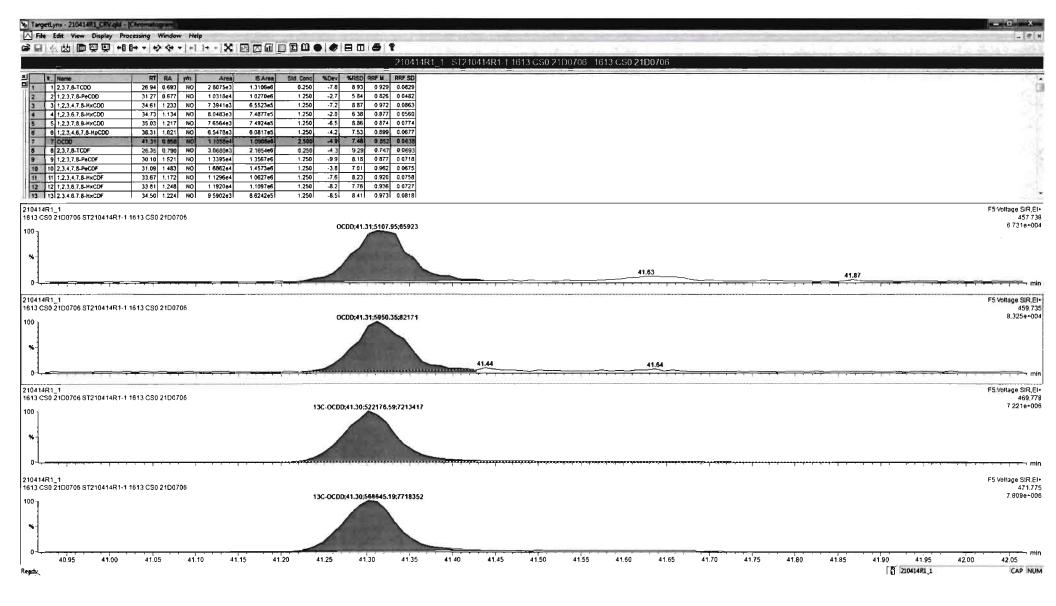



Quantify Sample Report Vista Analytical Laboratory		MassLynx 4.1 SCN815	Page 4 of 78
Dataset:	Untitled		
Last Altered: Printed:		5, 2021 09:17:13 Pacific Daylight Time 5, 2021 09:17:45 Pacific Daylight Time	



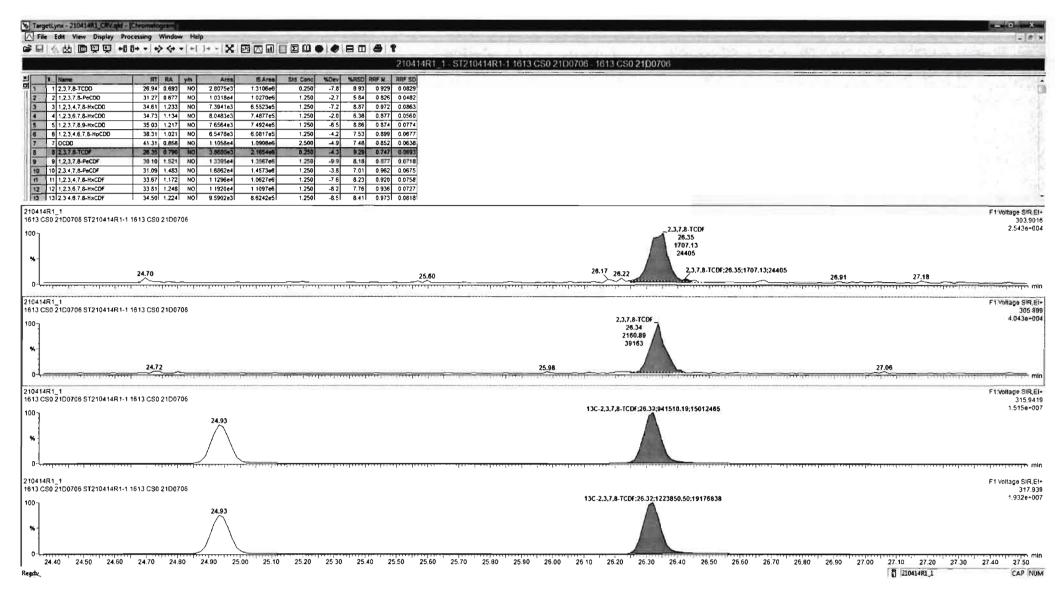


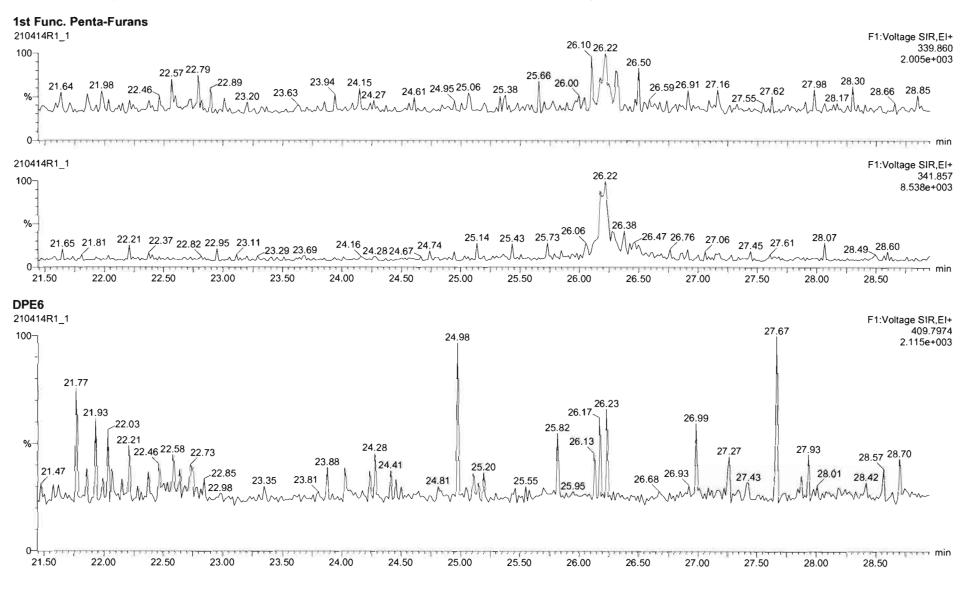


Quantify Sam Vista Analytica		Page 5 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



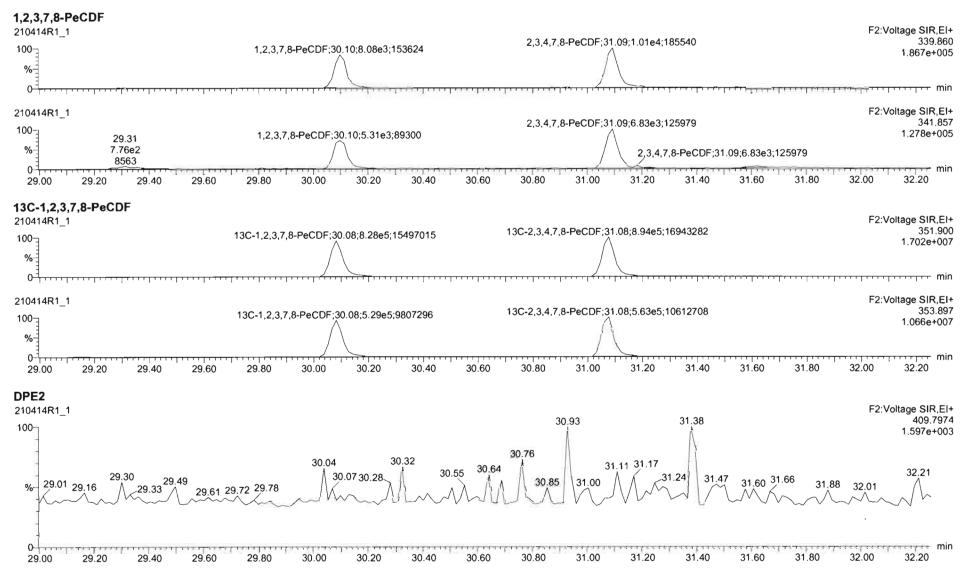



Quantify Sam Vista Analytica		Page 6 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



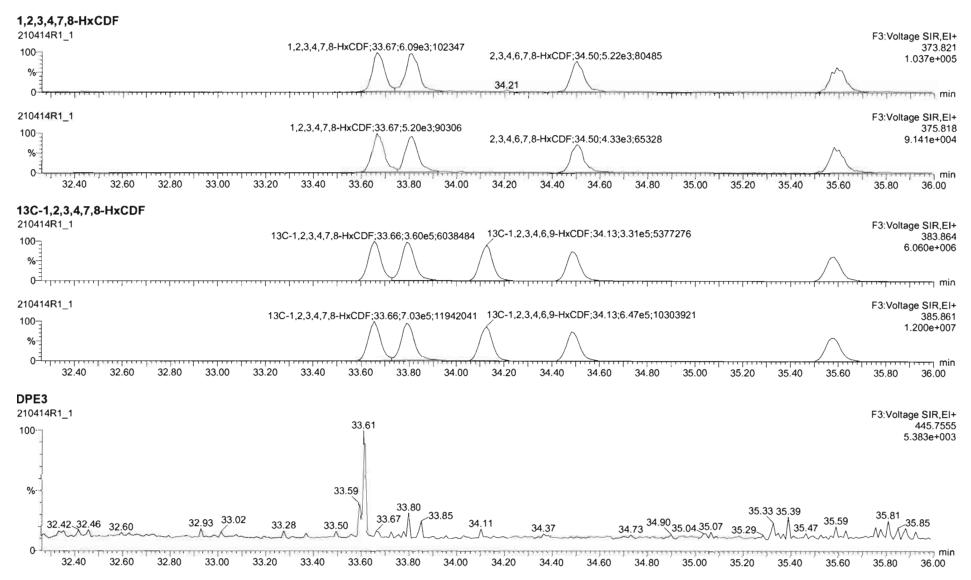


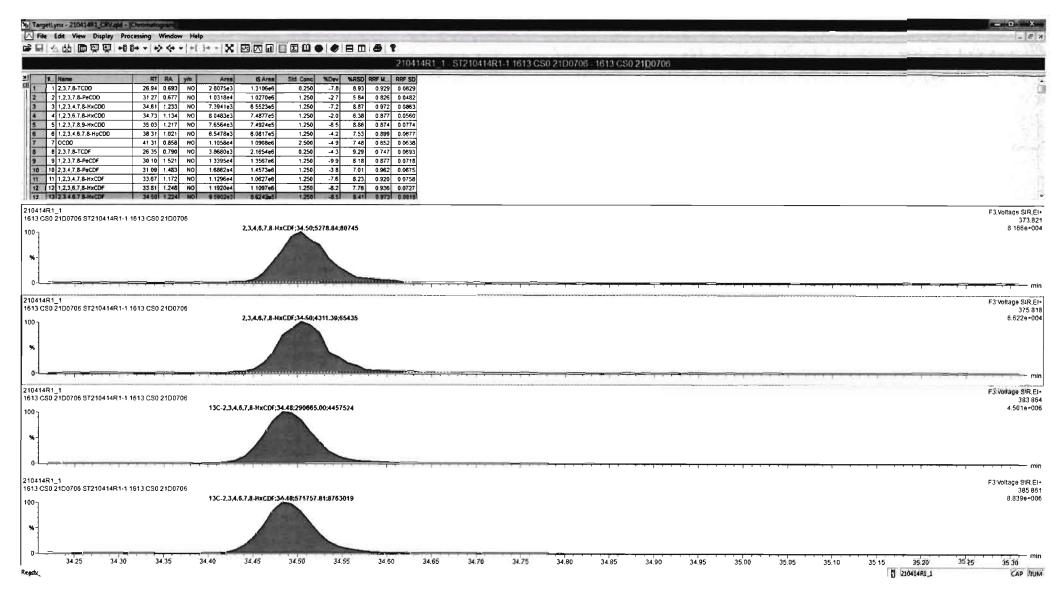

Quantify Sam Vista Analytica		Page 7 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	





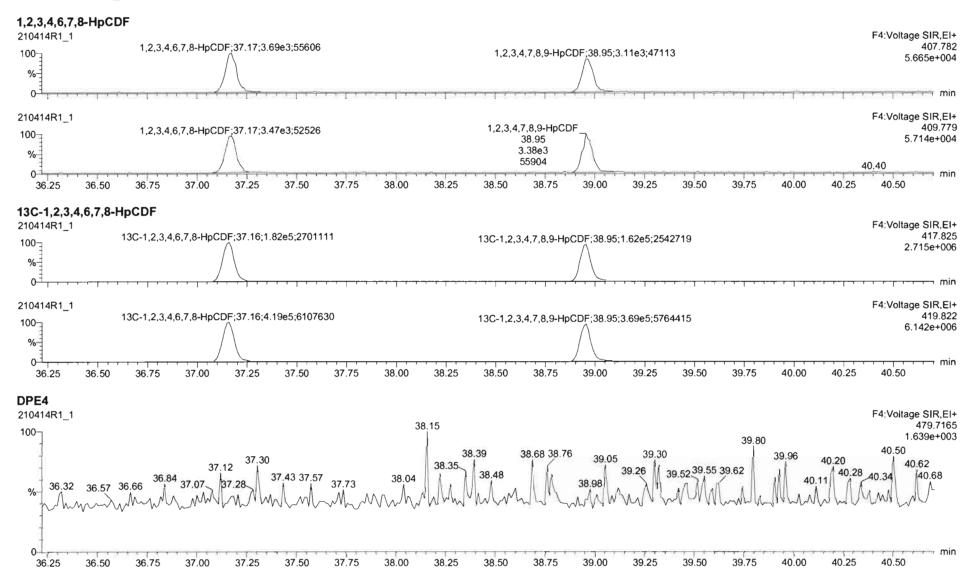

Quantify Sam Vista Analytica	· · ·	Page 8 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



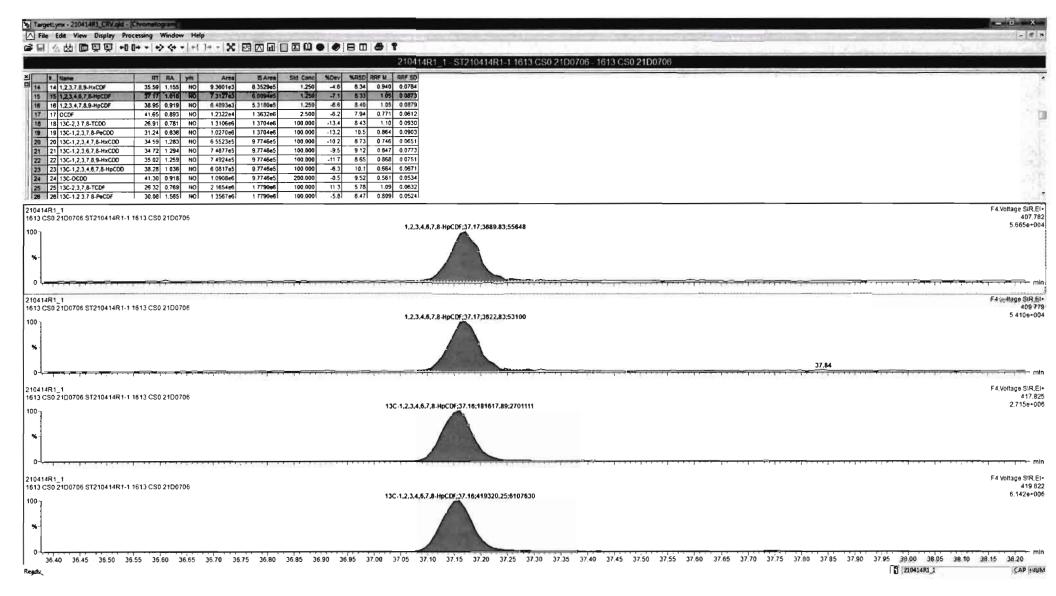


Page 9 of 7



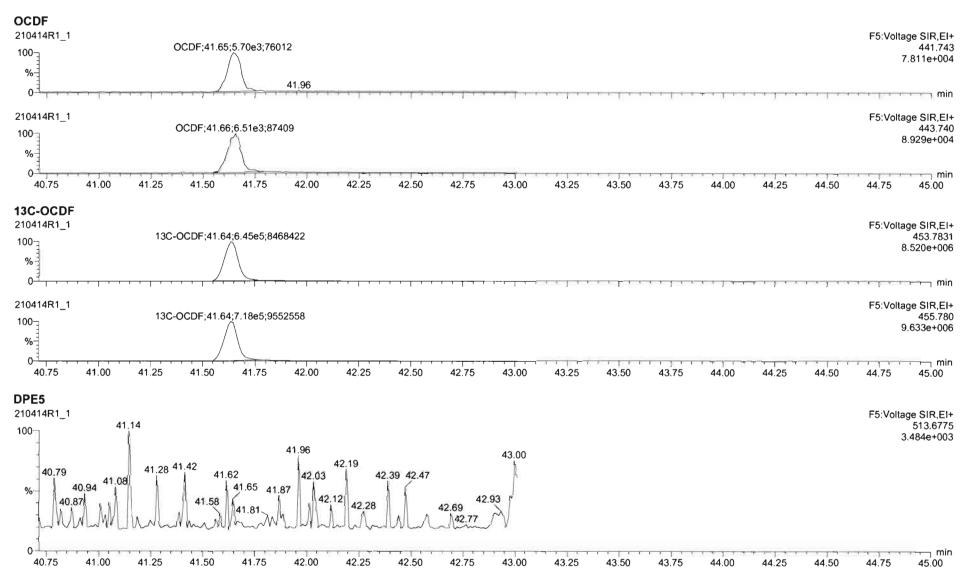
Targettynx - 210414R1_CRV.dd - (Choimatogram	- 0 - X -
JF#e Edit View Display Processing Window Help □ 小山面空空 +88+ + +> <+ + +()+ - X 四八山 ■ 200 ● ◆日田 番 18	- # ×
目 2 M 回 文文 111 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Contraction of the second second
	· Ambai
Name         RT         RA         ym         Area         Starma         Std         Conc         %0ev         %4RSD         RBF M         R8F SD           1         1         2.37.6-TCDO         26 94         0.593         HO         2 0075e3         1.3106e6         0.250         -7.8         8.93         0.929         0.622           2         2         1.2.3.7.8-PCDO         3.127         0.677         HO         1.0318e4         1.0270e6         1.250         -2.7         5.84         0.926         0.0482           3         1.2.3.4.7.8-HxCDO         3.461         1.233         HO         7.3914e3         6.5523a5         1.250         -7.7         8.87         0.972         0.0883           4         4         1.2.3.6.7.8-HxCDO         3.4.73         1.134         NO         8.0483e3         7.4877e5         1.250         -2.0         6.38         0.877         0.9560	
5         5         1.2.3.7.8.9-HVCDD         35 03         1.2.7         NO         7.6564e3         7.4924e5         1.250         -6.5         8.86         0.874           6         6         1.2.3.4.6.7.8-HVCDD         38.31         1.0.21         NO         6.5674e3         0.4924e5         1.250         -4.2         7.53         0.899         0.0677           7         7         7         7         7         0.000         41.31         0.868         NO         1.1055e4c3         2.480.75e         1.953         0.899         0.0673           8         6         2.3.7.8-TCDF         28.35         0.790         NO         3.0680e3         2.1654e6         0.250         -4.3         9.29         0.747         0.6638           9         9         1.2.3.7.8-FCDF         28.35         0.790         NO         3.0680e3         2.1654e6         0.250         -4.3         9.29         0.747         0.6633           9         9         1.2.3.7.8-FCDF         30.10         1.557         1.250         -3.8         7.01         0.682         0.0715           10         10         1.2.3.4.7.8-FCDF         30.37         1.172         NO         1.12564c4         1.62766	
12 12 1.2.3.6.7.8-HxCDF 33 81 1.248 HO 1 1920e4 1 1097e6 1.250 -8 2 7.76 0 936 0 0727 13 13 2.3.4.6 7.8-HxCDF 34.50 1.224 HO 9.5902e3 8 6242e5 1.250 -8.5 8.41 0.973 0.0818	·
10414R1_1 513 CS0 21D0706 ST210414R1-1 1613 CS0 21D0706 2,3,4,7,8-PeCDF;31.09;10070.61;185605 	F2.Voltage SiR.EI+ 339.860 1.867e+005
	, man
1041R1_1 513 CS0 2100706 ST210414R1-1 1613 CS0 2100706 2.3,4,7,8-PeCDF;31.09:8791.10;125974 2,3,4,7,8-PeCDF 31.09 6791.10 125974 31.52	F2.Voltage SiR. £i+ 341 857 1.2789≁005
	1 min
10414R1_1 513 CS0 21D0706 ST210414R1-1 1613 CS0 21D0706 13C-2,3,4,7,8-PeCDF;31.08;894008.89;16943282	F2:Voltage SIR.Et+ 351.900 1.702e+007
0	T T T T T T T T T T T T T T T T T T T
0 30.65 30.75 30.80 30.85 30.90 30.95 31.00 31.05 31.10 31.15 31.20 31.25 31.30 31.35 31.40 31.45 31.50 31.55 31.60 31.65 31.70 31.75 31. gdx	180 3185 3190 3195 32.00 6 2001483 CAP NUM

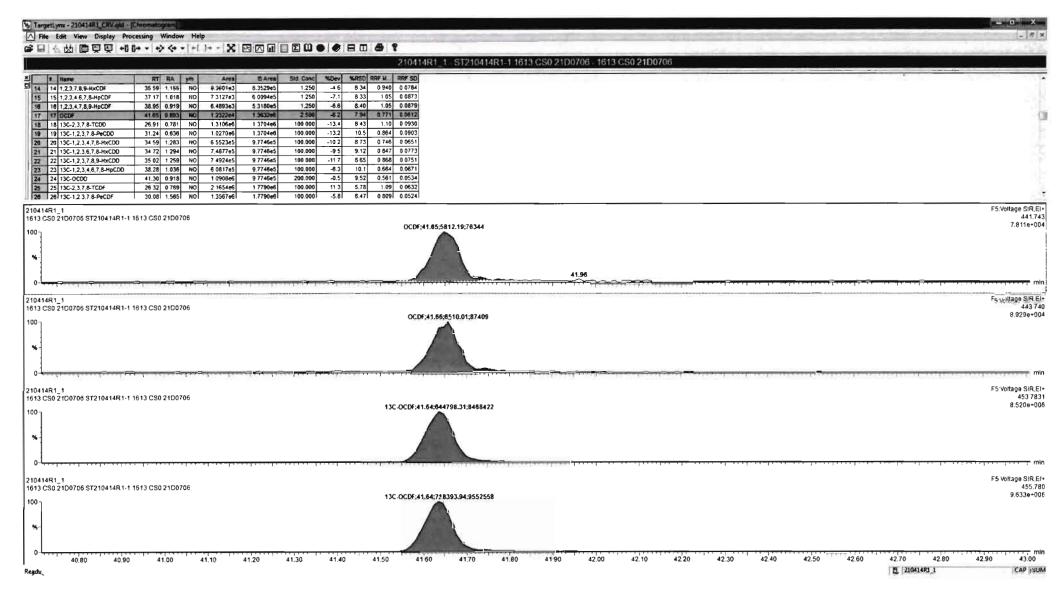

Quantify Sam Vista Analytica	• •	Page 10 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



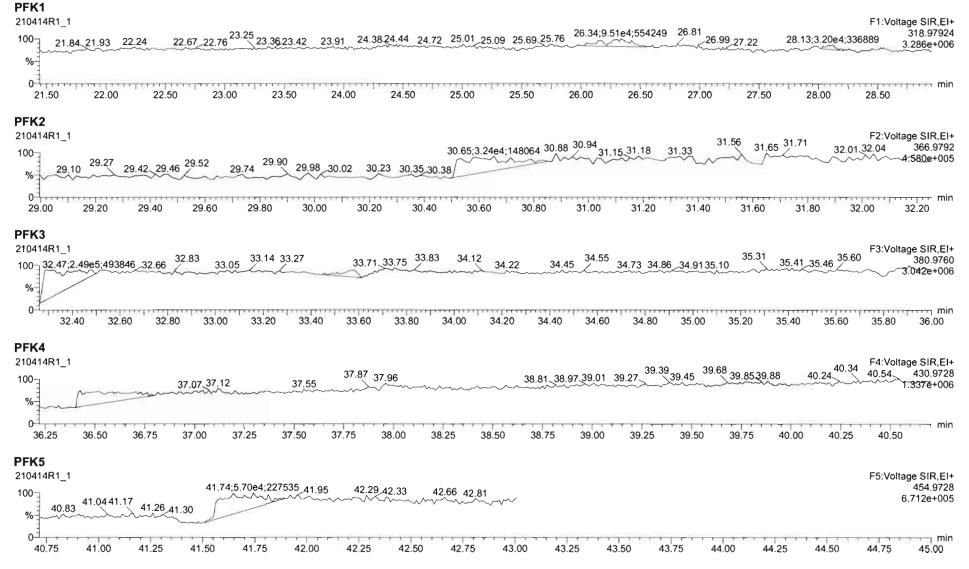



	8+ •   •> <+ •   +( )+ -   X   🖂				-			-		10000	- 1 - L - L - L - L - L - L - L - L - L	10.00		-		J. Sala	and the second second
				210	0414R1_1	ST210414F	R1-1 1613 CS0 2	1D0706 - 16	13 CS0 21D070	6							
T. Nome	RT RA ym Ares	S Area Std Conc	NDev MRSD	RRF M RRF	SD		1,00	w.*			120						
14 1.2.3.7.8.9-HxCDF		8.3529#5 1.250		0.940 0.07													
15 1,2,3,4,6,7,8-HpCDF	37 17 1.018 NO 7 3127e3 6	6 0094e5 1 250	-71 833	1 05 0 08													
16 1,2,3,4,7,8,9-HoCDF		5.3180e5 1.250	-66 840	1.05 0.08													
17 OCDF		1.3632e6 2 500	-6.2 7.94	0.771 0.06													
18 13C-2.3.7.8-TCDD 19 13C-1.2.3.7.8-PeCDD		1 3704e6 100.000 1 3704e6 100.000	-13.4 8 43 -13.2 10 5	1 10 0 09													
20 13C-1.2.3.4.7.8-HxCDD		9 7746e5 100.000	-10.2 8.73	0 746 0 06													
21 13C-1 2,3,6,7,8-HxCDD		9 7746e5 100.000	-9.5 9 12	0 847 0 07													
22 13C-1,2,3,7,8,9-HxCDD		9 7745e5 100.000	-117 8.65	0 868 0 07													
23 13C-1,2,3,4,6,7,8-HpCDD		9.7746e5 100.000	-6.3 10.1	0 664 0 06	71												
24 13C-0C00		9.7746e5 200.000	-0 5 9.52	0.561 0.05													
25 13C-2,3,7,8-TCDF		1 7790e6 100.000	11 3 5.78	1.09 0.06													
26 13C-1.2.3.7.8-PeCDF	30.08 1.565 NOL 1 3567e6 1	1 7790 <del>e</del> 8   100.000	-5.8 6.47	0 809 0.05	24												
4R1_1																	F3 Voltage
CS0 21D0706 ST210414R1-1	1613 CS0 21D0706									_							3
							1	1,2,3,7,8,9-HxCD	F;35.59;5015.99;6592	7							5 70
								1									
								F									
								1		1.0		35.80					
										1 1 1 1 1			<del></del>	<del>~,</del>	<del></del>	<del></del>	
104.4																·	
4R1_1 CS0 21D0706 ST210414R1-1	1613 CS0 2100706																F3 Voltage S 3
							1.2	3.7.8.9 HxCDF:3	5.58:4344.13:60205								6.096
									2								
								Fight 1									
				11		1.1.1.1.1					<del></del>				<u> </u>		
																	F3:Voltage
4R1_1	1613 CS0 21D0706																
							13C-1,2,	3.7.8.9-HxCDF;3	5.58;281769.84;37479	144							3 75
4R1_1 CS021D0706 ST210414R1-1																	
								ALC: NO									
										-							
							·····			<del>,</del>	· · · · · · ·	· · · · ·	1-1-1-X		── <del>──────────────────────────────────</del>		
250 2 1D0706 ST210414R 1-1			· · · · · · · · · ·		<del>  </del>		· · · · · · · · · · · · · · · · · · ·			<del></del>	· · · · · · · · · · · · · · · · · · ·	•••••			── <del>──────────────────────────────────</del>		F3 Vollage
		<del> </del>	· · · · · · · · · · ·		·	· · · · ·					· · · ·		1 <u></u>		╸ <del>┡╺┎┉╕┍╸╍╍┙</del> ┱		F3 Vollage
CS0 21D0706 ST210414R1-1	1813 CS0 21D0706				· ·   · · ·		13C-1.2.	3,7,8,9-HxCD4;13	5-58;553524.19;70968	385	<del></del>				<u>►₩₩₩₽₽₩₩₽₩₽</u> ₩	•••••	
CSO 21D0706 ST210414R1-1	1813 CS0 21D0706			·	· ·   · ·		13C-1.2,	3,7,8,9-HxCD*;3	5-58;553524.19;70968	885	<u> </u>	<u></u>	- <u>9-</u> 4		<del>- ≻≁</del> ⊺	., ,,	
	1513 CS0 21D0706					. ,,	13C-1.2,	3,7,8,9-HxCD413	5-58;553524.19:70968	<b>185</b>	<u> </u>		- <u>*</u> -* *		- <del> </del>		-
S0 21D0706 ST210414R1-1	1813 CS0 21D0706	<del> </del>			•••		13C-1.2,	3,7,8,9-HxCD413	5-58;553524.19:70968	<b>1</b>	<u>, 1 erte</u>						
S0 2 1D0706 ST210414R1-1	1813 CS0 21D0706	<del></del>			•••	. , <u>, , , , , , , , , , , , , , , , , ,</u>	13C-1.2,	3.7.8.9-HxCD*13	5-58;553524.19;70964	385	·	<u> </u>					-

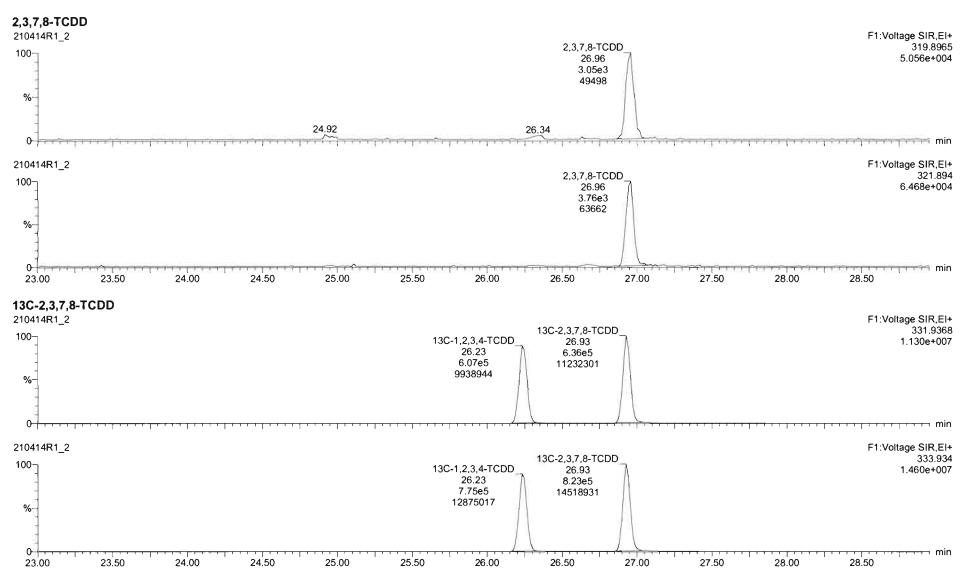

Quantify Sam Vista Analytica		Page 11 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

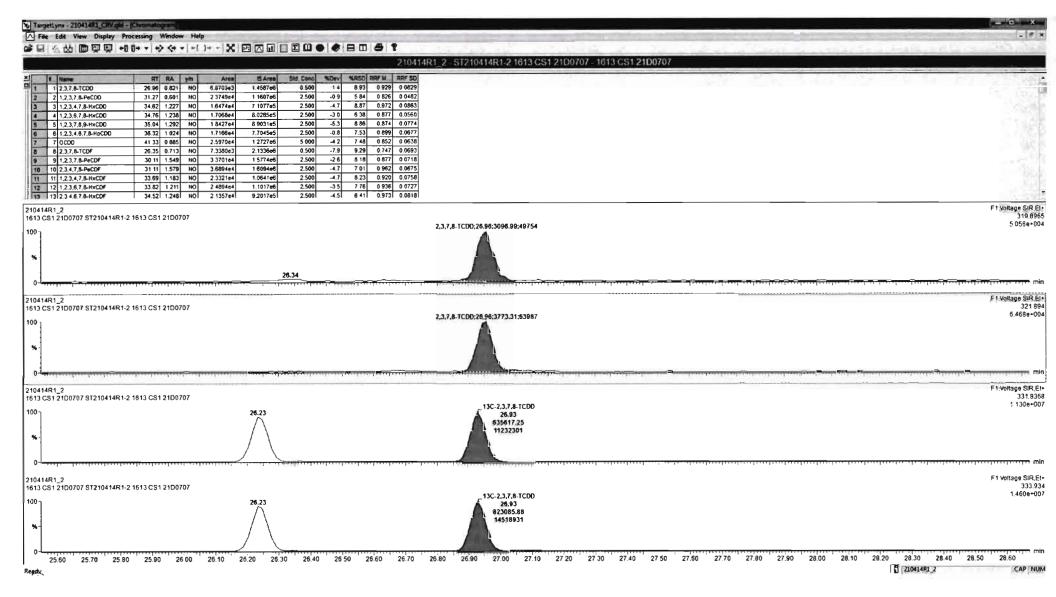



Work Order 2105037

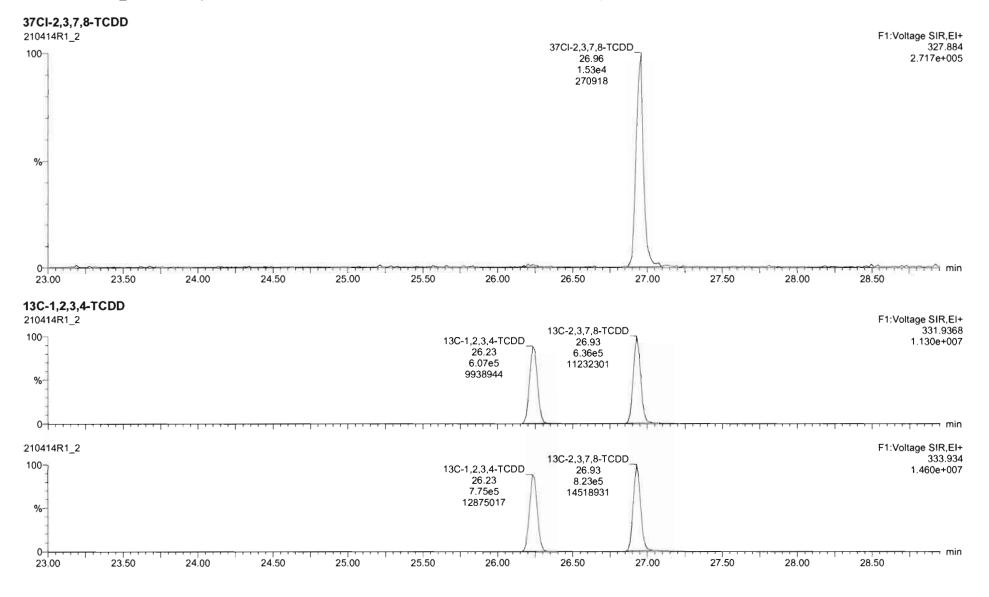



Quantify San Vista Analytica		Page 12 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

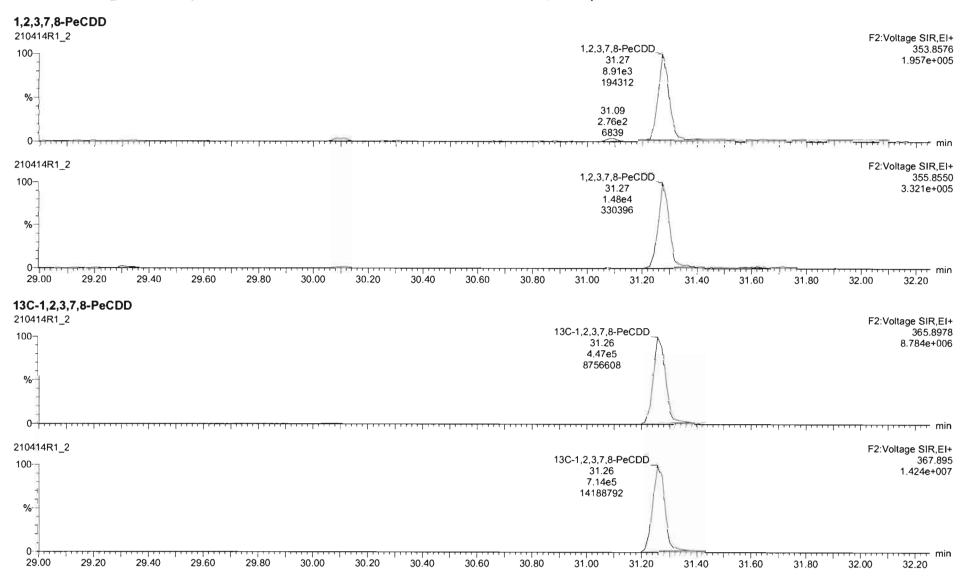


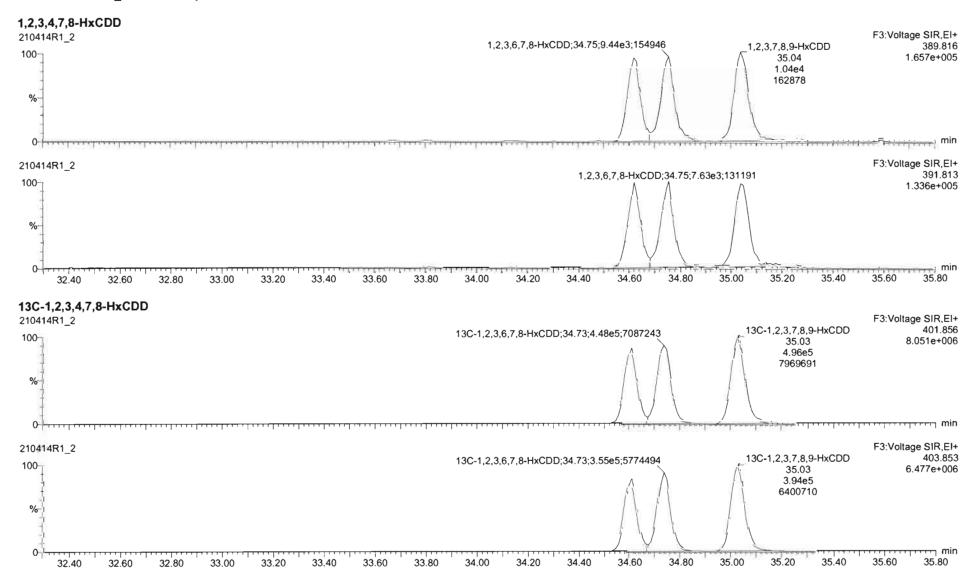

eport MassLynx 4.1 SCN815 pratory	Page 13 of 78
led	
sday, April 15, 2021 09:17:13 Pacific Daylight Time sday, April 15, 2021 09:17:45 Pacific Daylight Time	
le	ed sday, April 15, 2021 09:17:13 Pacific Daylight Time



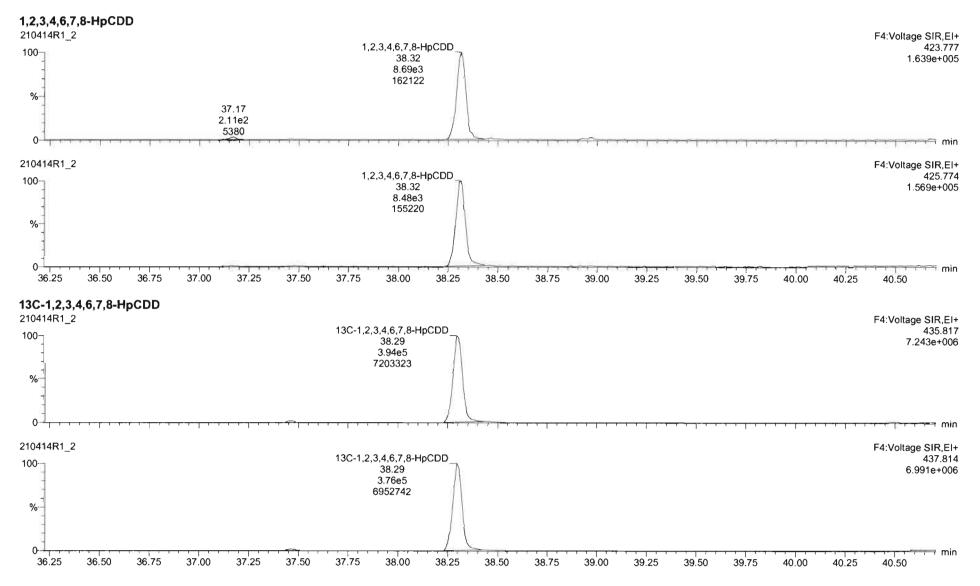

Quantify Sam Vista Analytica		Page 14 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



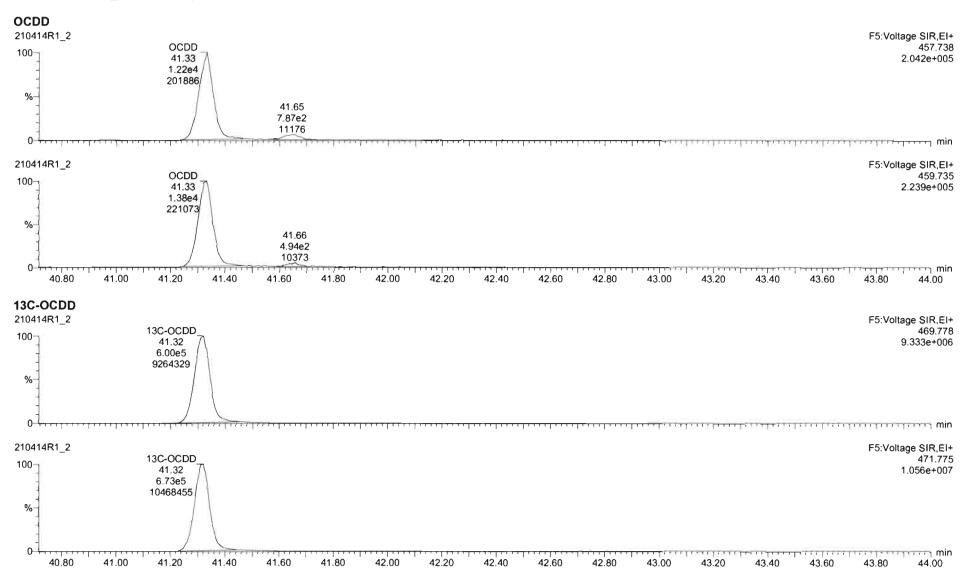




Quantify San Vista Analytica		Page 15 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

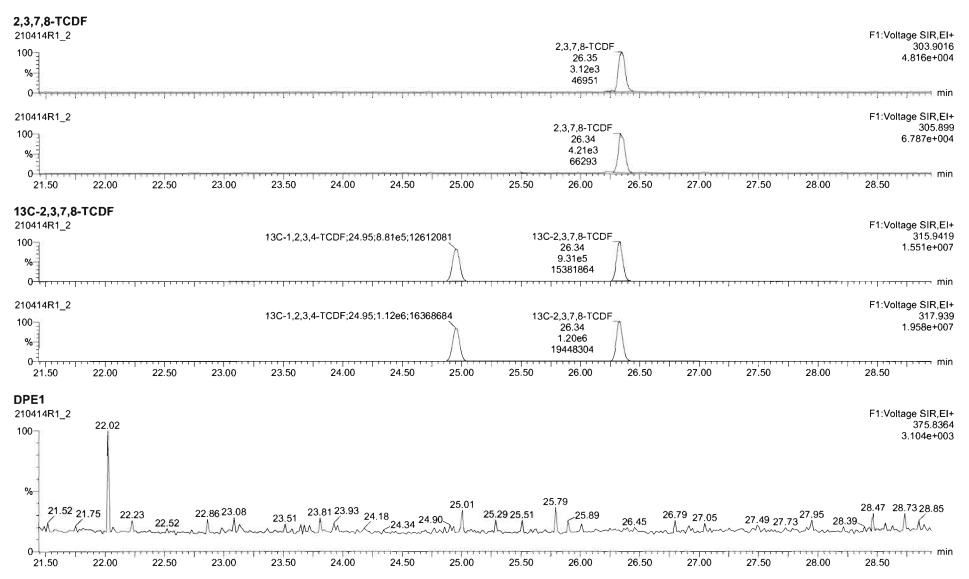


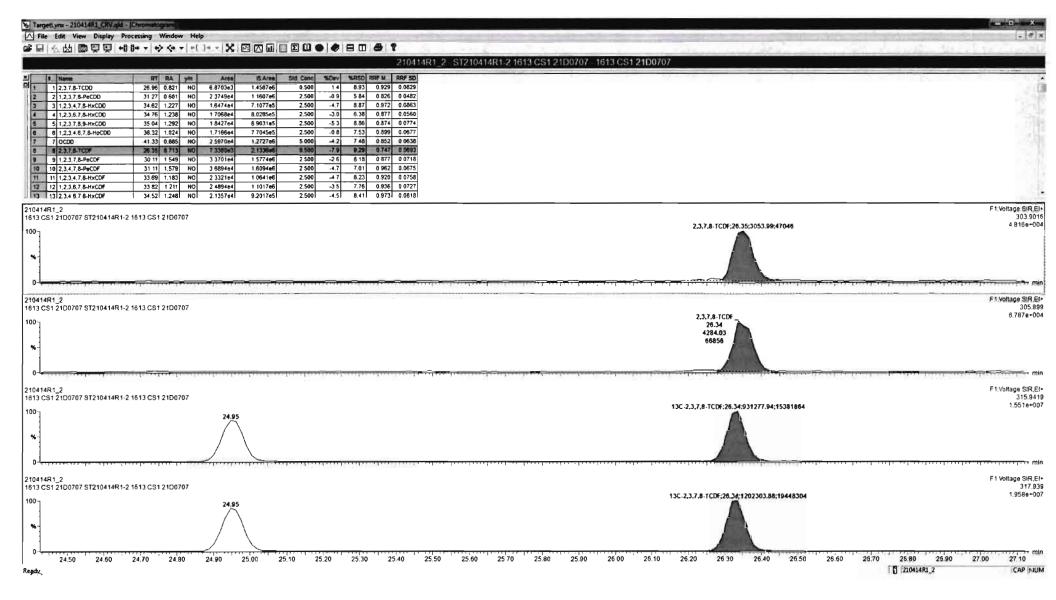

Quantify Sam Vista Analytica		Page 16 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



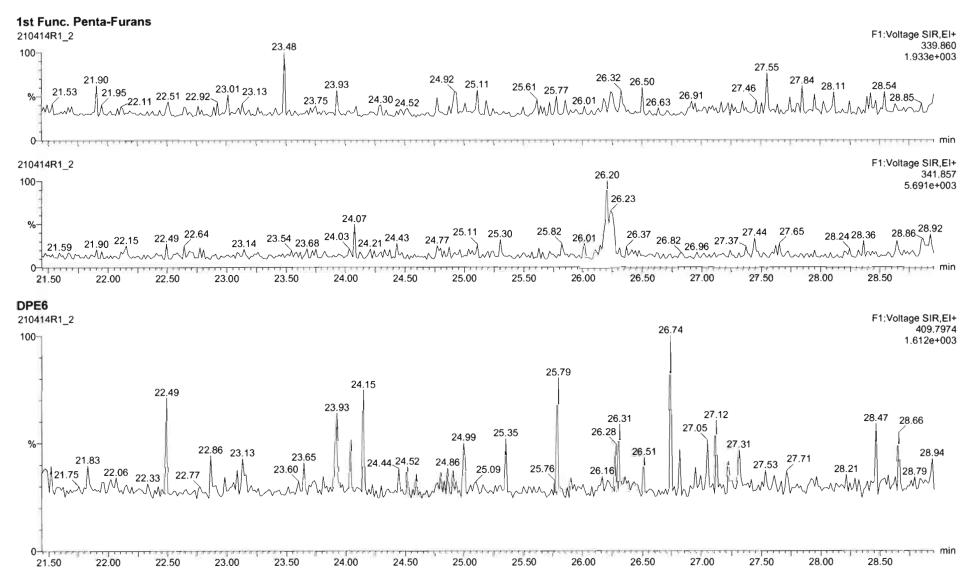

Quantify Sam Vista Analytica		Page 17 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



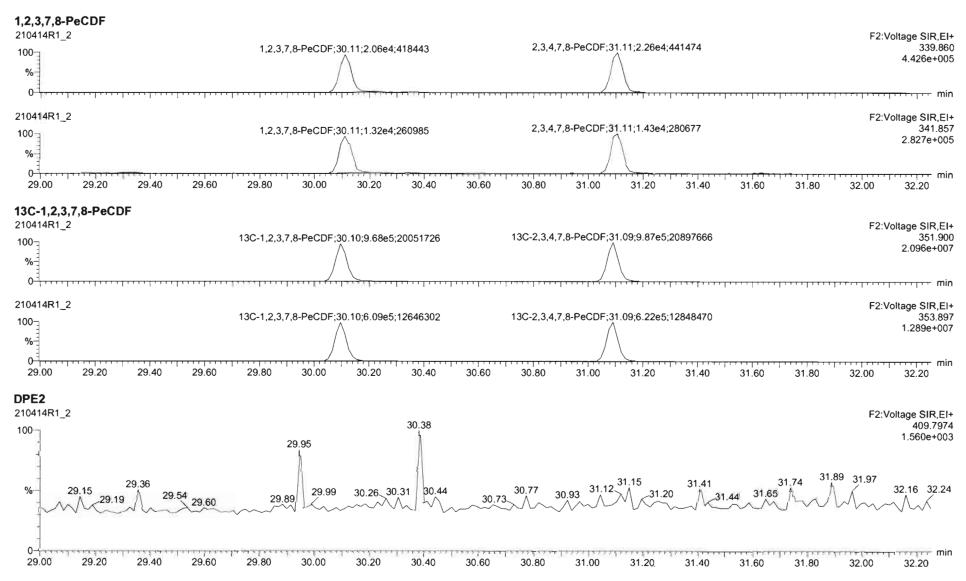

Quantify Sam Vista Analytica	· · ·	Page 18 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

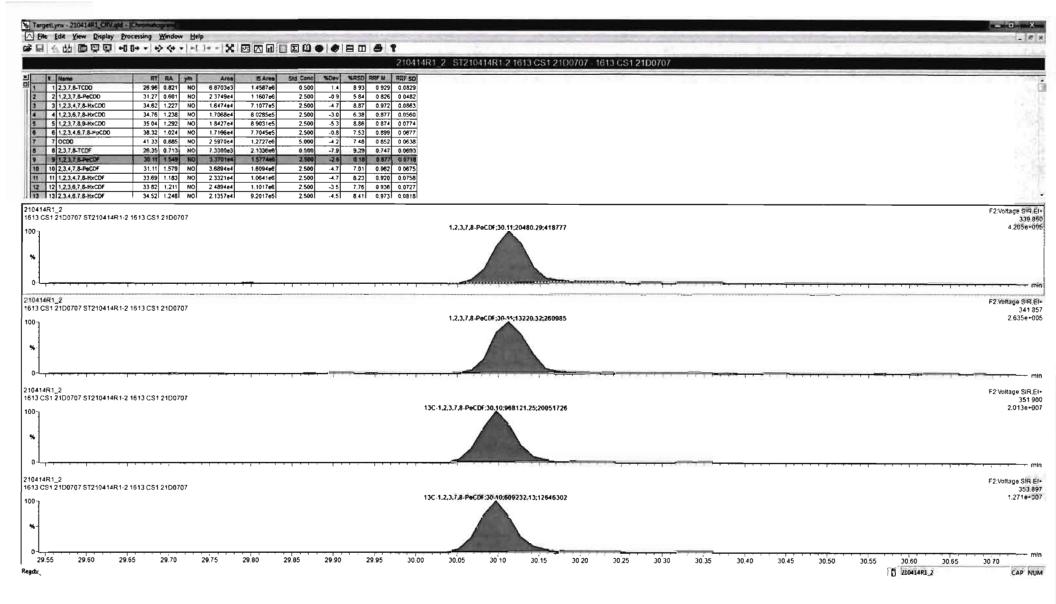



Quantify Sam Vista Analytica		Page 19 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

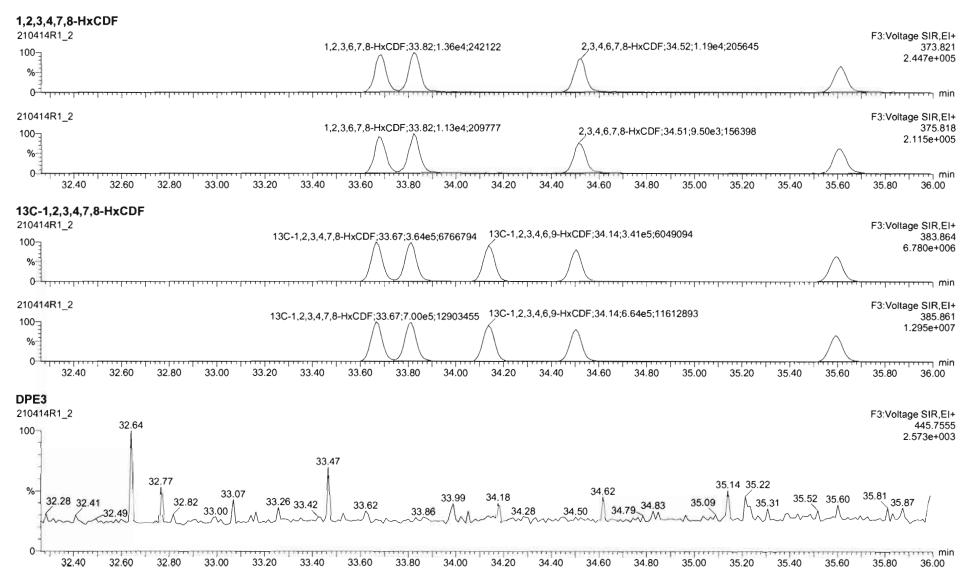


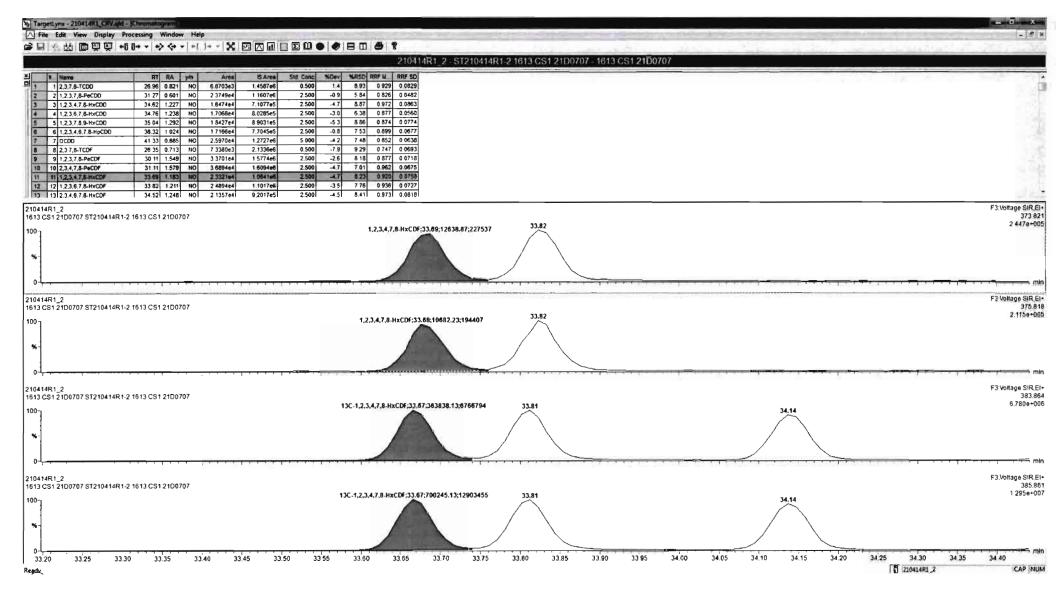

Quantify Sam Vista Analytica		Page 20 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

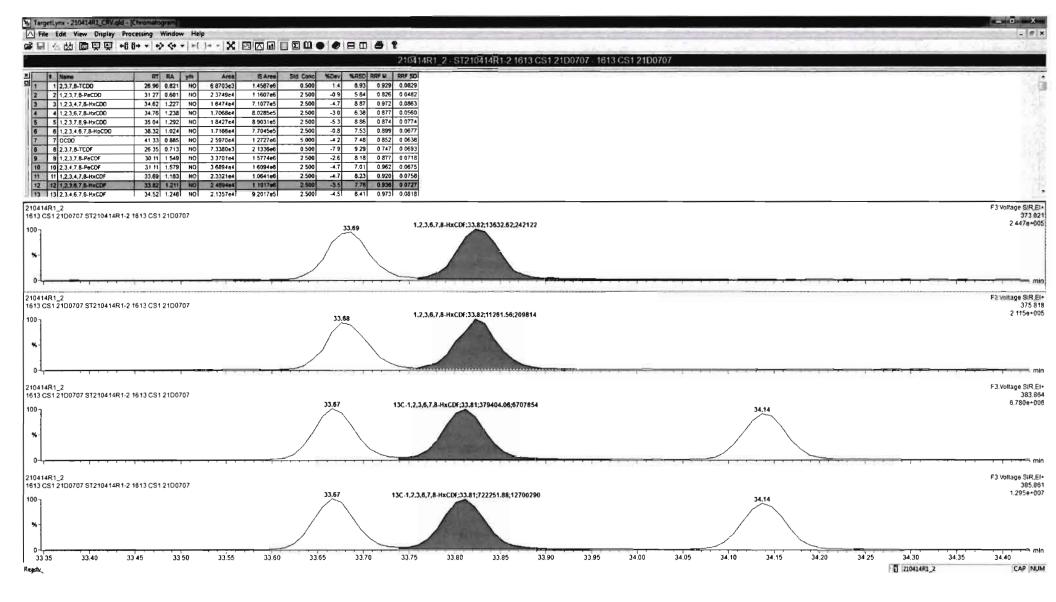


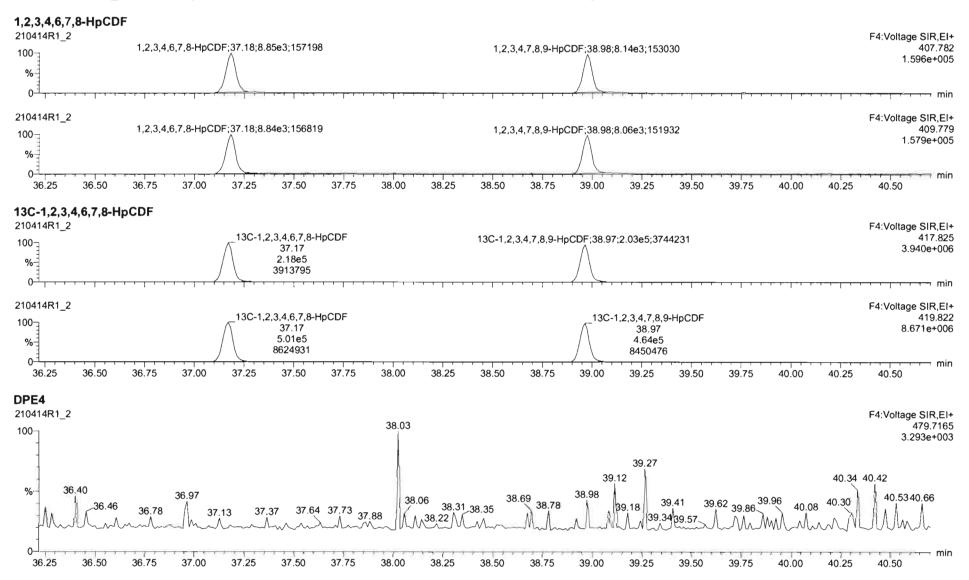

Quantify Sam Vista Analytica		Page 21 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

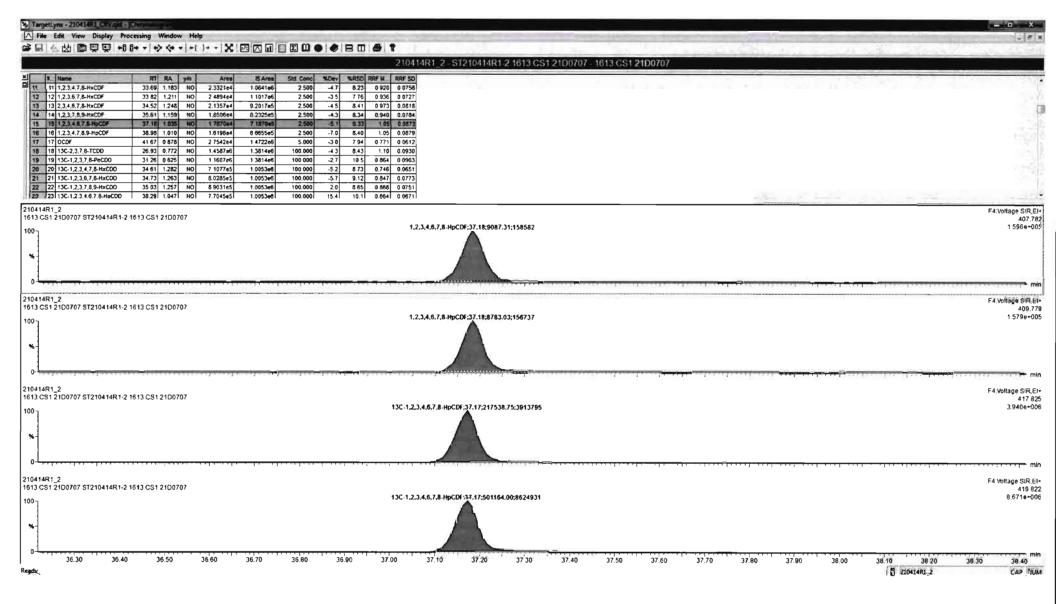




Quantify Sam Vista Analytica		Page 22 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

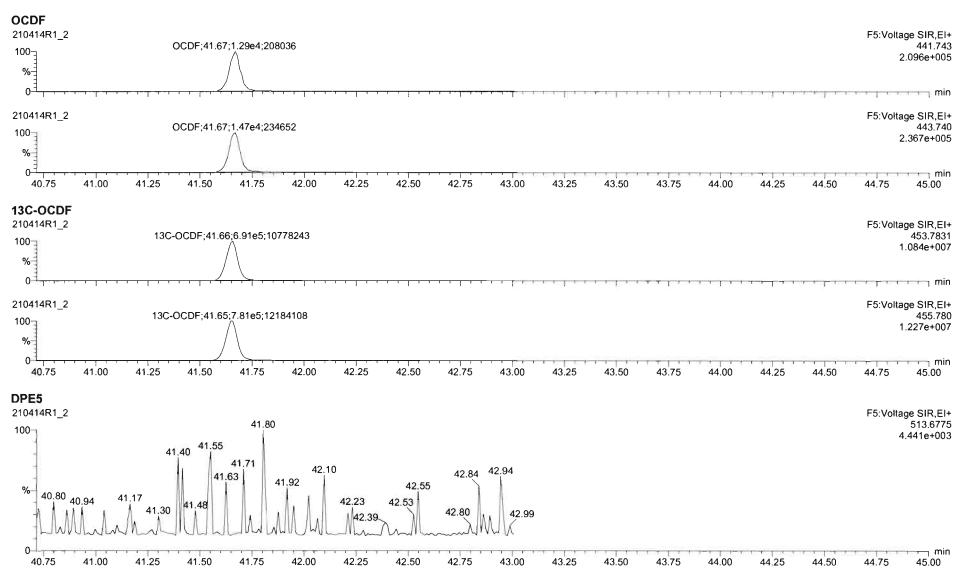




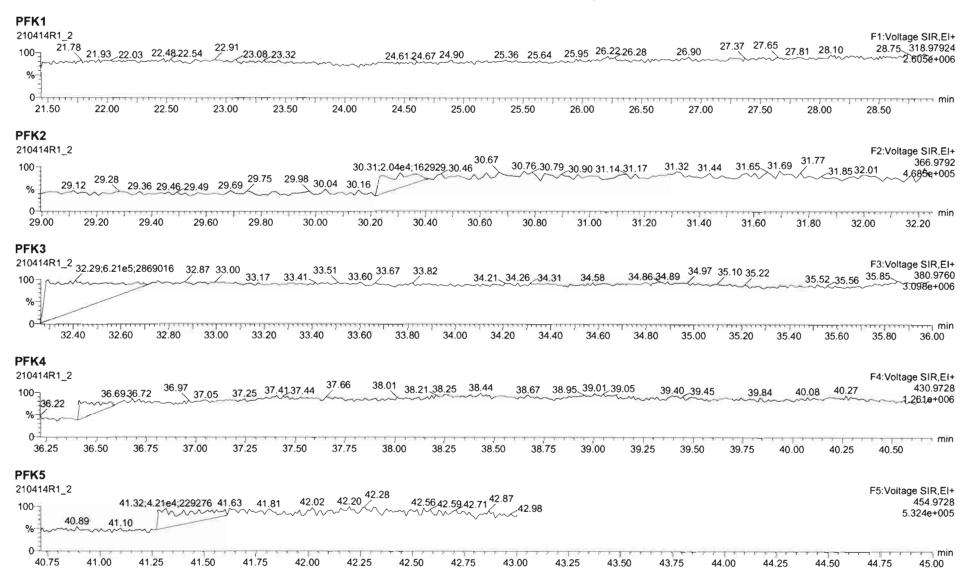


Quantify Sam Vista Analytica		Page 23 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



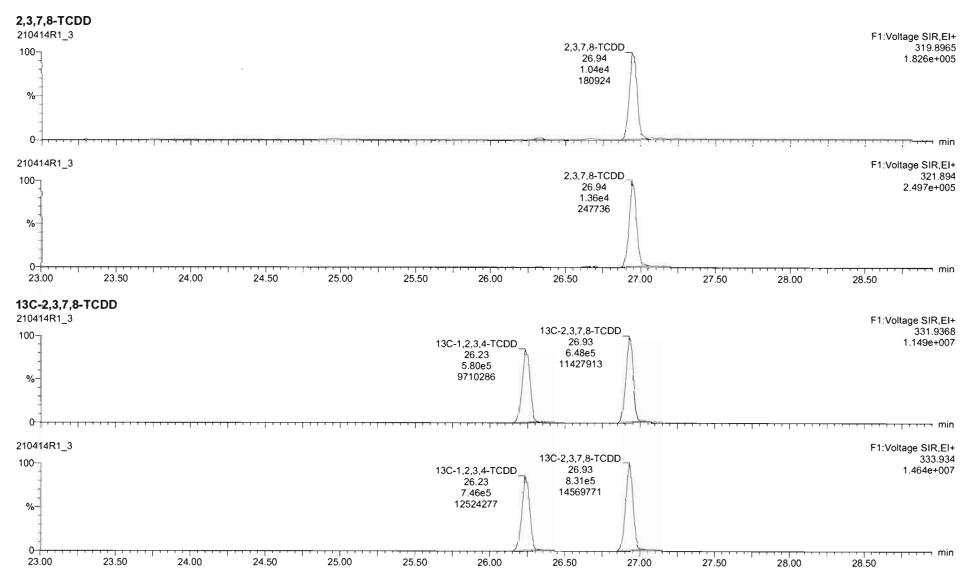


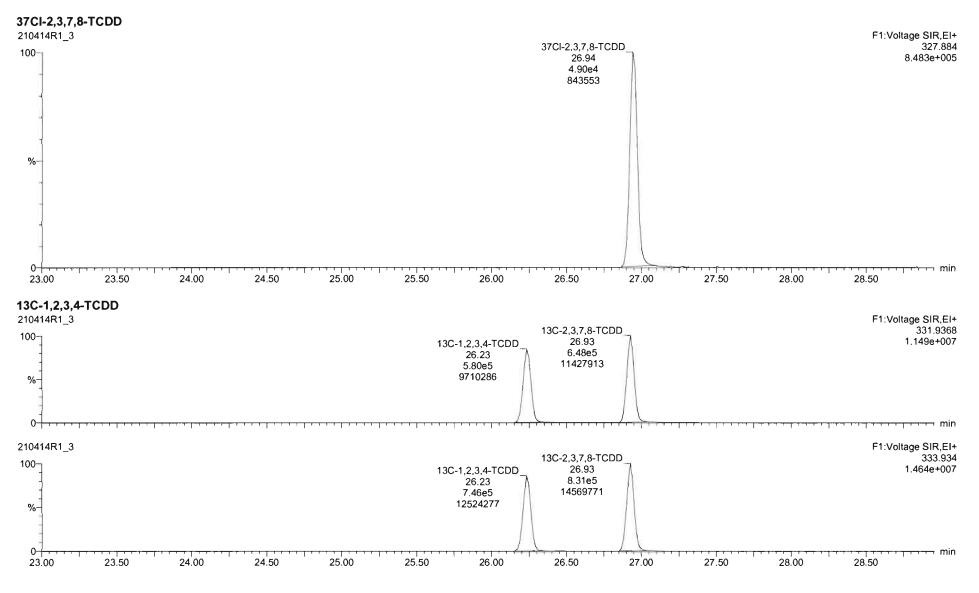

Quantify Sam Vista Analytica		Page 24 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



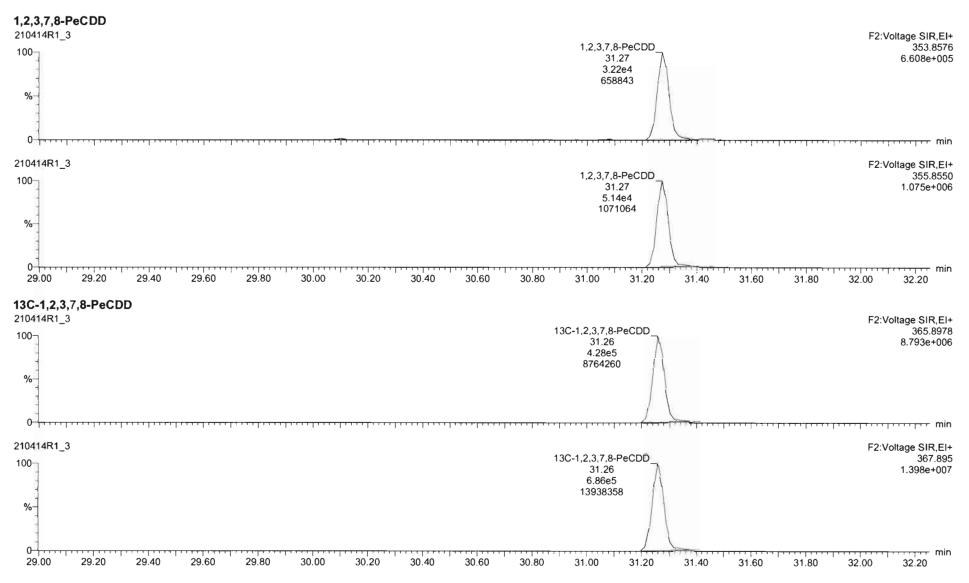




Quantify San Vista Analytica		Page 25 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

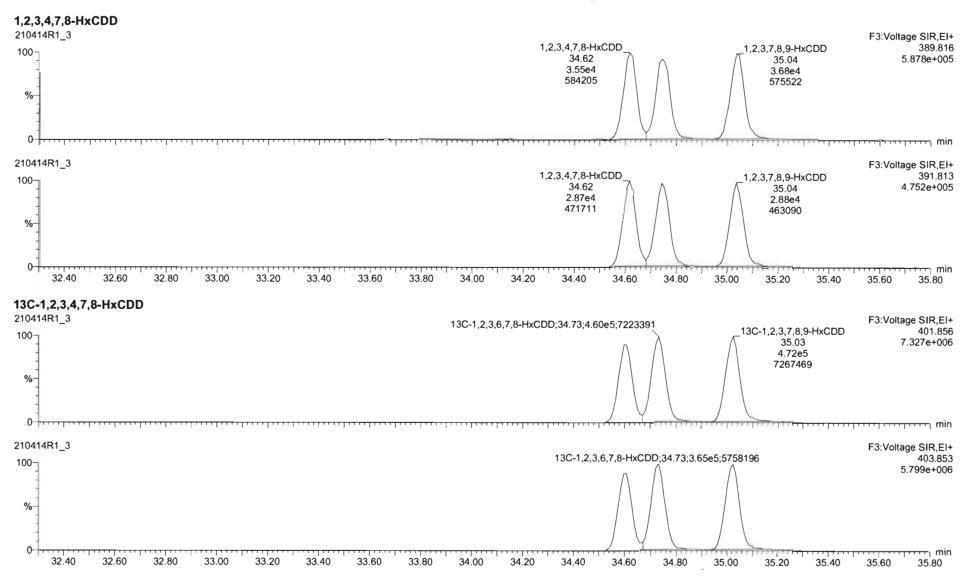



Quantify Sam Vista Analytica		Page 26 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

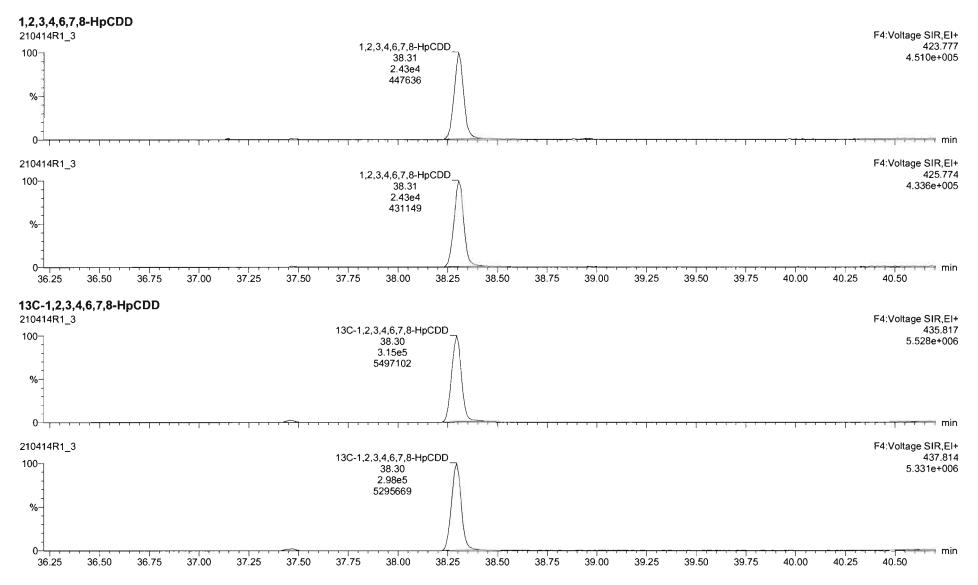



Quantify Sam Vista Analytica		Page 27 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

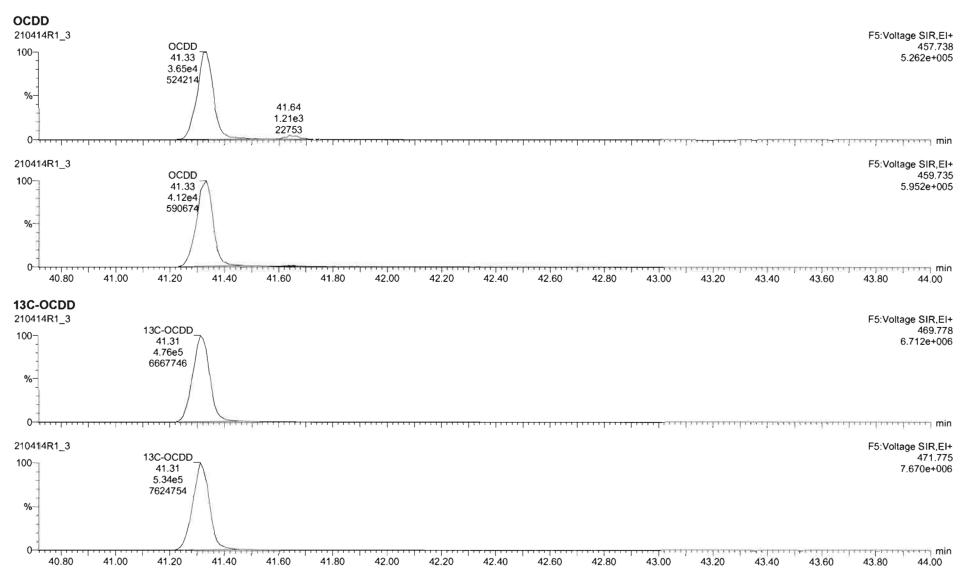


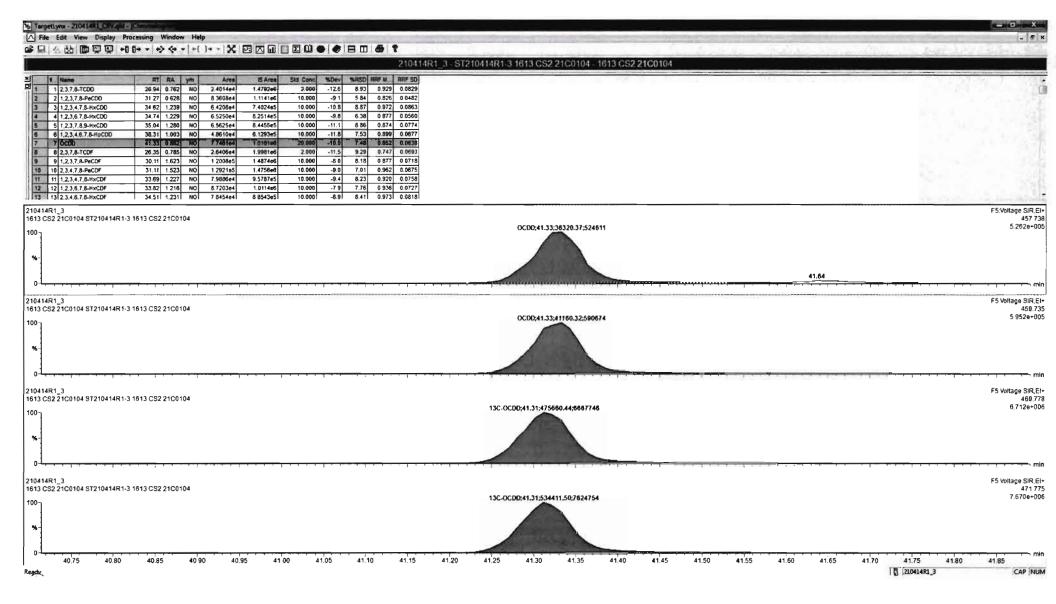

Quantify Sam Vista Analytica		Page 28 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



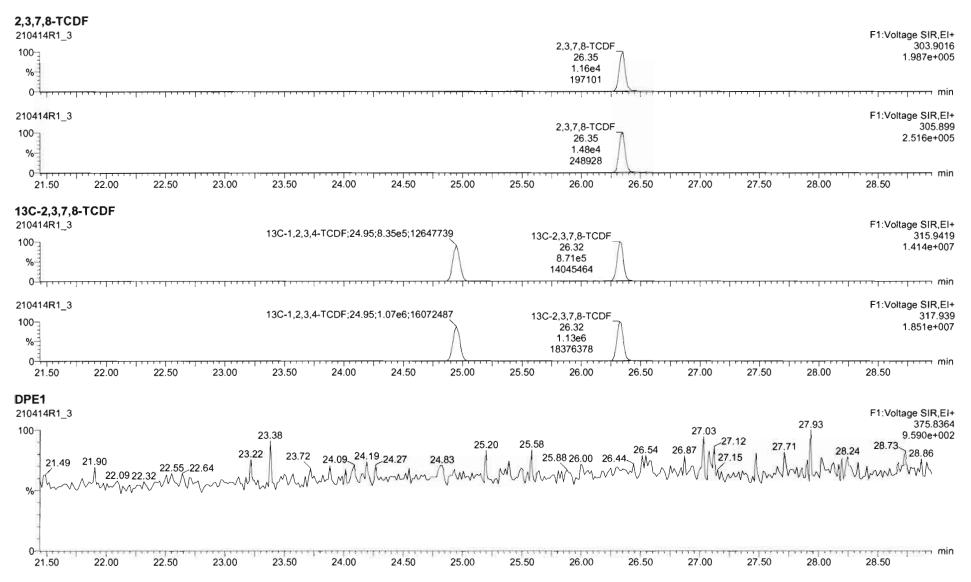

Quantify Sam Vista Analytica		Page 29 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	




Quantify Sam Vista Analytica		Page 30 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

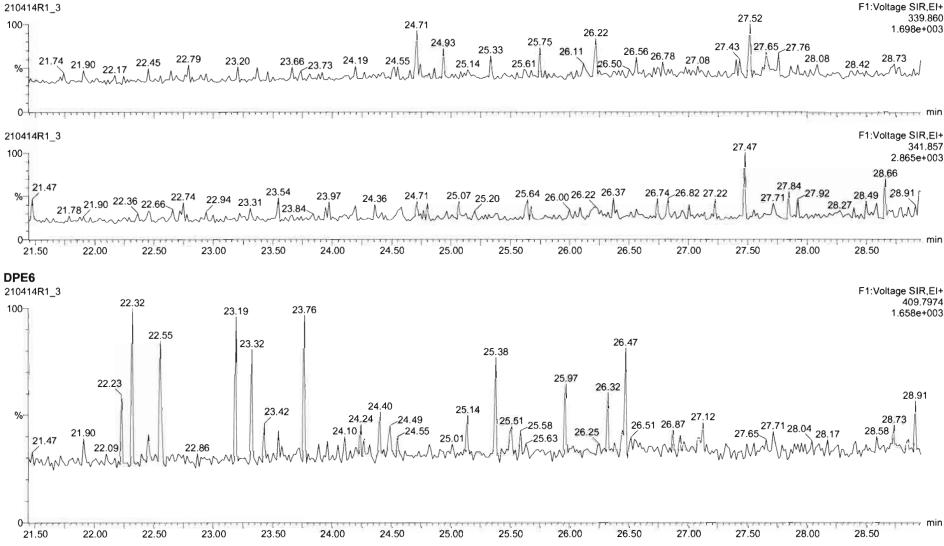



Quantify Sam Vista Analytica		Page 31 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

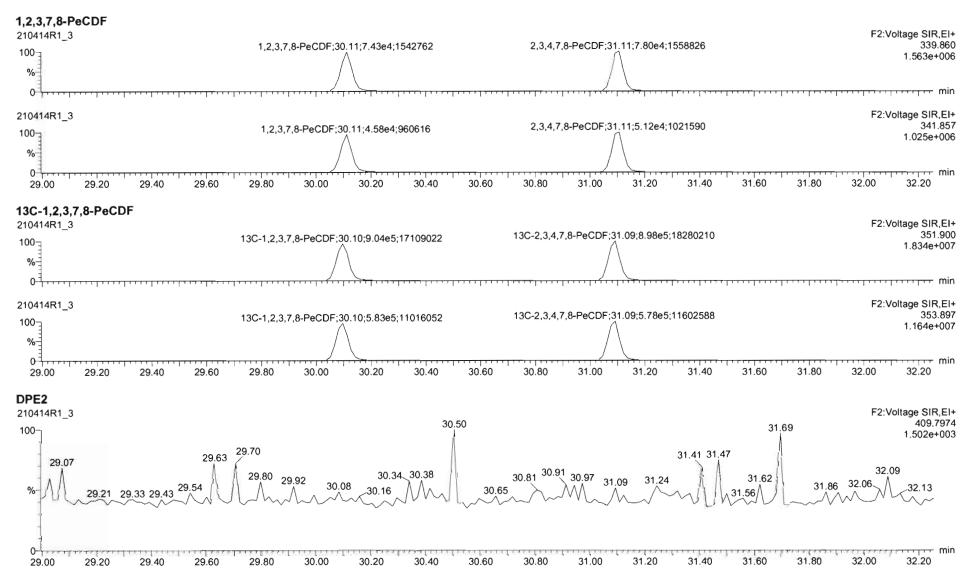



Quantify San Vista Analytica		Page 32 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

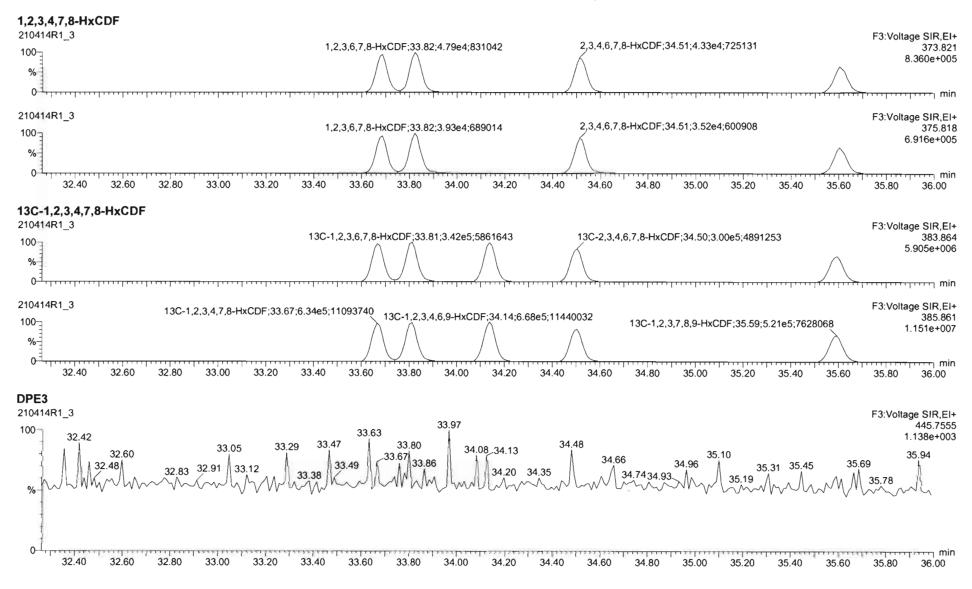




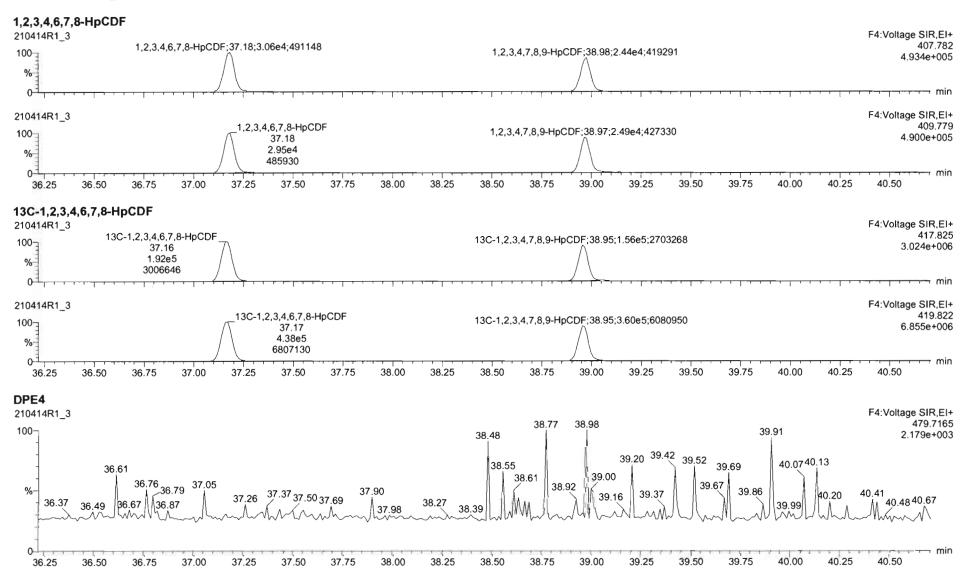

Quantify Sam Vista Analytica		Page 33 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	




Quantify Sam Vista Analytica		Page 34 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

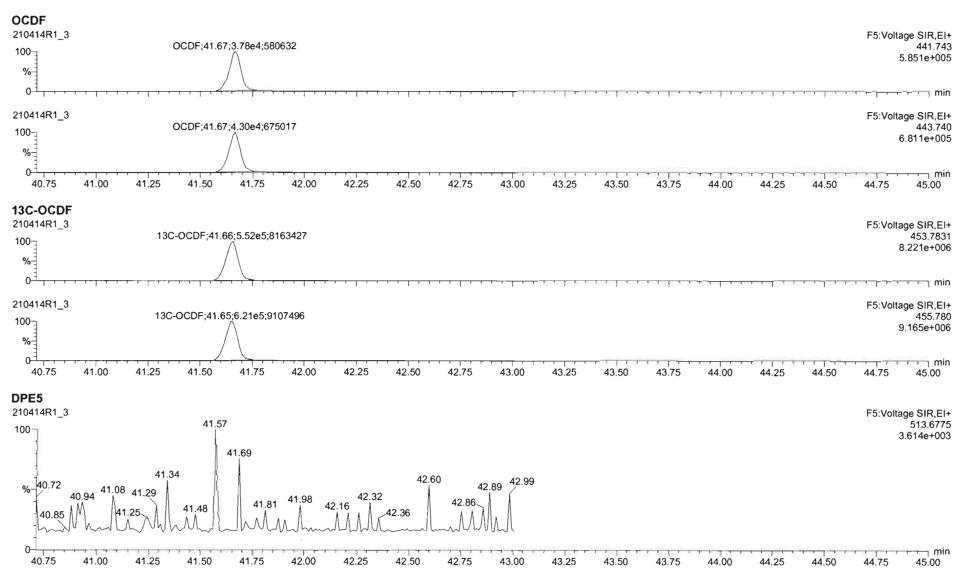

#### 1st Func. Penta-Furans



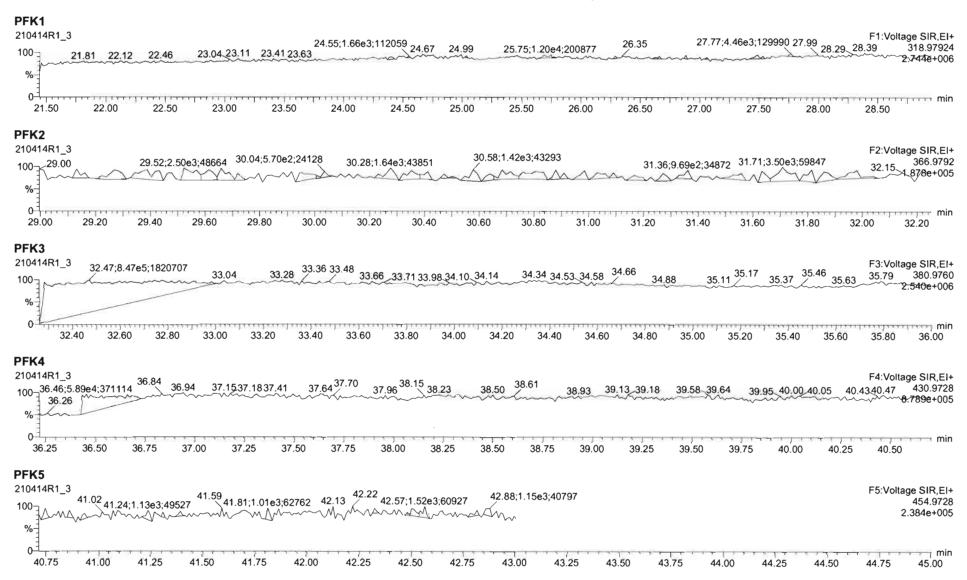

Quantify Sample Report Vista Analytical Laboratory		assLynx 4.1 SCN815	Page 35 of 78
Dataset:	Untitled		
Last Altered: Printed:		2021 09:17:13 Pacific Daylight Time 2021 09:17:45 Pacific Daylight Time	



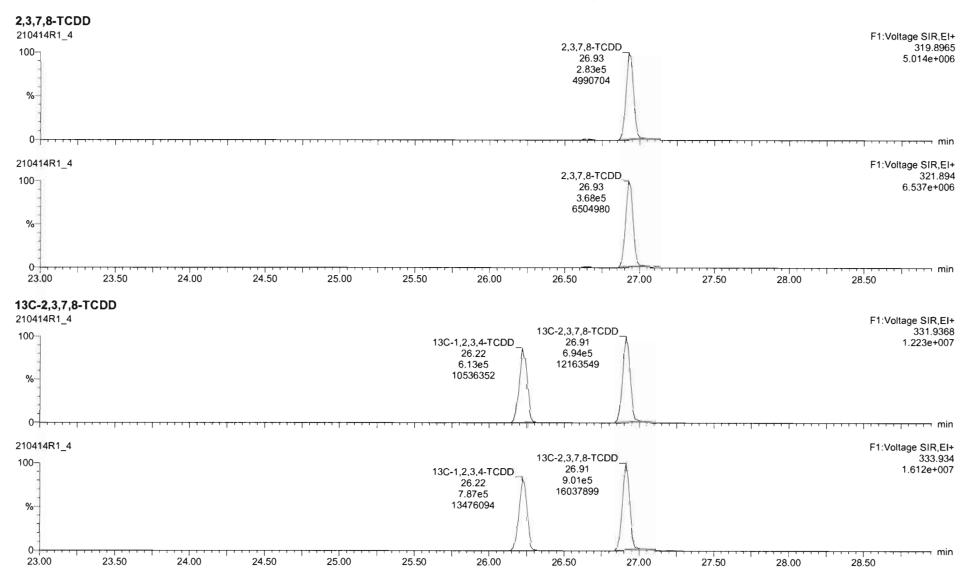
Quantify Sam Vista Analytica		Page 36 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



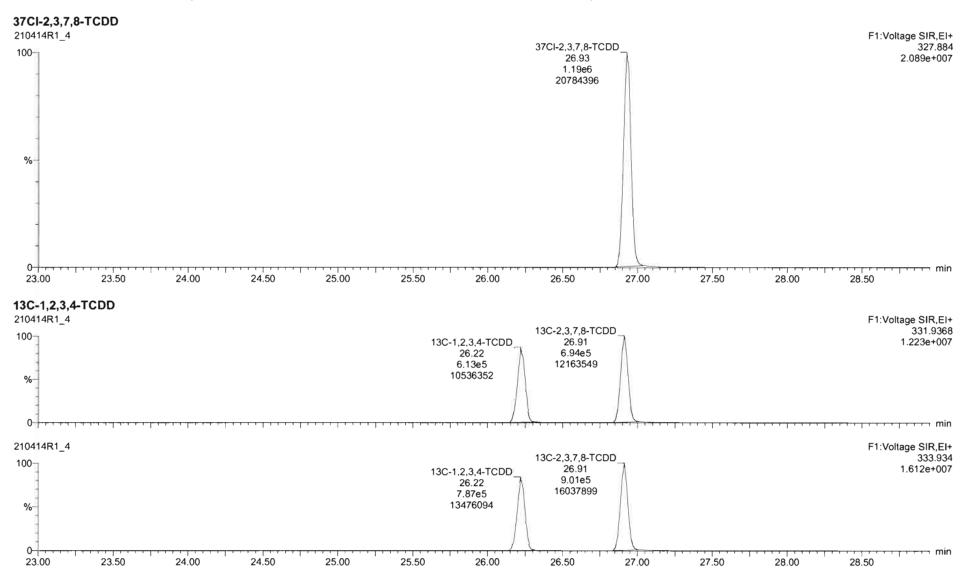

Quantify Sam Vista Analytica		Page 37 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



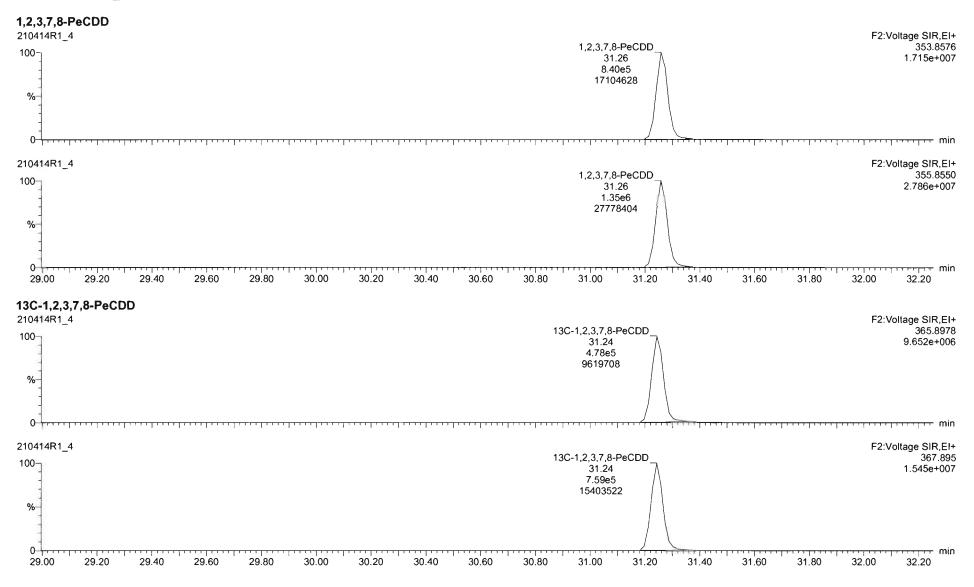

Work Order 2105037


Quantify Sam Vista Analytica		Page 38 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

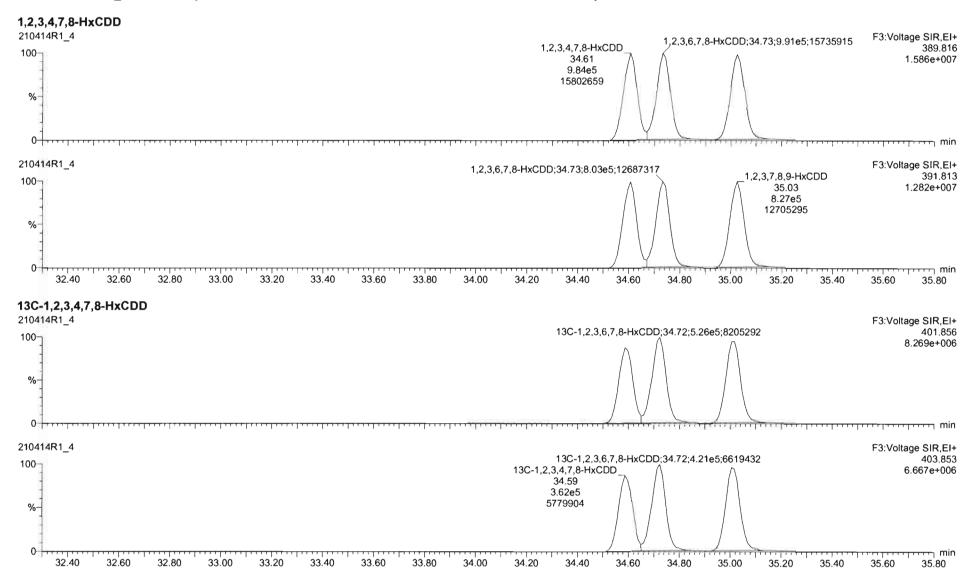



Quantify San Vista Analytica	• • •	Page 39 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

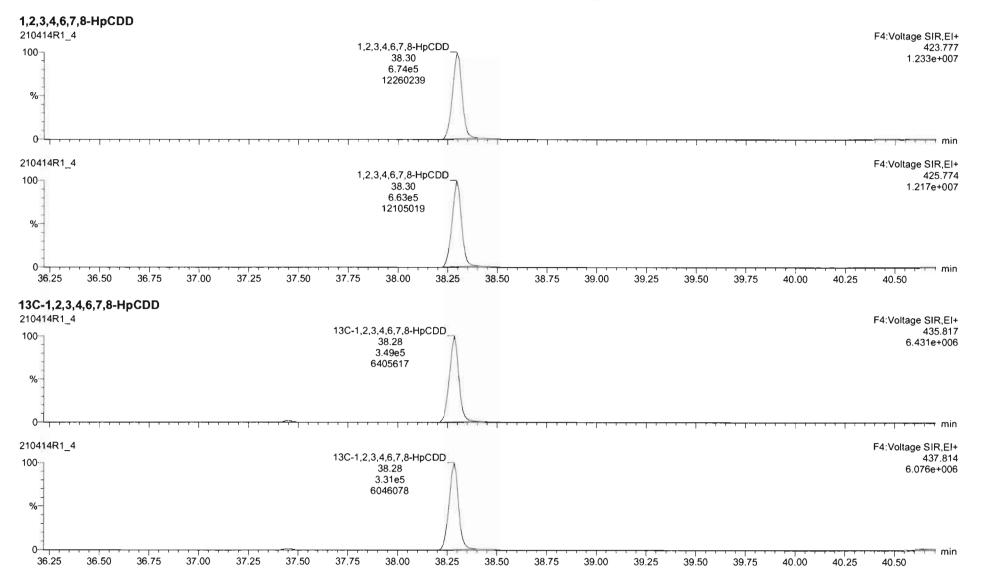



Quantify Sam Vista Analytica		Page 40 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

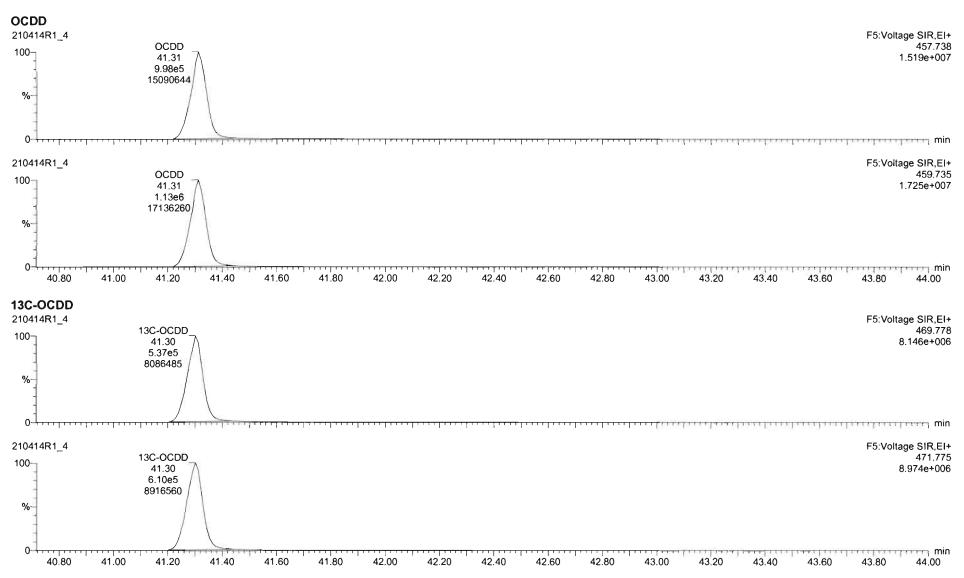



Quantify Sam Vista Analytica		Page 41 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

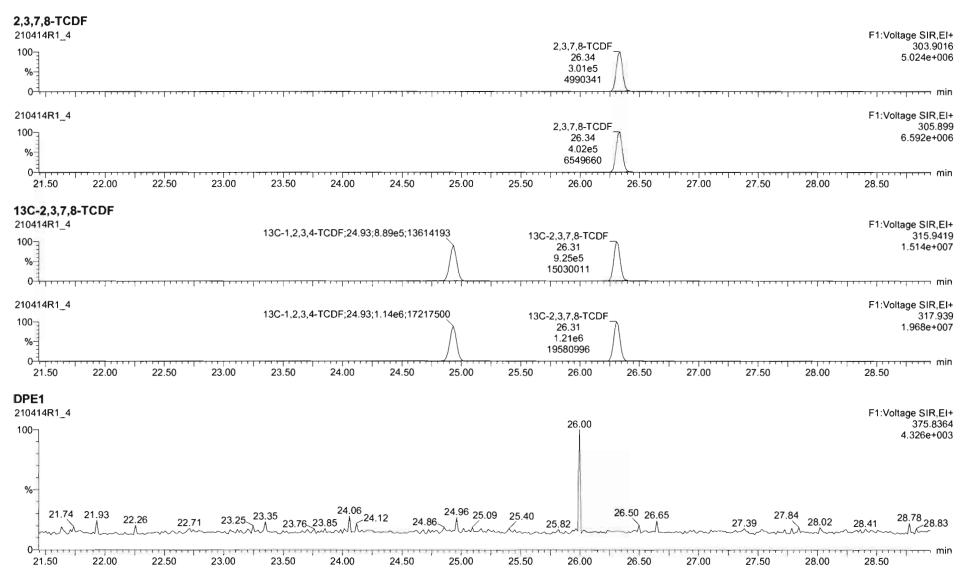



Quantify San Vista Analytica		Page 42 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

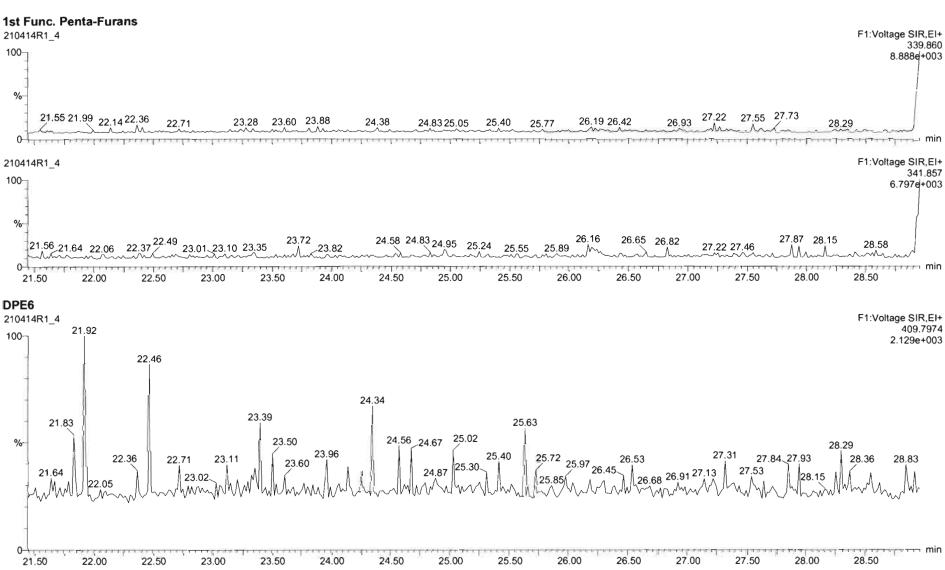



Quantify Sam Vista Analytica		Page 43 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

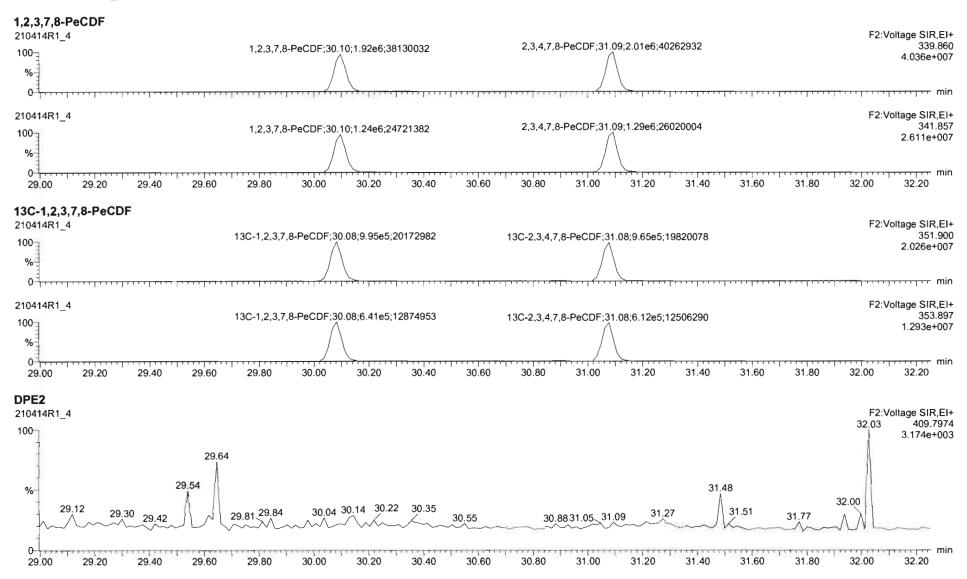



Quantify Sam Vista Analytica		Page 44 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

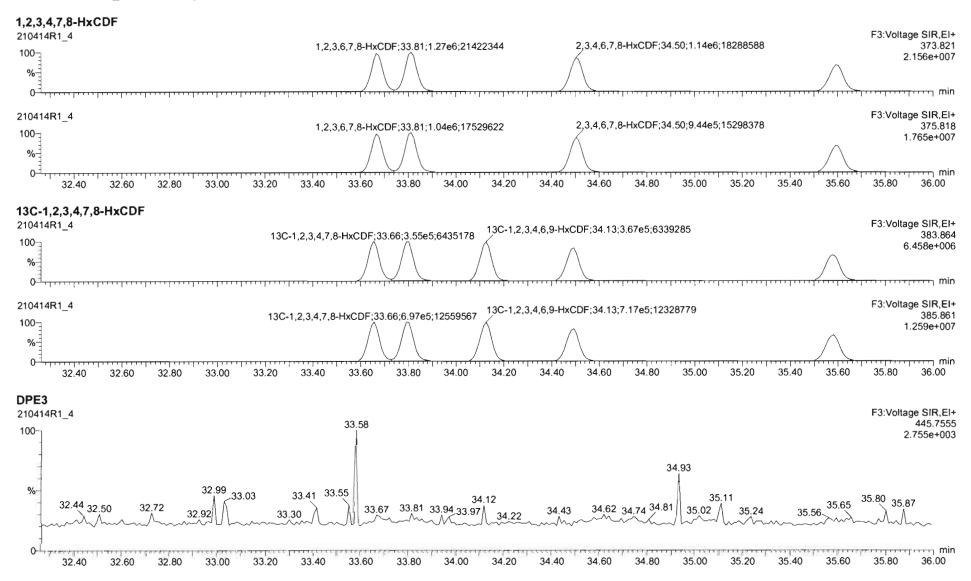



Quantify San Vista Analytica		Page 45 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

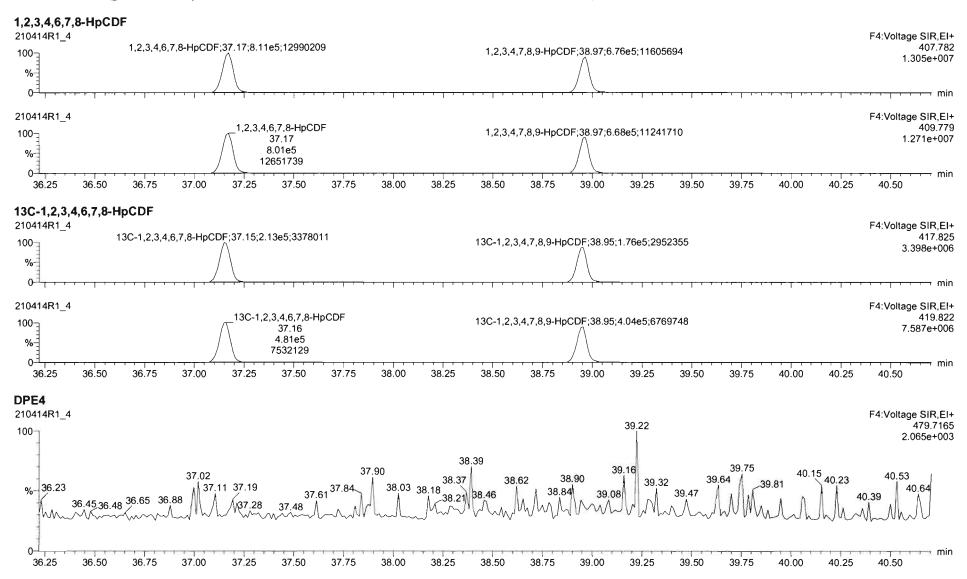



Quantify Sam Vista Analytica		Page 46 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



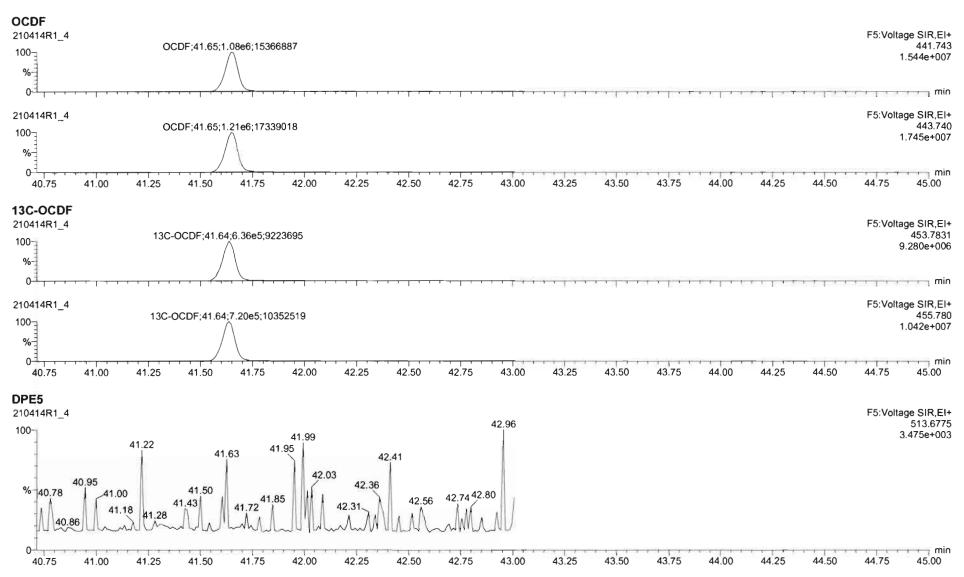

Quantify Sample Report Vista Analytical Laboratory		MassLynx 4.1 SCN815	Page 47 of 78
Dataset:	Untitled		
Last Altered: Printed:	: Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time		



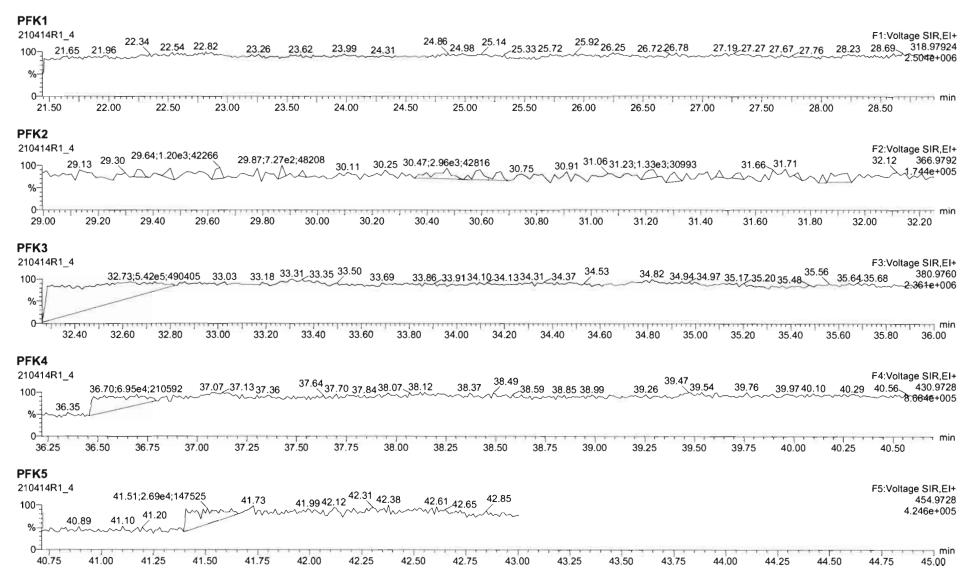

Quantify Sam Vista Analytica		Page 48 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



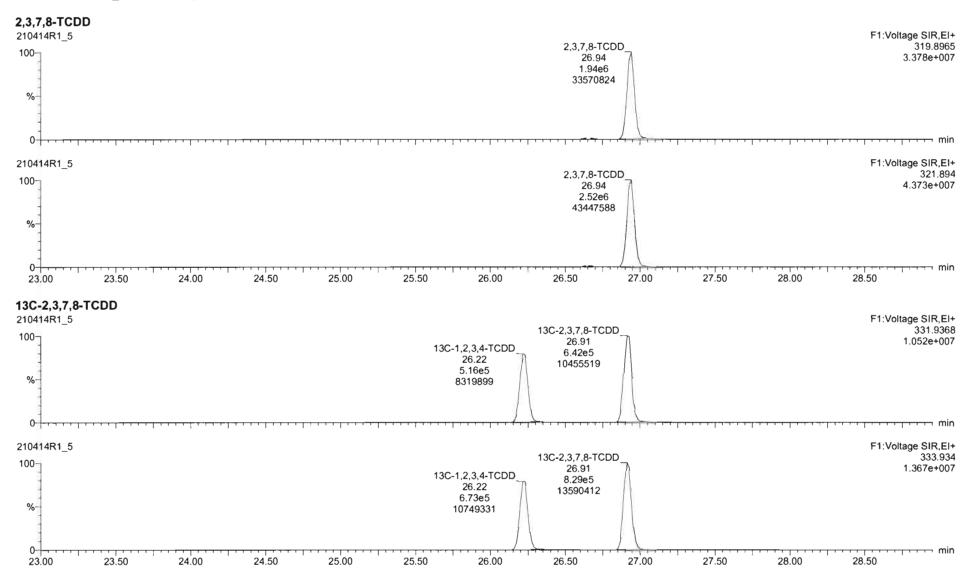
Quantify Sam Vista Analytica		Page 49 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



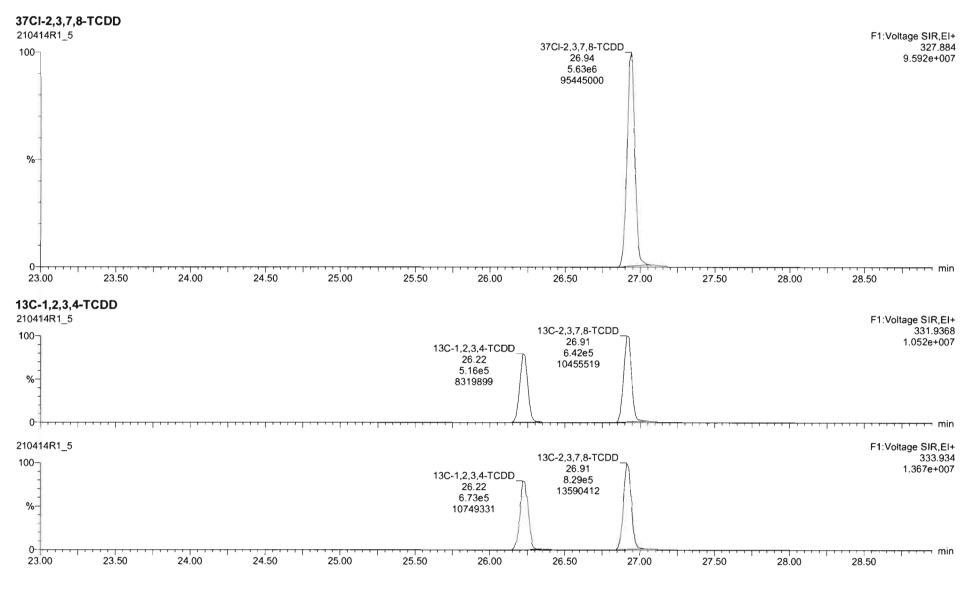

Quantify Sam Vista Analytica		Page 50 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



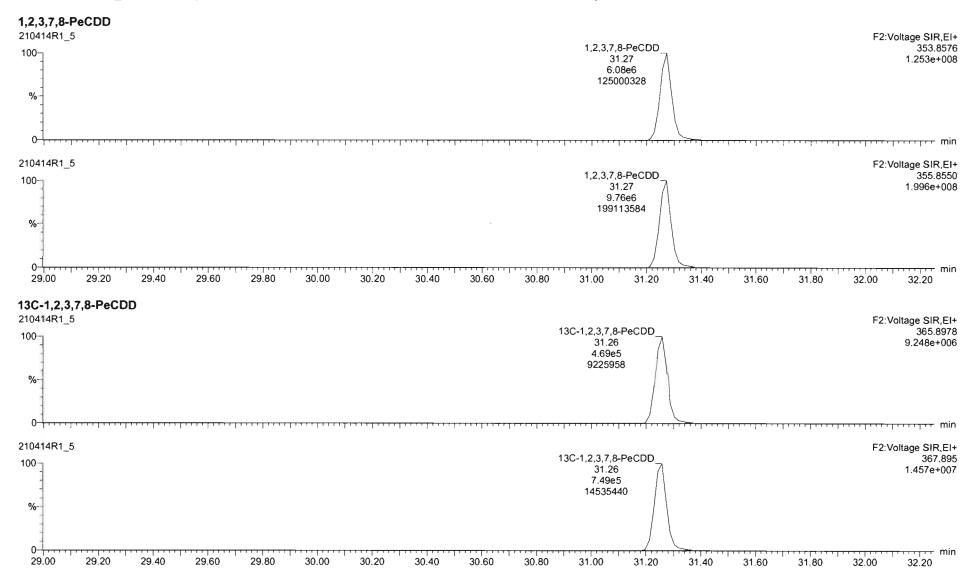

Work Order 2105037


Quantify Sam Vista Analytica		Page 51 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

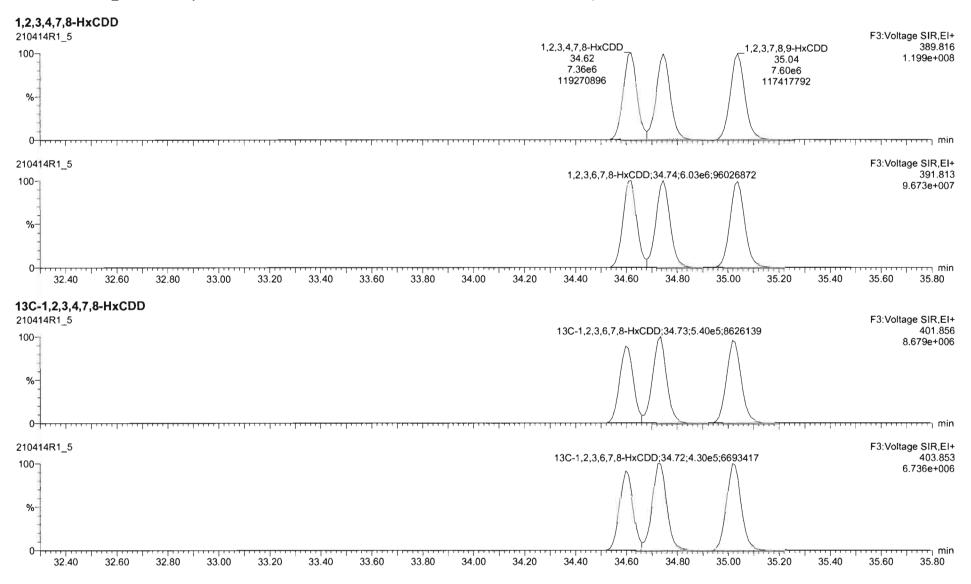



Quantify Sam Vista Analytica		Page 52 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

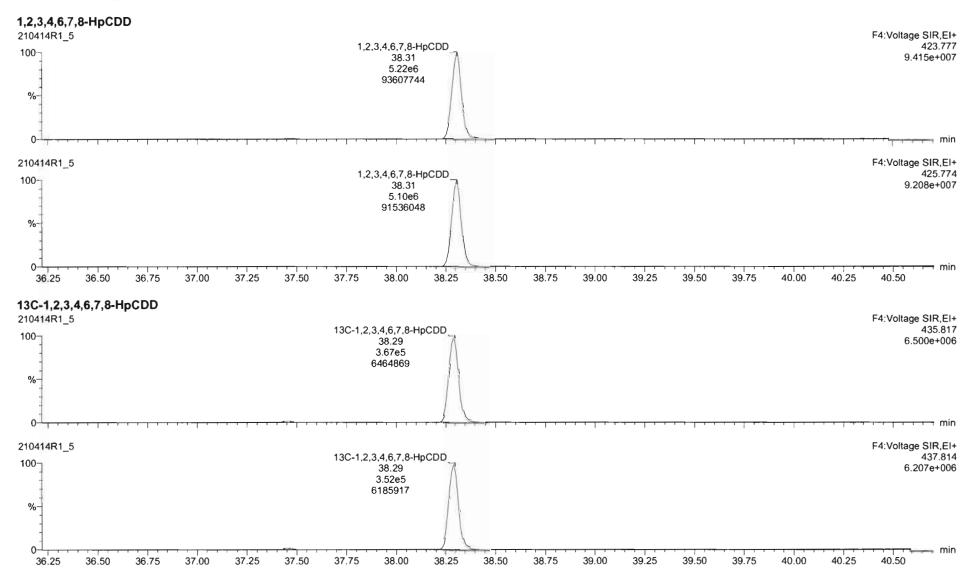



Quantify Sam Vista Analytica		Page 53 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

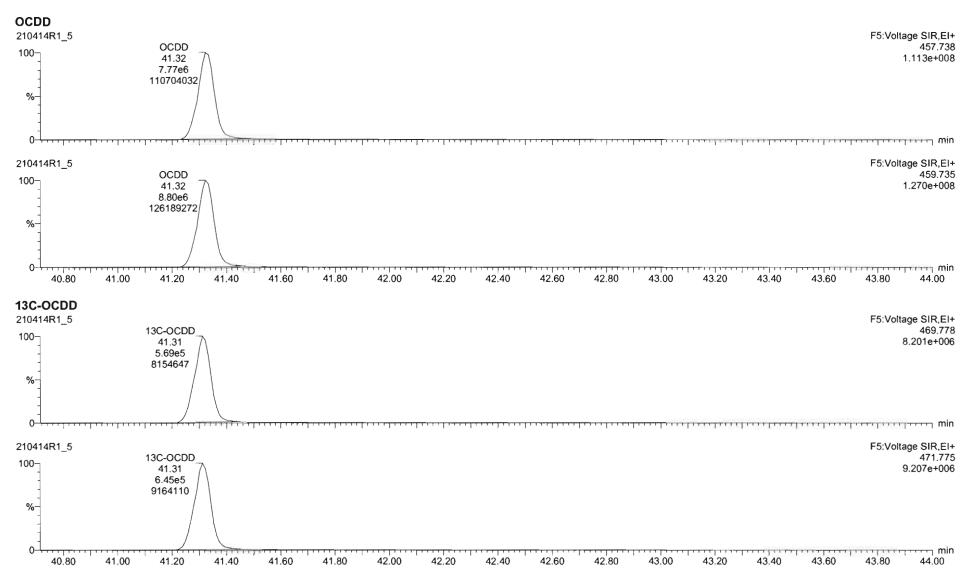



Quantify Sam Vista Analytica		Page 54 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

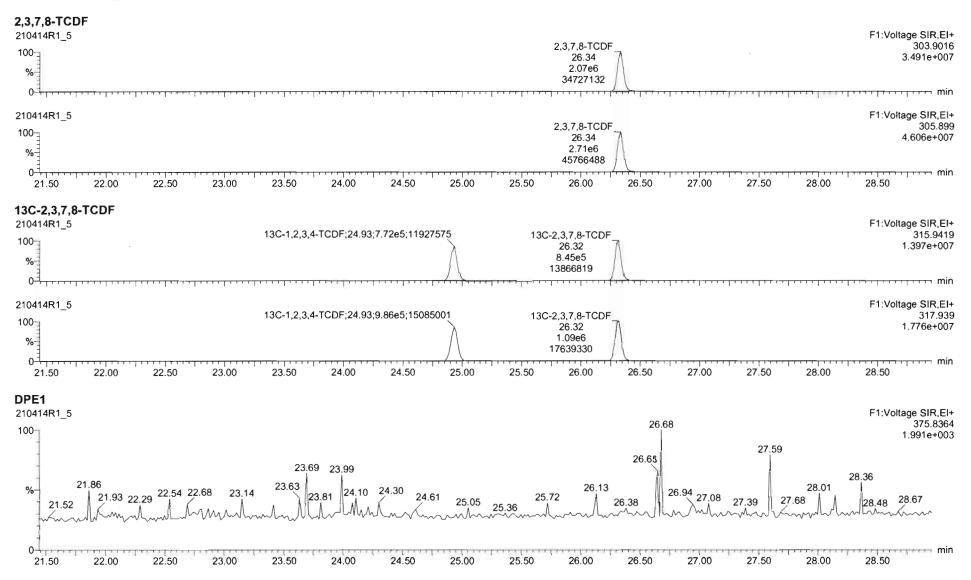



Quantify Sam Vista Analytica		Page 55 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

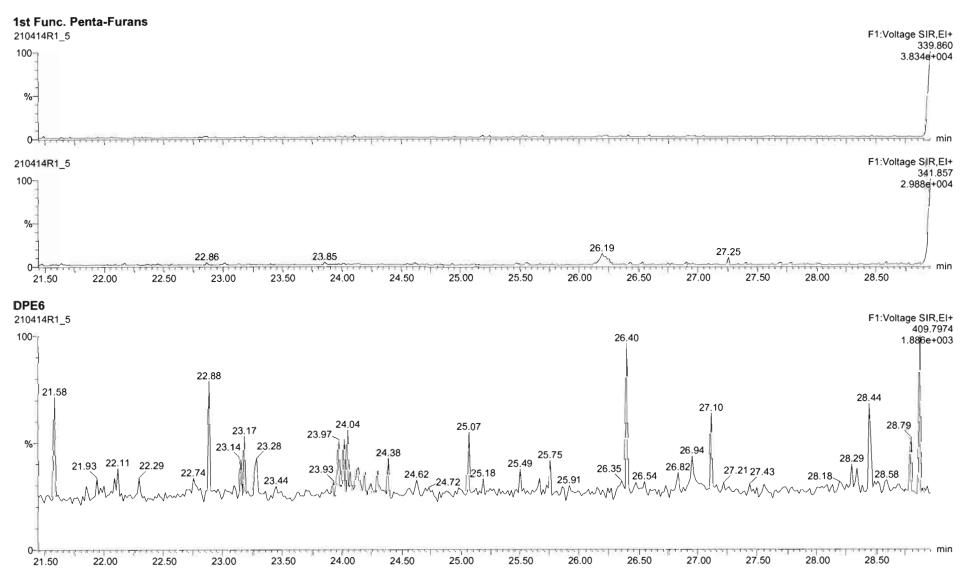



Quantify Sam Vista Analytica		Page 56 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

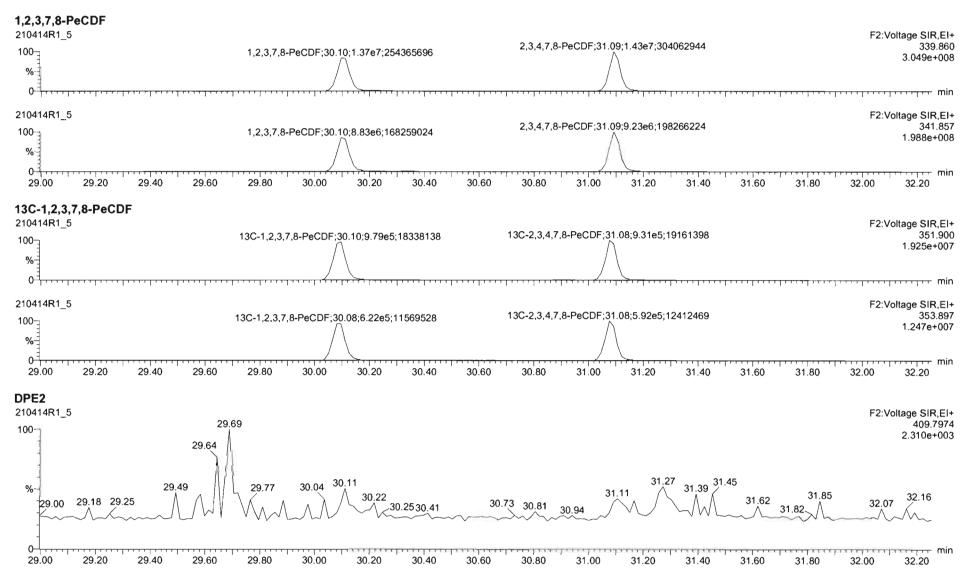



Quantify Sam Vista Analytica		Page 57 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

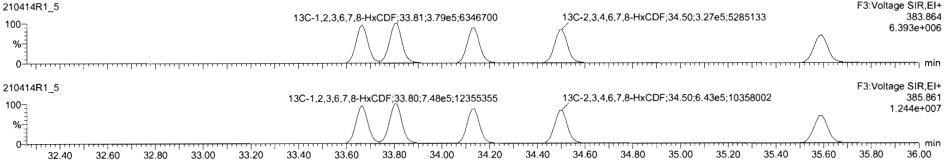


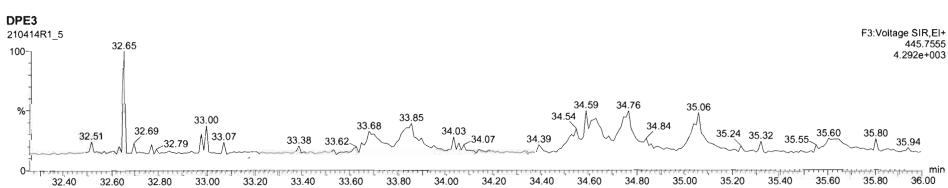

Quantify Sam Vista Analytica		Page 58 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



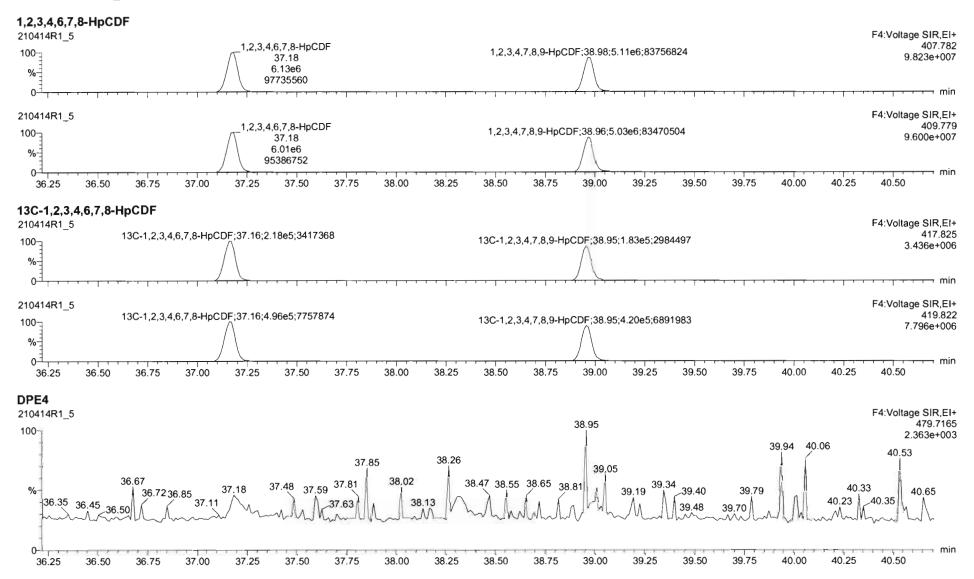

Quantify Sam Vista Analytica		Page 59 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



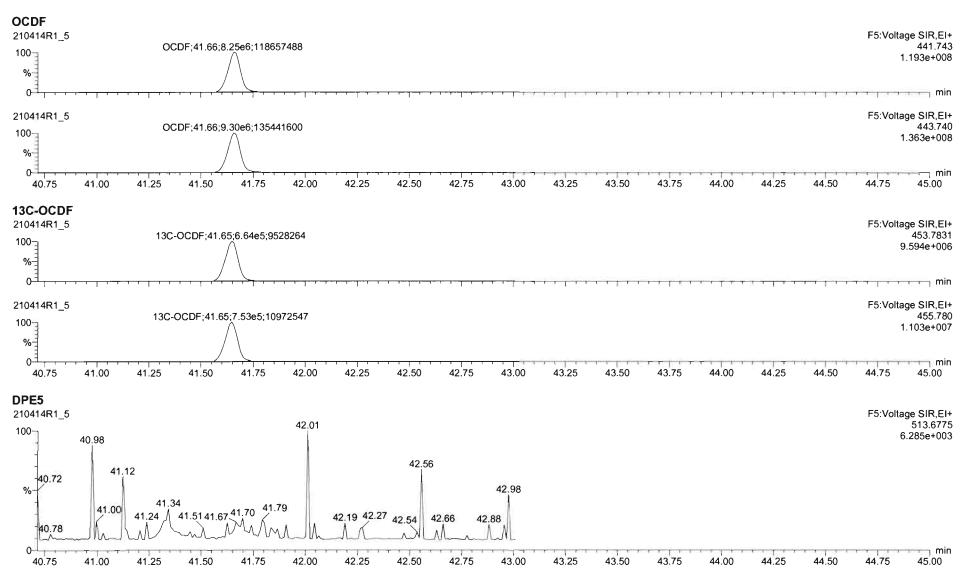

Quantify Sam Vista Analytica		Page 60 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



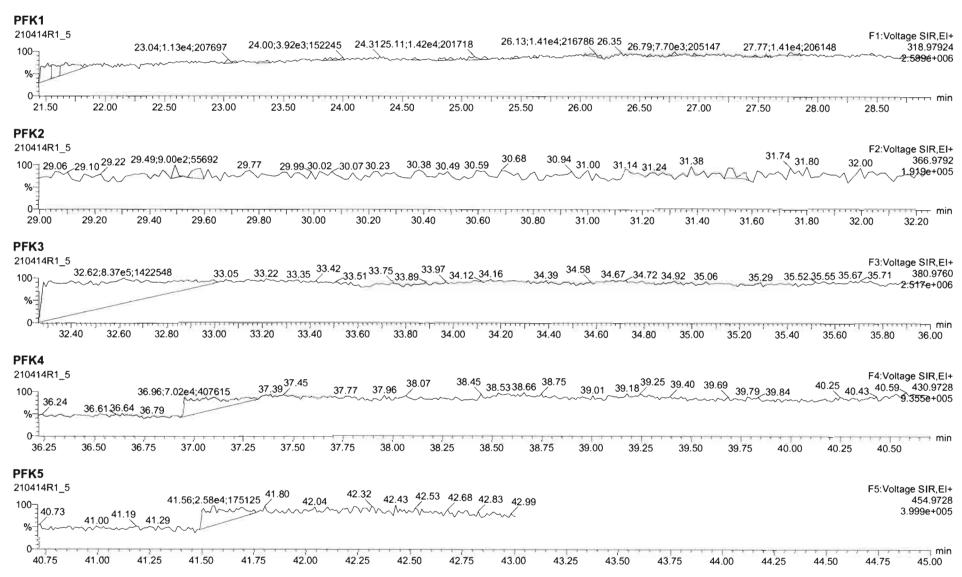

Quantify Sam Vista Analytica		Page 61 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



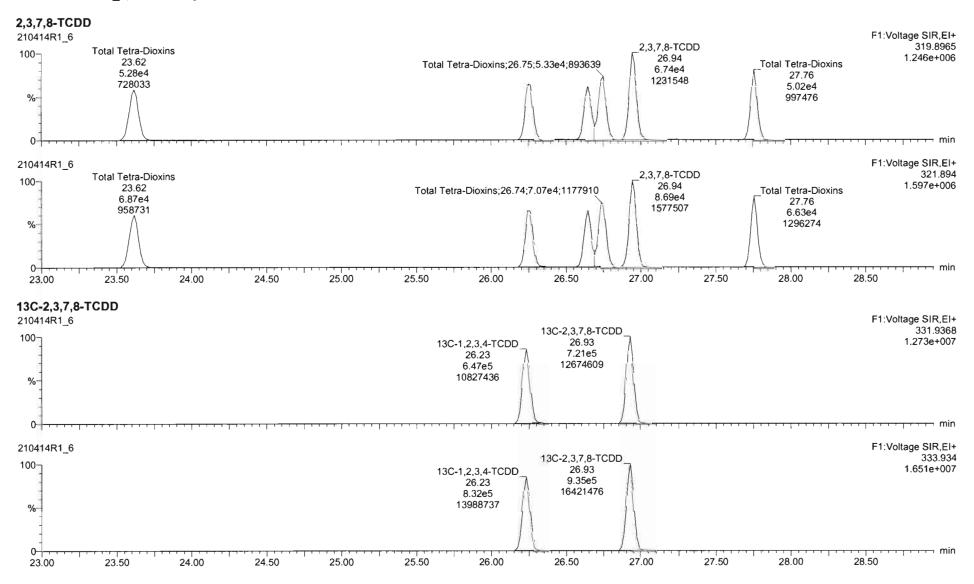

Untitled	
Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	
R1_5, Date: 14-Apr-2021, Time: 12:59:55, ID: ST210414R1-5 1613 CS5 21C0107, Description: 1613 CS5 21C0107	
DF 1,2,3,6,7,8-HxCDF;33.82;9.29e6;162012384 2,3,4,6,7,8-HxCDF;34.51;8.41e6;138990288	F3:Voltage SIR,EI- 373.82 1.631e+008
1,2,3,6,7,8-HxCDF;33.82;7.66e6;131889024 2,3,4,6,7,8-HxCDF;34.51;6.95e6;114677552	F3:Voltage SIR,EI+ 375.818 1.327e+008
	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time R1_5, Date: 14-Apr-2021, Time: 12:59:55, ID: ST210414R1-5 1613 CS5 21C0107, Description: 1613 CS5 21C0107 DF 1,2,3,6,7,8-HxCDF;33.82;9.29e6;162012384 2,3,4,6,7,8-HxCDF;34.51;8.41e6;138990288



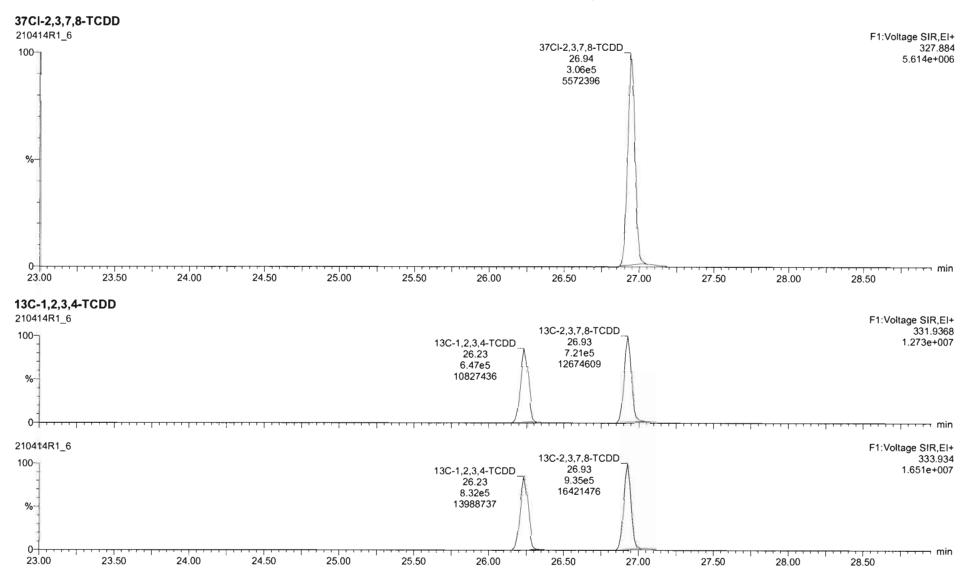




Quantify San Vista Analytica		Page 63 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

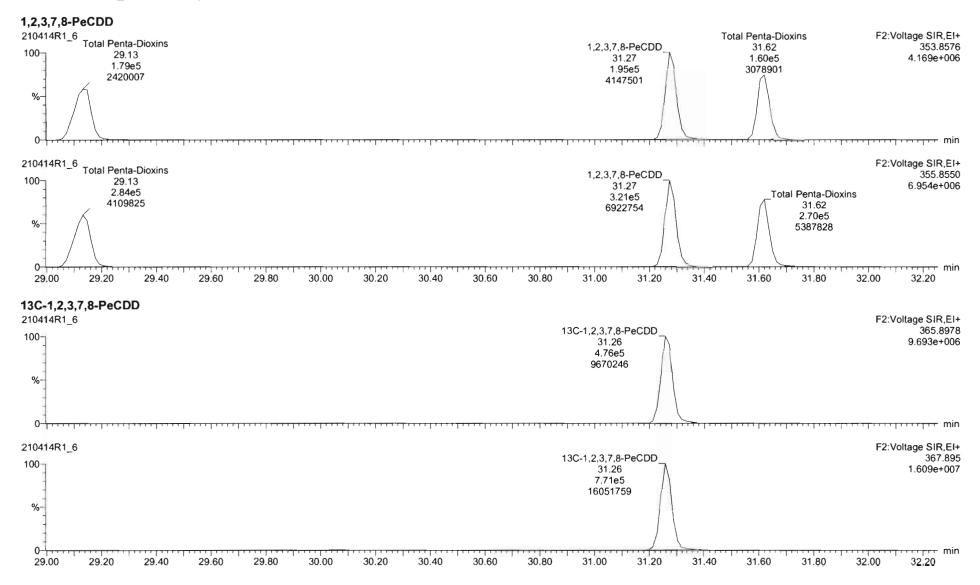



Quantify Sam Vista Analytical		Page 64 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

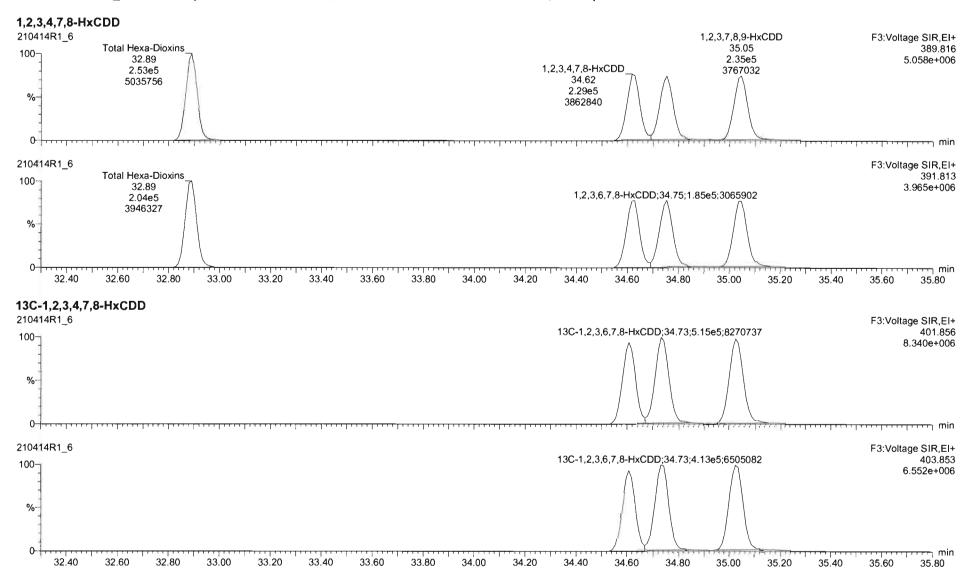



Quantify Sam Vista Analytica	• •	Page 65 of 75
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

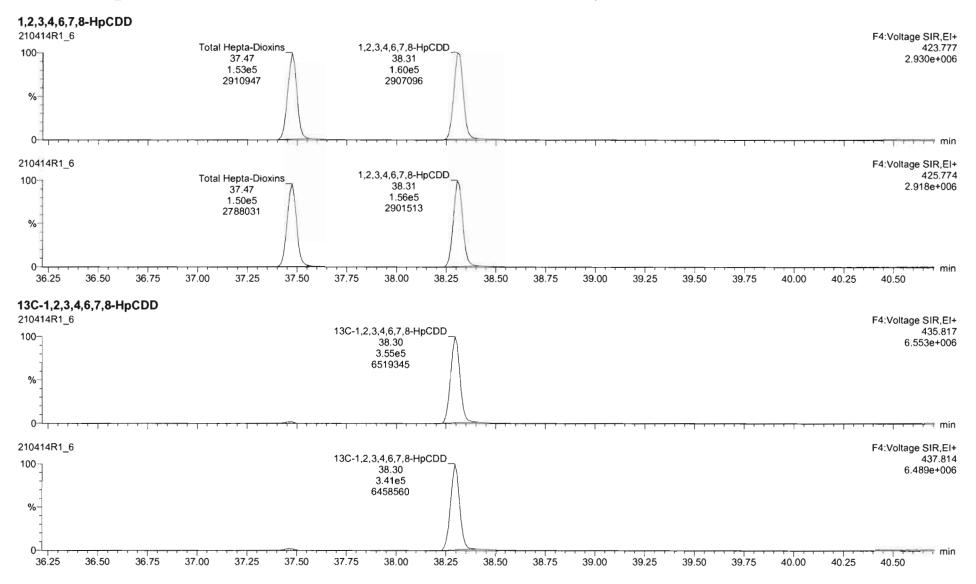



Quantify Sam Vista Analytica		Page 66 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

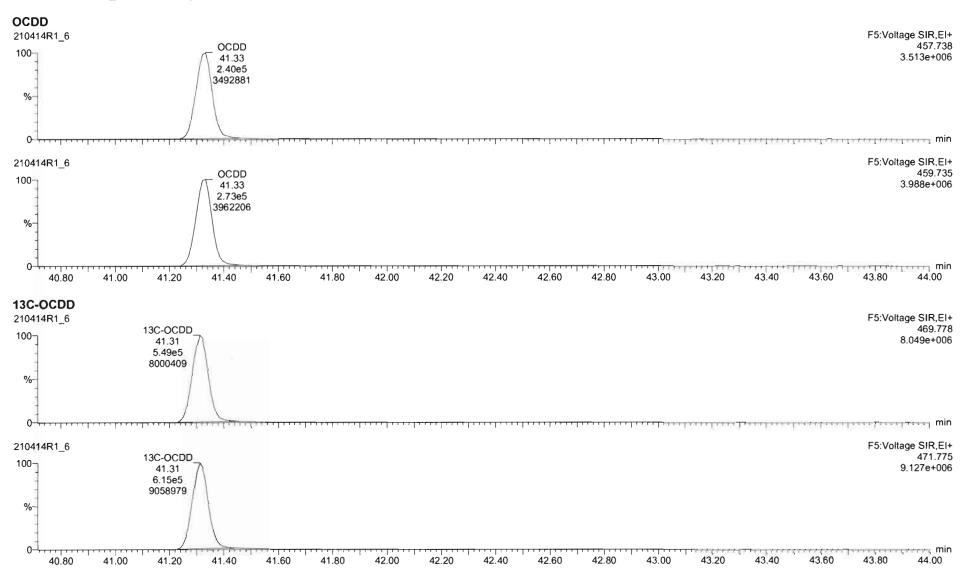



Quantify Sam Vista Analytica		Page 67 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

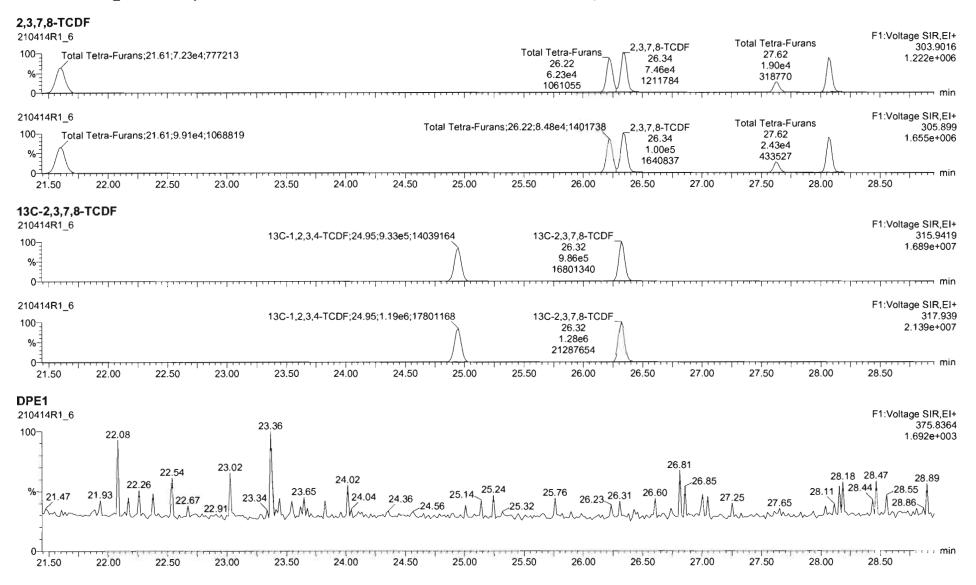



Quantify Sam Vista Analytica		Page 68 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

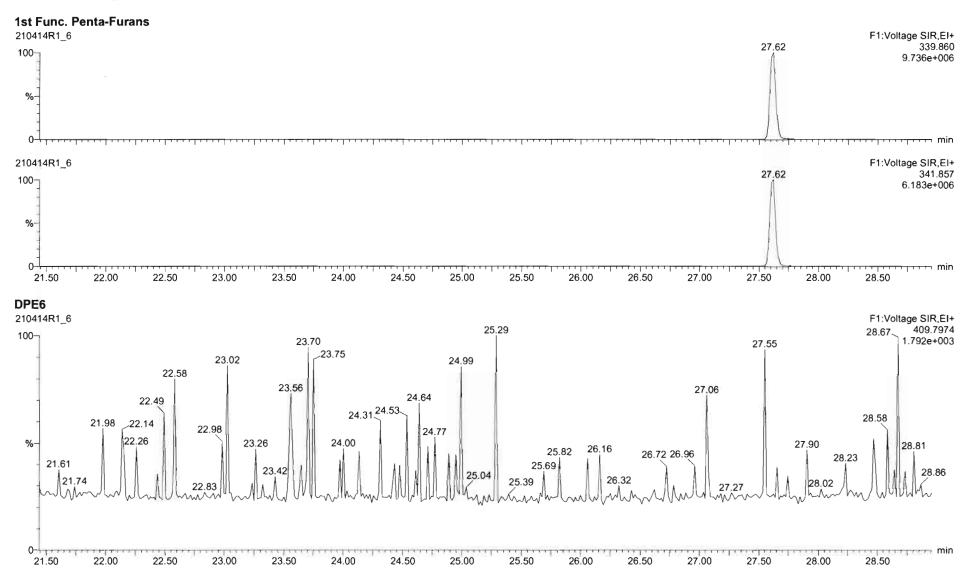



Quantify Sam Vista Analytica		Page 69 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

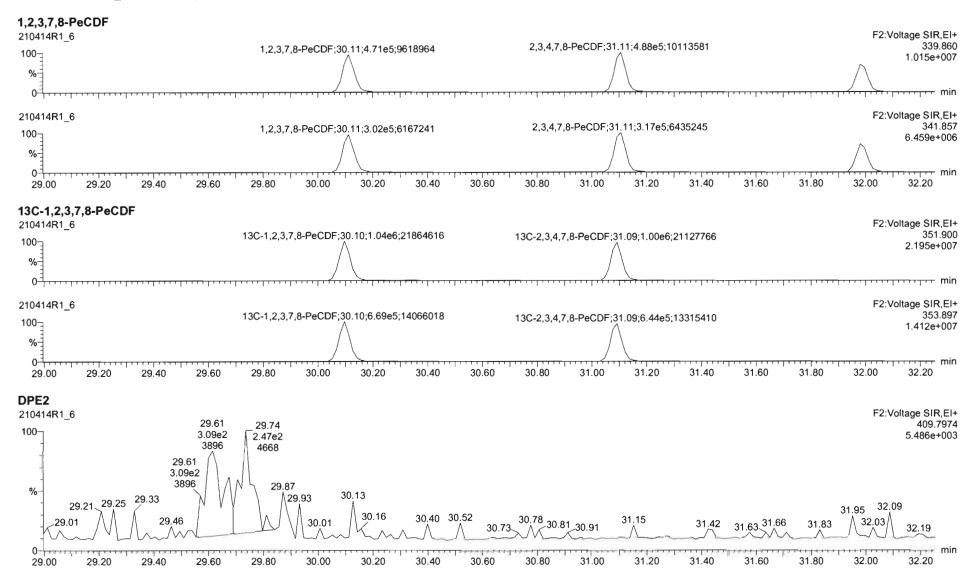



Quantify Sam Vista Analytica		Page 70 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

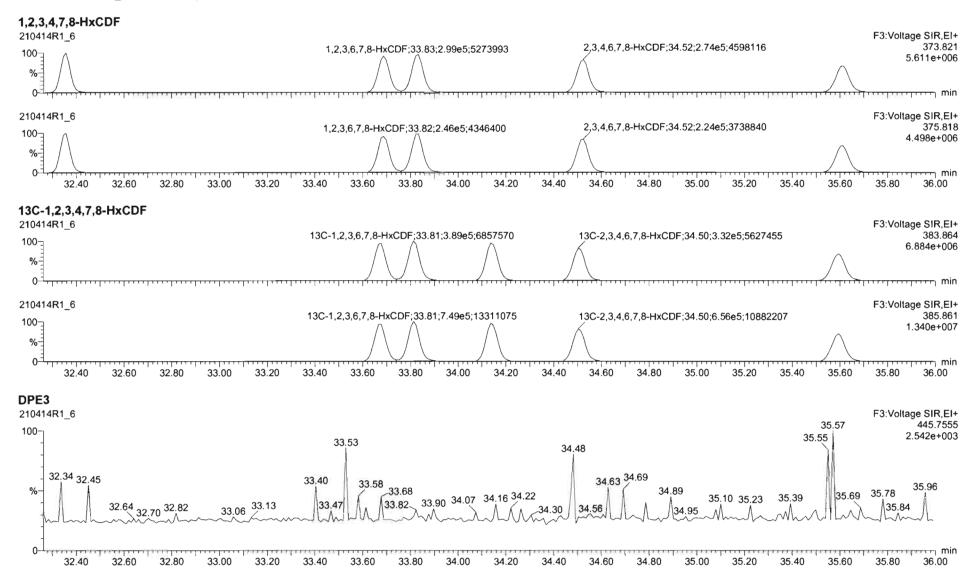



Quantify Sam Vista Analytica		Page 71 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

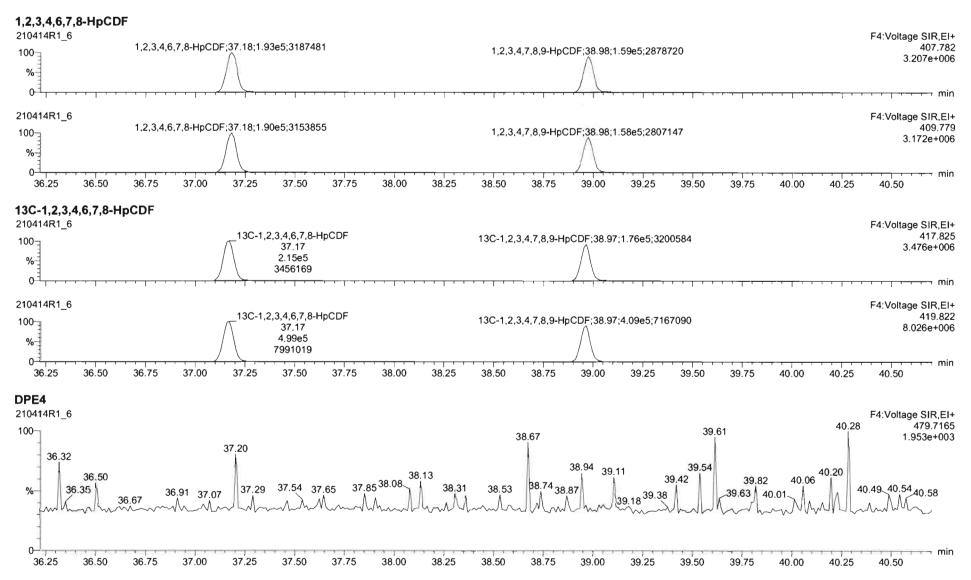



Quantify Sam Vista Analytica		Page 72 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

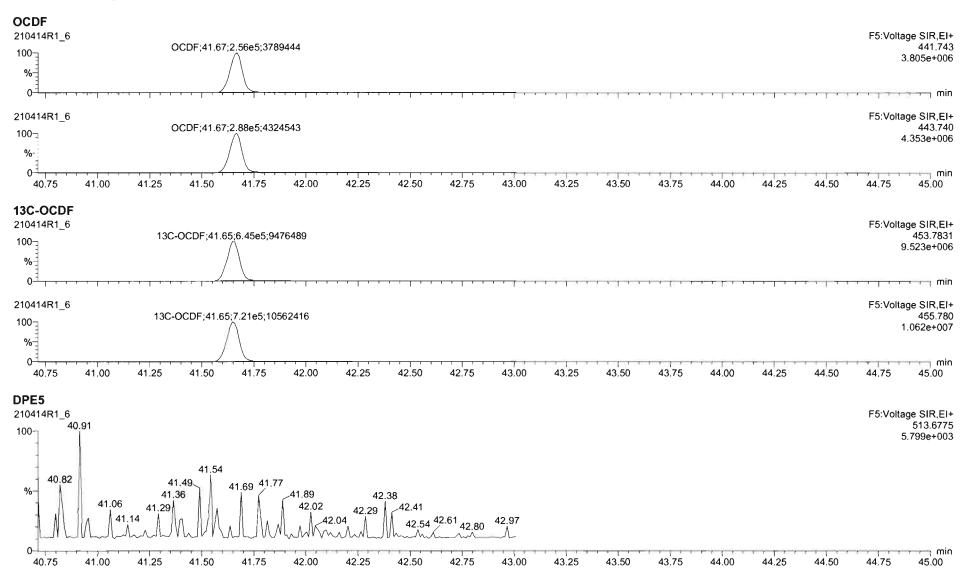



Quantify San Vista Analytica		Page 73 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

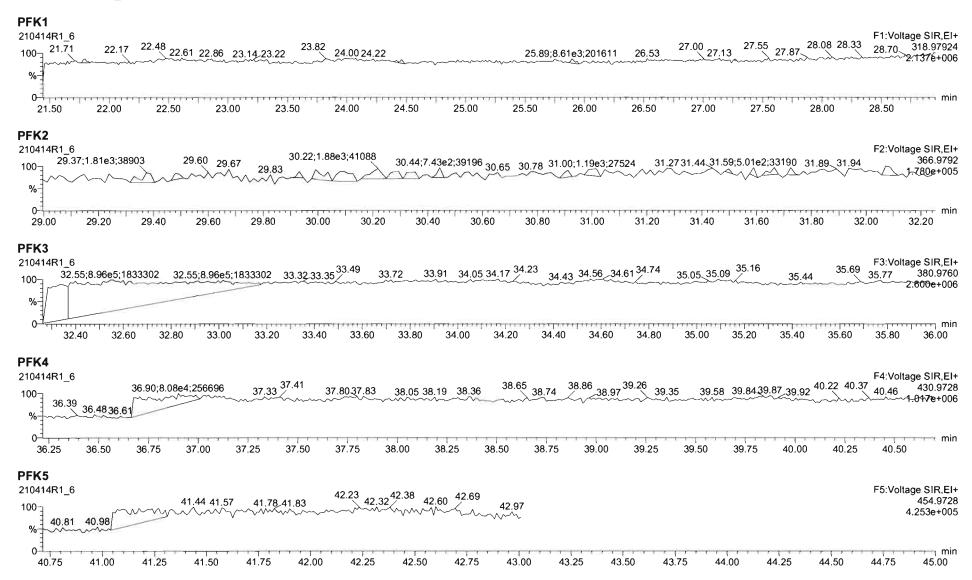



Quantify Sam Vista Analytica		Page 74 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



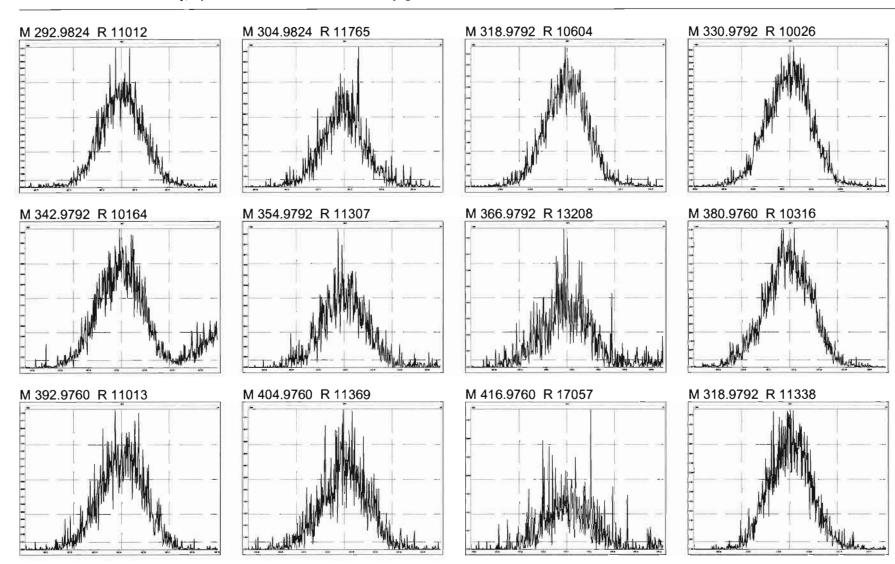

Quantify Sam Vista Analytica		Page 75 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	




Quantify Sam Vista Analytica		Page 76 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	

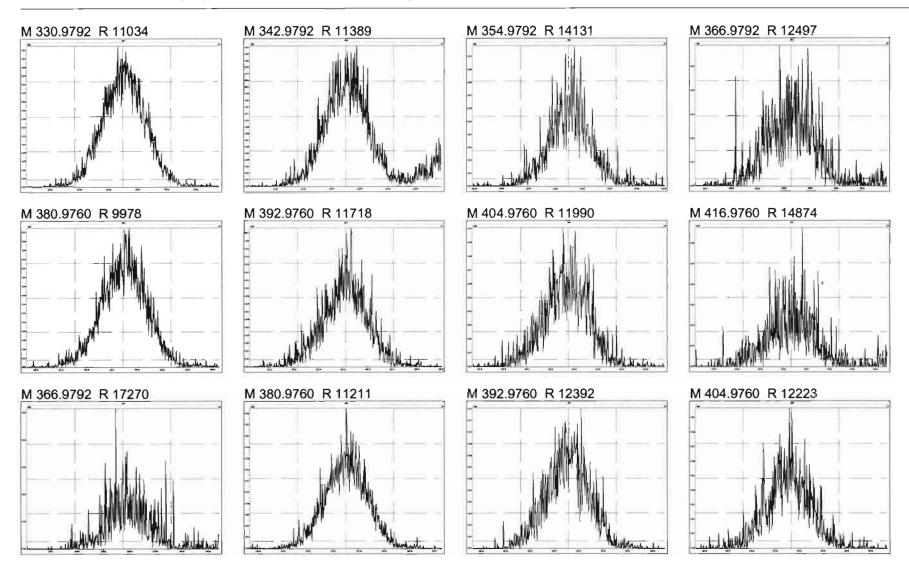


Quantify Sam Vista Analytica		Page 77 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	



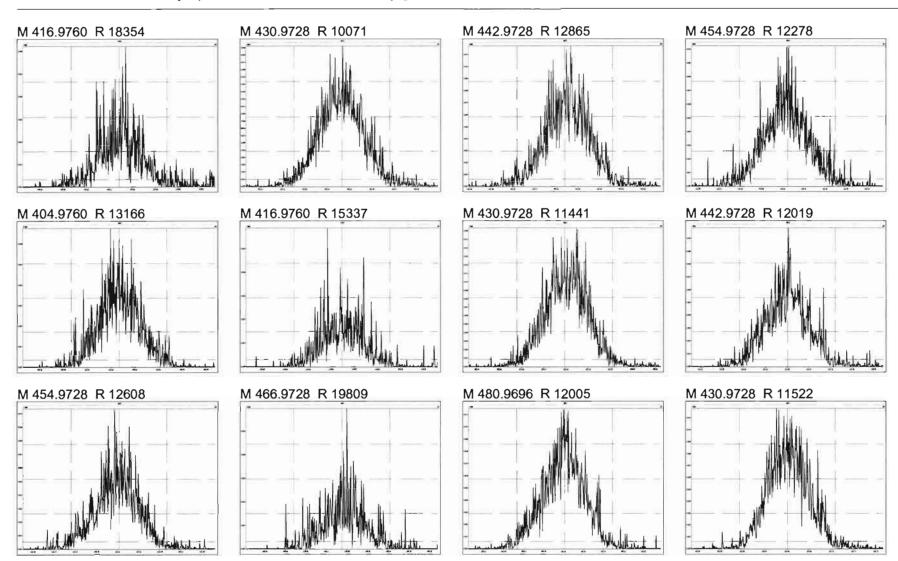

Quantify Sam Vista Analytica		Page 78 of 78
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 09:17:13 Pacific Daylight Time Thursday, April 15, 2021 09:17:45 Pacific Daylight Time	




MassLynx 4.1 SCN815

Printed: Wednesday, April 14, 2021 15:27:19 Pacific Daylight Time

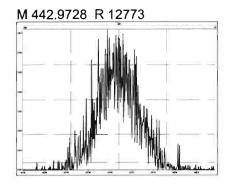


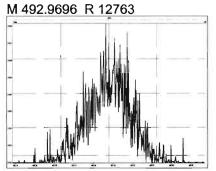

MassLynx 4.1 SCN815

Printed: Wednesday, April 14, 2021 15:27:19 Pacific Daylight Time



MassLynx 4.1 SCN815

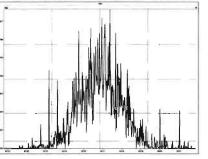

Printed: Wednesday, April 14, 2021 15:27:19 Pacific Daylight Time

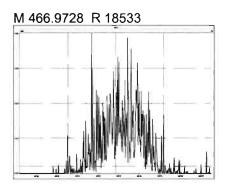




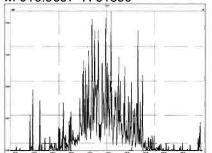
MassLynx 4.1 SCN815

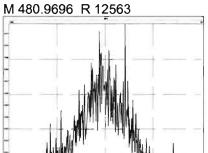
Page 4 of 4


Printed: Wednesday, April 14, 2021 15:27:19 Pacific Daylight Time







M 504.9696 R 15745





M 516.9697 R 31899





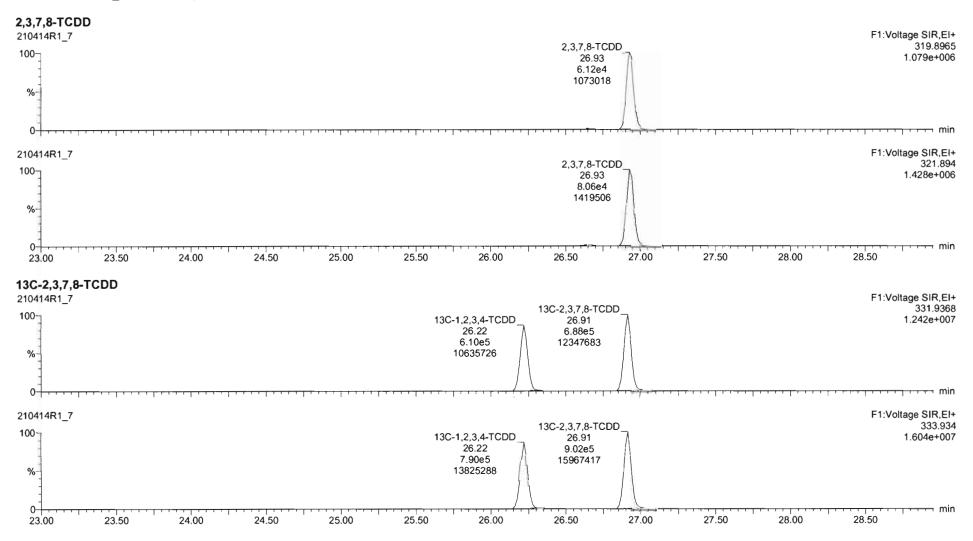
Quantify Sam Vista Analytica	n <b>ple Summary Report</b> al Laboratory	MassLynx 4.1 SCN815	
Dataset:	U:\VG12.PRO\Results\21	10414R1\210414R1_7.qld	
Last Altered: Printed:		10:13:51 Pacific Daylight Time 10:15:16 Pacific Daylight Time	

HIN 04/15/21 DF04/19/21

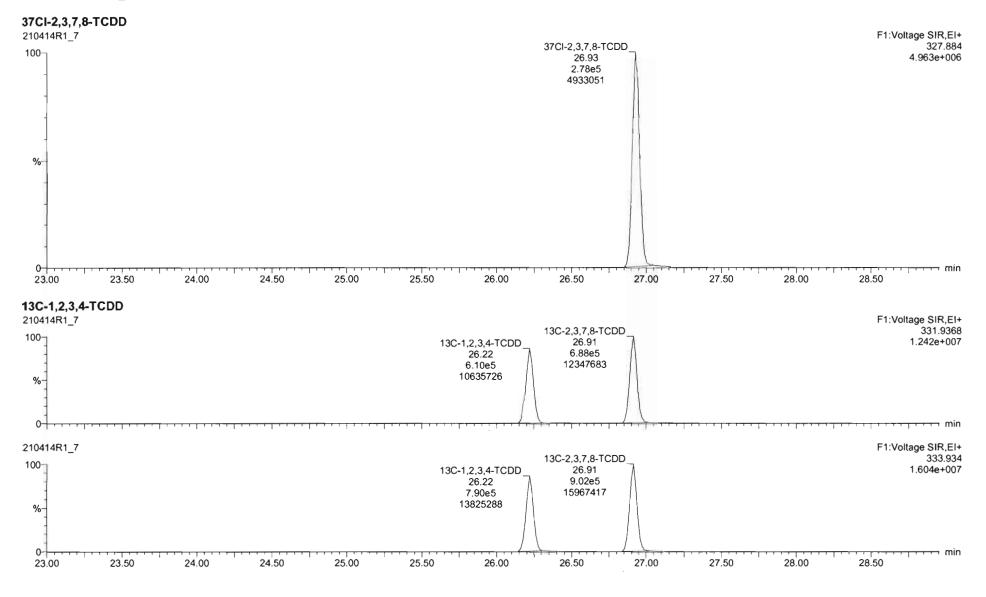
## Method: U:\VG12.PRO\MethDB\1613rrt-04-06-21.mdb 06 Apr 2021 08:35:23 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

## Name: 210414R1_7, Date: 14-Apr-2021, Time: 14:34:13, ID: SS210414R1-1 1613 SSS 21C0108, Description: 1613 SSS 21C0108

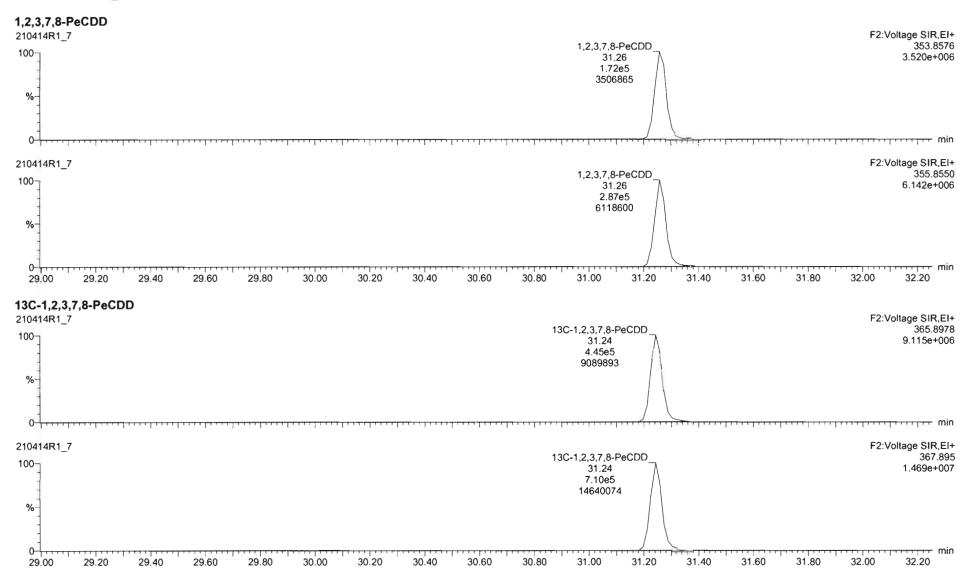
	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.42e5	0.76	NO	0.929	1.000	26.945	26.93	1.001	1.001	9.5905	95.9 50	-150% 0.0124	9.59
2	2 1,2,3,7,8-PeCDD	4.59e5	0.60	NO	0.826	1.000	31.274	31.26	1.001	1.000	48.111	96.2	0.0507	48.1
3	3 1,2,3,4,7,8-HxCDD	3.68e5	1.24	NO	0.972	1.000	34.618	34.61	1.001	1.000	50.163	100	0.114	50.2
4	4 1,2,3,6,7,8-HxCDD	3.95e5	1.23	NO	0.877	1.000	34.744	34.74	1.001	1.001	52.884	106	0.119	52.9
5	5 1,2,3,7,8,9-HxCDD	3.89e5	1.25	NO	0.874	1.000	35.027	35.03	1.000	1.000	49.610	99.2	0.114	49.6
6	6 1,2,3,4,6,7,8-HpCDD	2.71e5	1.02	NO	0.899	1.000	38.296	38.31	1.000	1.001	48.692	97.4	0.133	48.7
7	7 OCDD	4.57e5	0.87	NO	0.852	1.000	41.310	41.31	1.000	1.000	102.28	102	0.151	102
8	8 2,3,7,8-TCDF	1.58e5	0.75	NO	0.747	1.000	26.309	26.34	1.000	1.001	9.8282	98.3	0.0164	9.83
9	9 1,2,3,7,8-PeCDF	6.59e5	1.57	NO	0.877	1.000	30.085	30.10	1.000	1.000	47.679	95.4	0.0773	47.7
10	10 2,3,4,7,8-PeCDF	6.89e5	1.54	NO	0.962	1.000	31.098	31.09	1.001	1.000	50.877	102	0.0782	50.9
11	11 1,2,3,4,7,8-HxCDF	4.77e5	1.21	NO	0.920	1.000	33.665	33.68	1.000	1.001	52.893	106	0.0947	52.9
12	12 1,2,3,6,7,8-HxCDF	5.01e5	1.22	NO	0.936	1.000	33.822	33.81	1.001	1.000	51.115	102	0.0912	51.1
13	13 2,3,4,6,7,8-HxCDF	4.67e5	1.22	NO	0.973	1.000	34.514	34.50	1.001	1.000	52.771	106	0.105	52.8
14	14 1,2,3,7,8,9-HxCDF	3.77e5	1.23	NO	0.940	1.000	35.592	35.60	1.000	1.001	50.158	100	0.134	50.2
15	15 1,2,3,4,6,7,8-HpCDF	3.61e5	1.01	NO	1.05	1.000	37.179	37.17	1.000	1.000	52.180	104	0.130	52.2
16	16 1,2,3,4,7,8,9-HpCDF	2.83e5	1.01	NO	1.05	1.000	38.966	38.97	1.000	1.000	49.625	99.2	0.143	49.6
17	17 OCDF	4.60e5	0.87	NO	0.771	1.000	41.645	41.65	1.000	1.000	100.69	101 🗸	0.140	101
18	18 13C-2,3,7,8-TCDD	1.59e6	0.76	NO	1.10	1.000	26.897	26.91	1.026	1.027	102.93	103	0.0486	
19	19 13C-1,2,3,7,8-PeCDD	1.16e6	0.63	NO	0.864	1.000	31.205	31.24	1.190	1.192	95.556	95.6	0.0791	
20	20 13C-1,2,3,4,7,8-HxCDD	7.55e5	1.25	NO	0.746	1.000	34.577	34.60	1.013	1.014	97.877	97.9	0.180	
21	21 13C-1,2,3,6,7,8-HxCDD	8.52e5	1.24	NO	0.847	1.000	34.717	34.72	1.017	1.017	97.415	97.4	0.158	
22	22 13C-1,2,3,7,8,9-HxCDD	8.97e5	1.24	NO	0.868	1.000	35.003	35.02	1.026	1.026	100.01	100	0.154	
23	23 13C-1,2,3,4,6,7,8-HpCDD	6.19e5	1.02	NO	0.664	1.000	38.269	38.28	1.121	1.122	90.141	90.1	0.290	
24	24 13C-OCDD	1.05e6	0.90	NO	0.561	1.000	41.303	41.30	1.210	1.210	180.80	90.4	0.297	
25	25 13C-2,3,7,8-TCDF	2.15e6	0.77	NO	1.09	1.000	26.307	26.31	1.003	1.003	96.733	96.7	0.0460	
26	26 13C-1,2,3,7,8-PeCDF	1.58e6	1.57	NO	0.809	1.000	30.048	30.08	1.146	1.147	95.821	95.8	0.119	
27	27 13C-2,3,4,7,8-PeCDF	1.41e6	1.58	NO	0.803	1.000	31.034	31.08	1.184	1.185	86.278	86.3	0.120	
28	28 13C-1,2,3,4,7,8-HxCDF	9.81e5	0.51	NO	1.01	1.000	33.659	33.66	0.986	0.986	93.862	93.9	0.192	
29	29 13C-1,2,3,6,7,8-HxCDF	1.05e6	0.51	NO	1.07	1.000	33.788	33.80	0.990	0.990	94.332	94.3	0.181	
30	30 13C-2,3,4,6,7,8-HxCDF	9.09e5	0.51	NO	0.910	1.000	34.485	34.49	1.010	1.011	96.732	96.7	0.214	
31	31 13C-1,2,3,7,8,9-HxCDF	8.01e5	0.52	NO	0.828	1.000	35.573	35.58	1.042	1.043	93.545	93.5	0.235	


-	mple Summary Report cal Laboratory	MassLynx 4.1 SCN815	
Dataset:	U:\VG12.PRO\Results\21	10414R1\210414R1_7.qld	

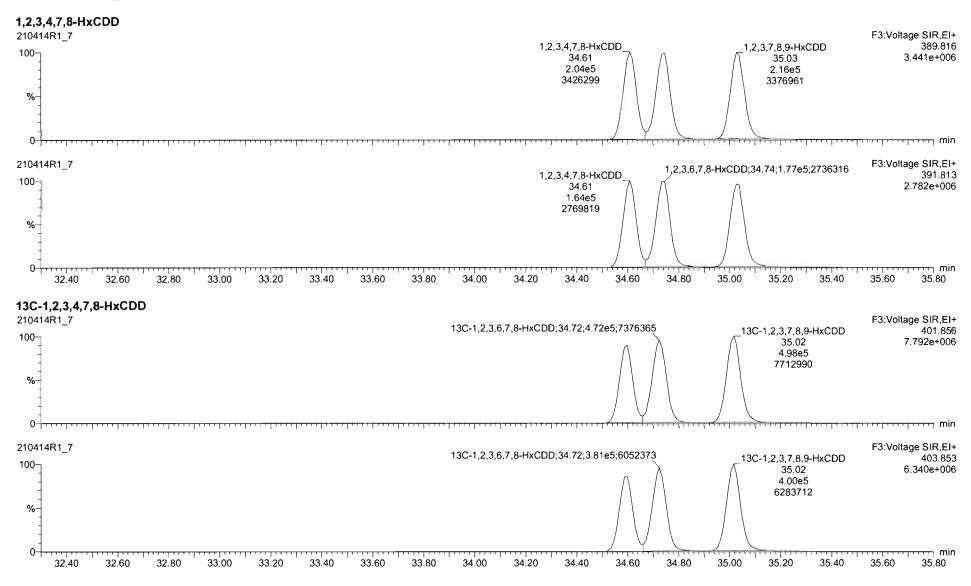
Last Altered:	Thursday, April 15, 2021 10:13:51 Pacific Daylight Time	
Printed:	Thursday, April 15, 2021 10:15:16 Pacific Daylight Time	


1.174.00	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	6.60e5	0.43	NO	0.661	1.000	37.150	37.16	1.089	1.089	96.587	96.6	0.244	
33	33 13C-1,2,3,4,7,8,9-HpCDF	5.45e5	0.43	NO	0.566	1.000	38.938	38.95	1.141	1.141	93.255	93.3	0.285	
34	34 13C-OCDF	1.18e6	0.87	NO	0.663	1.000	41.634	41.64	1.220	1.220	172.93	86.5	0.209	
35	35 37CI-2,3,7,8-TCDD	2.78e5			2.07	1.000	27.125	26.93	1.035	1.027	9.5990	96.0	0.00554	
36	36 13C-1,2,3,4-TCDD	1.40e6	0.77	NO	1.00	1.000	26.290	26.22	1.000	1.000	100.00	100	0.0537	
37	37 13C-1,2,3,4-TCDF	2.03e6	0.78	NO	1.00	1.000	25.020	24.93	1.000	1.000	100.00	100	0.0503	
38	38 13C-1,2,3,4,6,9-HxCDF	1.03e6	0.51	NO	1.00	1.000	34.190	34.13	1.000	1.000	100.00	100	0.194	

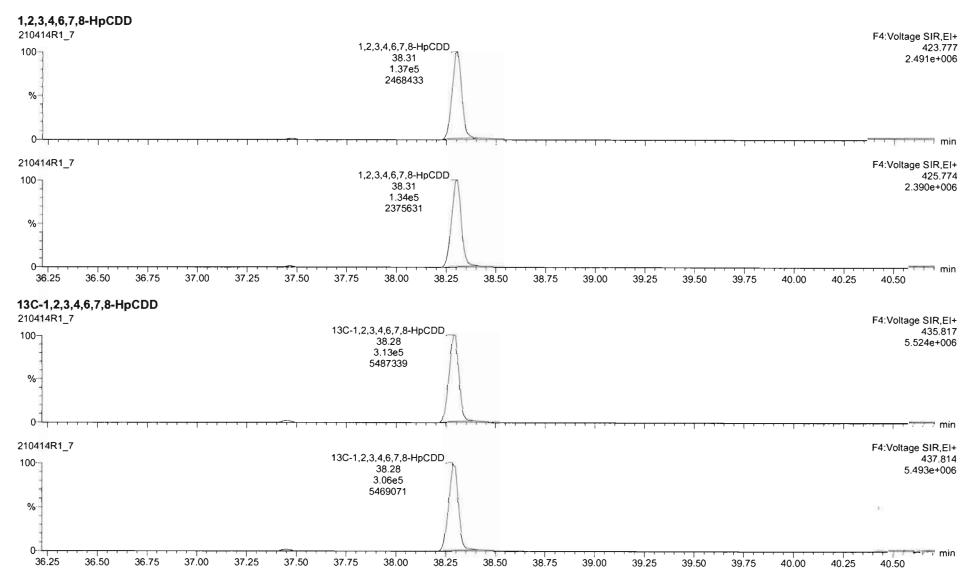
Quantify San Vista Analytica		Page 1 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	


#### Method: U:\VG12.PRO\MethDB\1613rrt-04-06-21.mdb 06 Apr 2021 08:35:23 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-04-14-21.cdb 15 Apr 2021 09:26:26

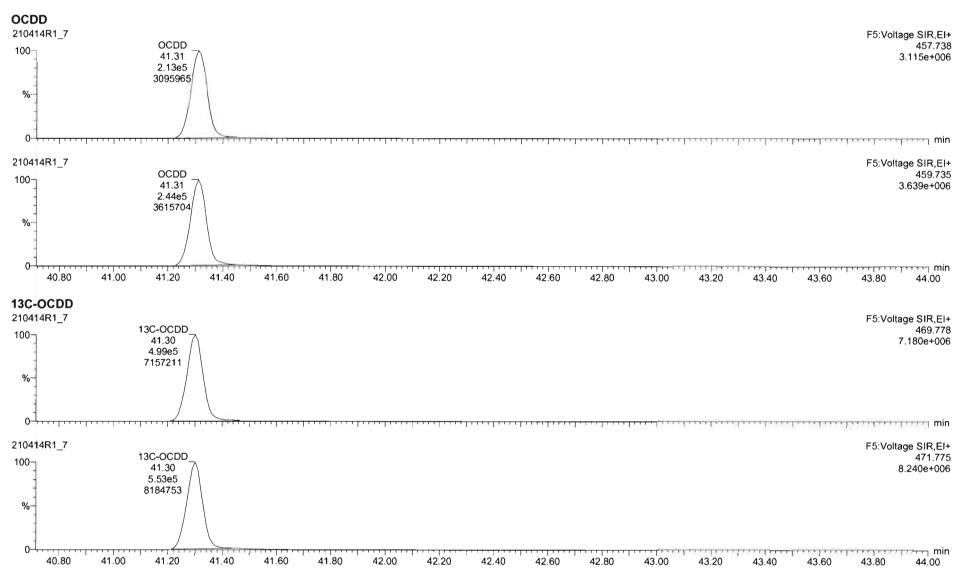


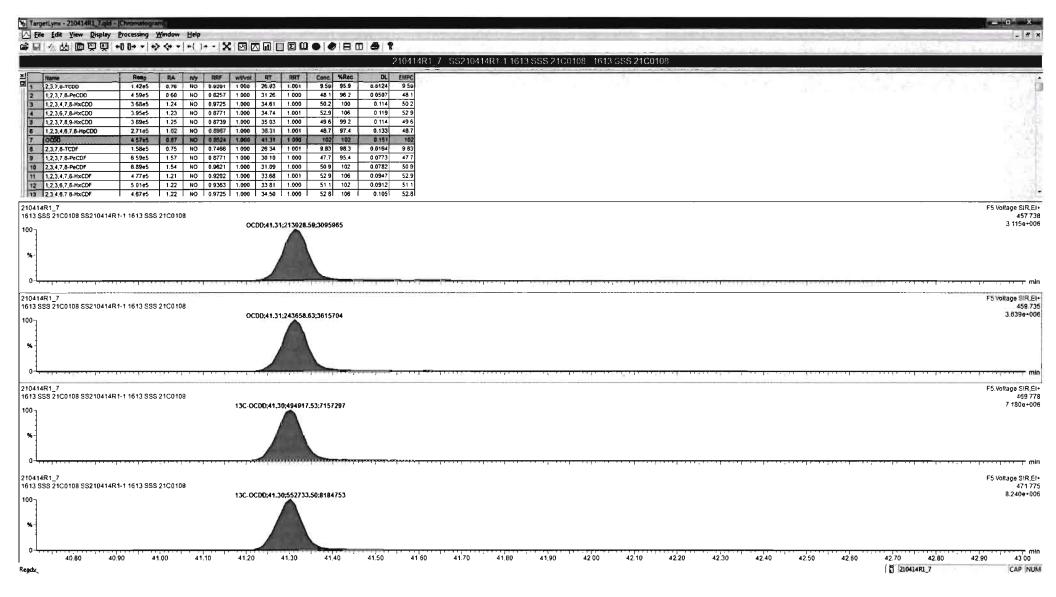

Quantify San Vista Analytica		Page 2 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	



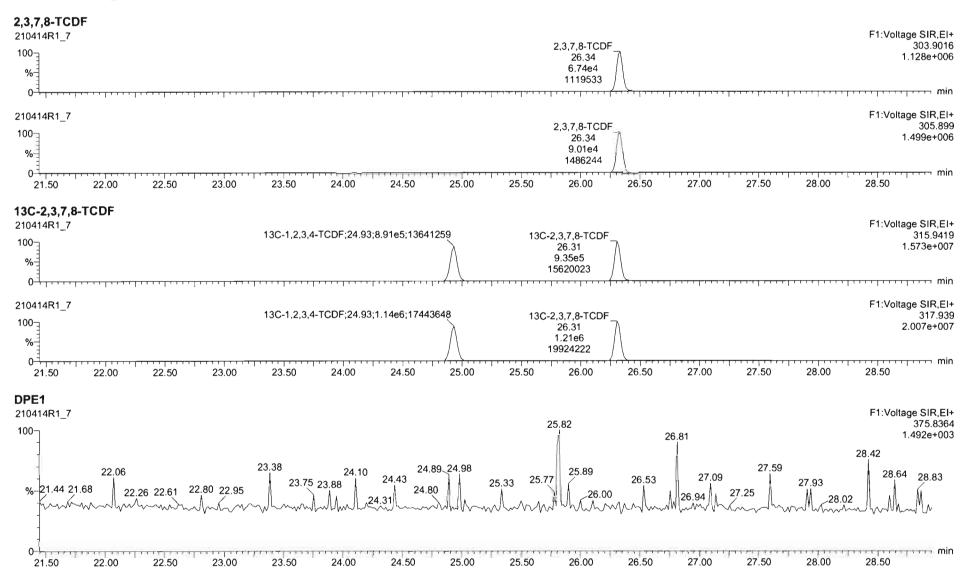

Quantify Sam Vista Analytica		Page 3 of 13	
Dataset:	Untitled		
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time		



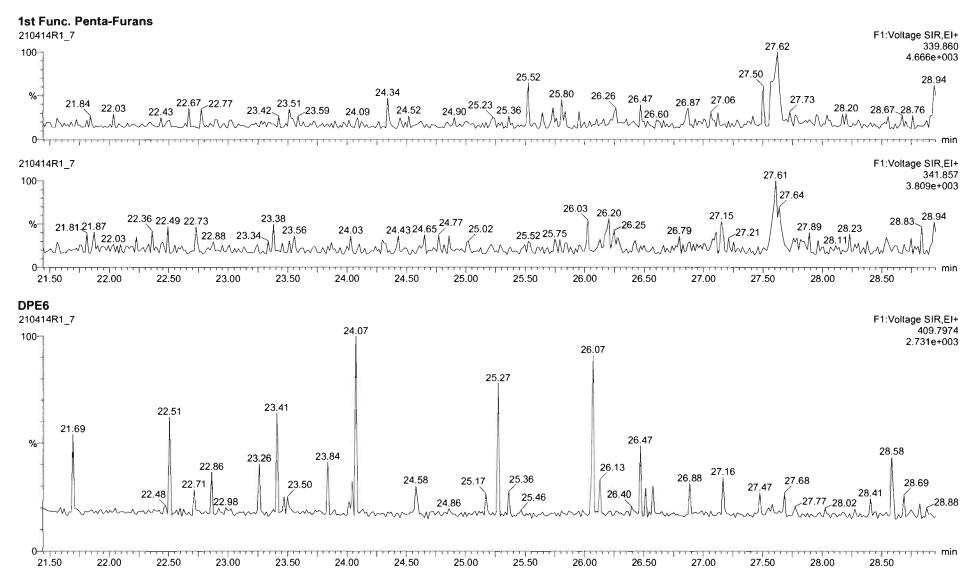

Quantify Sam Vista Analytica	• •	Page 4 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	



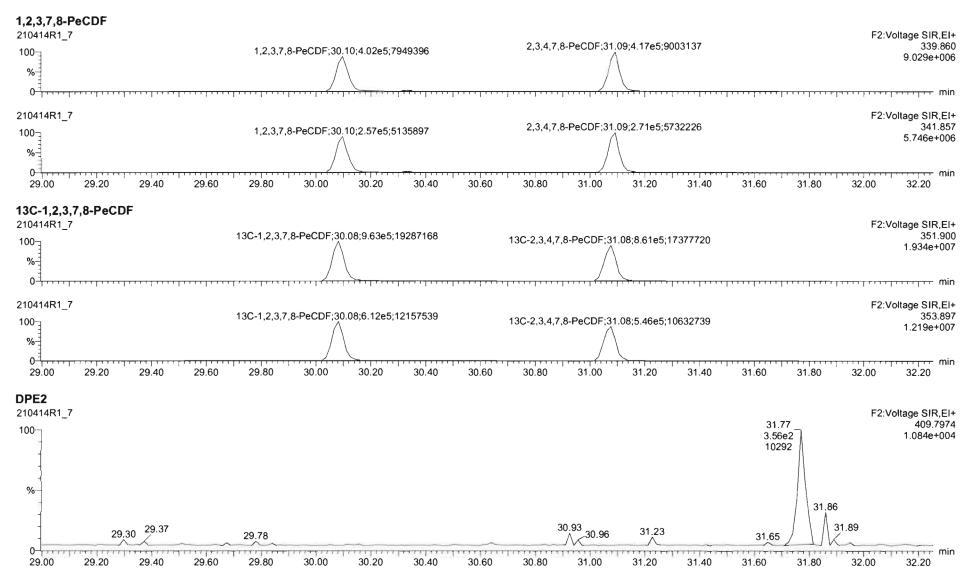

Quantify Sam Vista Analytica		Page 5 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	



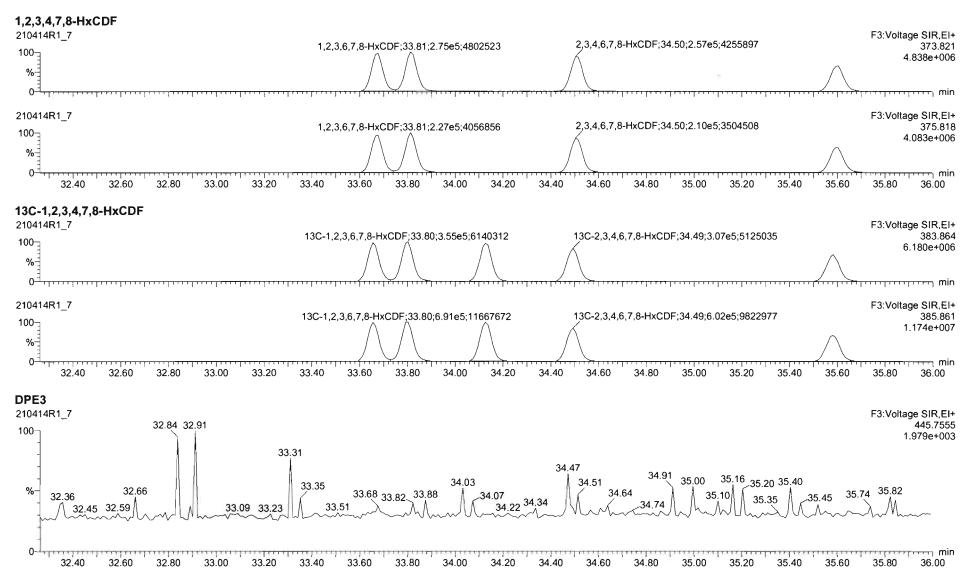

Quantify Sam Vista Analytica		Page 6 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	

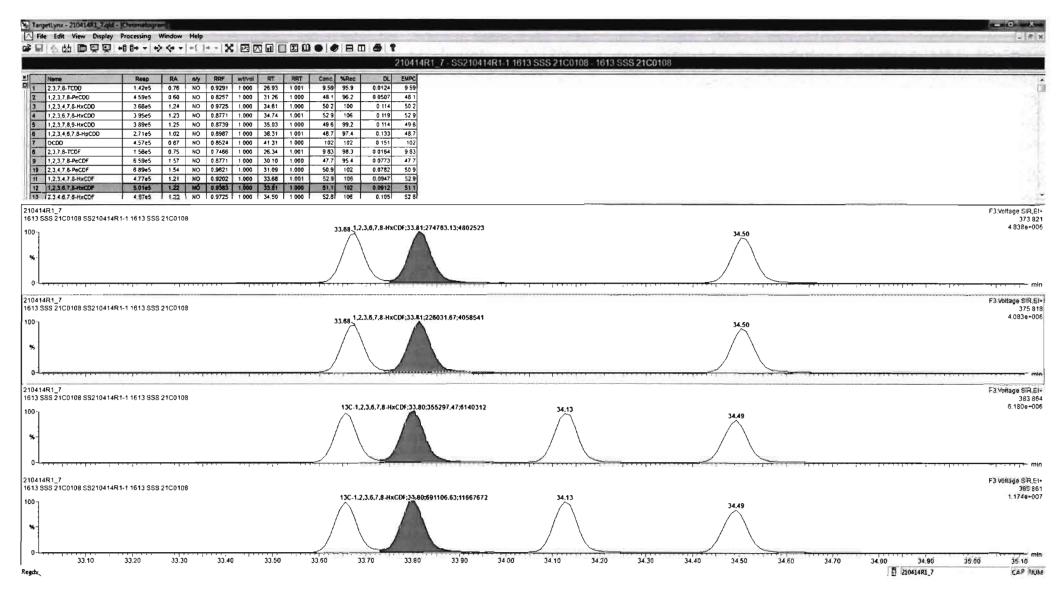






Quantify Sam Vista Analytica		Page 7 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	

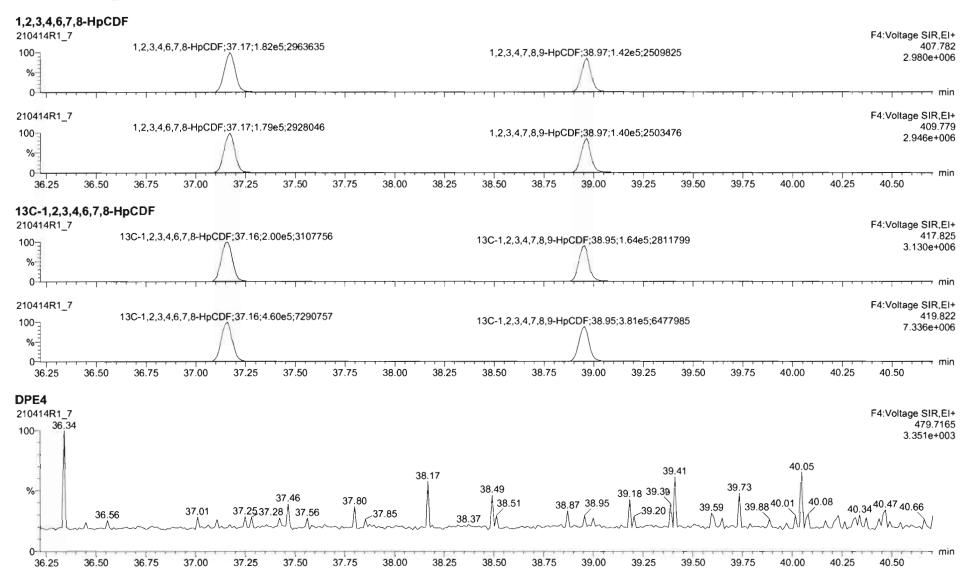



Quantify Sample Report Vista Analytical Laboratory		ssLynx 4.1 SCN815	Page 8 of 13
Dataset:	Untitled		
Last Altered: Printed:		2021 10:05:01 Pacific Daylight Time 2021 10:05:13 Pacific Daylight Time	

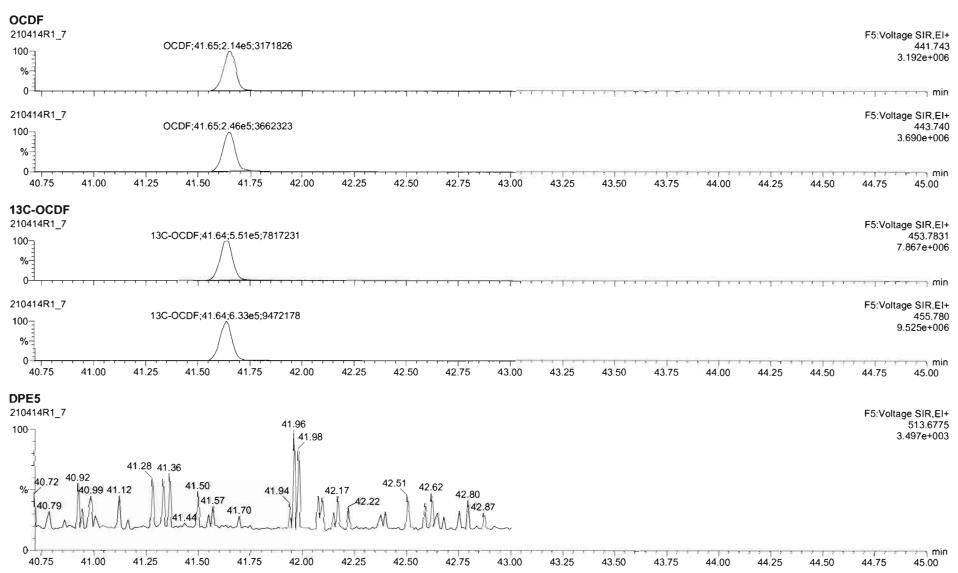



Quantify Sam Vista Analytica		Page 9 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	

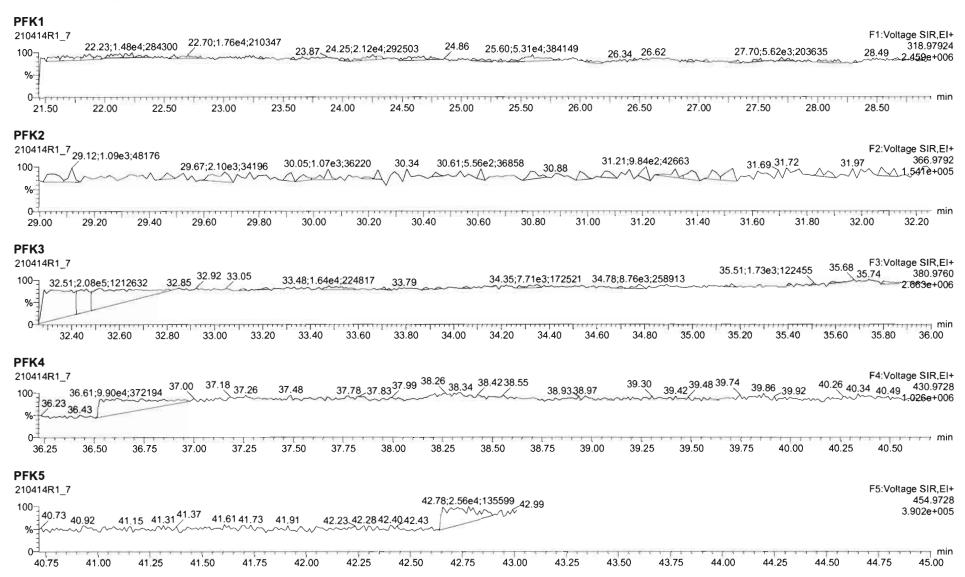



Quantify Sam Vista Analytica		Page 10 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	









Quantify Sam Vista Analytica		Page 11 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	



Quantify San Vista Analytica		Page 12 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	



Quantify Sam Vista Analytica		Page 13 of 13
Dataset:	Untitled	
Last Altered: Printed:	Thursday, April 15, 2021 10:05:01 Pacific Daylight Time Thursday, April 15, 2021 10:05:13 Pacific Daylight Time	

