

Avista Distribution and Transmission Planning

March 10, 2017 Docket UE 161024

1

Agenda

- Distributed Energy Resource Planning in the IRP
- Optimizing Distributed Energy Resource (DER) Value
 - Enabling Systems
 - Pilots to Learn
- Distribution Planning
 - Overview
 - Current & Future State Analysis Capabilities
- Transmission Planning
 - Overview
 - Evolving Standards Requirements
 - Solution Alternatives Analysis

Distribution Planning from a IRP Perspective

James Gall, Integrated Resource Plan Manager

DER Planning in the IRP

5 MW Solar in Othello, WA (summer peaking feeder) (\$/MWh Levelized)

- Energy: \$34.17
- Ancillary services: \$0
- Line losses: \$1.62
- System peak reduction: **\$0**
- Power supply risk reduction:
 \$1.1
- Distribution/transmission Investment avoidance: \$0.9
- Reliability: \$0
- Power quality: **\$0**
- Externalities: TBD

Total Value: \$37.79 per MWh

- Total costs for utility scale solar with energy integration is expected to be \$55 to \$65 per MWh for a long term PPA
- Assumes utility scale project developed by a 3rd party, utility ownership will derive different cost due to ITC accounting
- Renewable Energy Credit
 value is not considered

Current Valuation:

PV value: \$3.3 million PV costs: \$5.3 million NPV: -\$2.0 million

Distribution & Transmission Planning

Heather Rosentrater, VP Energy Delivery

Optimizing DER Value

Foundational Enabling Systems

Smart Grid Demonstration & Investment Projects

- American Recovery and Reinvestment Act Grants
- Smart Line Devices and Distribution Management System
- Fault Detection, Isolation and Restoration Reliability
- Integrated Volt/Var Control Energy Efficiency
- Advanced Metering Infrastructure Pilot Project

Future Enabling Systems

Washington Advanced Metering Infrastructure Project

Communication Network

Supervisory Control And Data Acquisition Expansion Project

Three Phase Measurement at Substation Feeders

Optimizing DER Value Pilots to Learn

- DMS Distribution Management System
- MTG Micro-Transactive Grid
- ATS Automatic Transfer Switch
- MGC Microgrid Controller
- RTU Remote Terminal Unit
- BEMS Building Energy Management System
- BMS Battery Management System
- DER Distributed Energy Resource

Optimizing DER Value Pilots to Learn

Turner Energy Storage Project – Washington Department of Commerce

Clean Energy Fund I

- 1MW 3.5 MWhr Vanadium Flow Battery
- Located Adjacent to SEL Manufacturing
- Use Case Valuation

Economies of Scope

Use Case and application as described in PNNL	Avista
Catalog	
UC1: Energy Shifting	
Energy shifting from peak to off-peak on a daily basis	Y
System capacity to meet adequacy requirements	Y
UC2: Provide Grid Flexibility	
Regulation services	Y
Load following services	Y
Real-world flexibility operation	Y
UC3: Improving Distribution Systems Efficiency	
Volt/Var control with local and/or remote	Y
information	
Load-shaping service	Y
Deferment of distribution system upgrade	Y
UC4: Outage Management of Critical Loads	Y
UC5: Enhanced Voltage Control	
Volt/Var control with local and/or remote	Y
information and during enhanced CVR events	
UC6: Grid-connected and islanded micro-grid operations	
Black Start operation	Y
Micro-grid operation while grid-connected	Y
Micro-grid operation in islanded mode	Y
UC7: Optimal Utilization of Energy Storage	Y

Optimizing DER Value Pilots to Learn

Shared Energy Economy – Washington Department of Commerce Clean Energy Fund II

- Solar, Storage and Building Management Systems
- Located in the University District Spokane, Washington
- Use Case Valuation

Distribution Planning

Overview

- Primary goal Safe and reliable service to all customers, efficiently at lowest life cycle cost
- Annually analyze entire system and identify constraints
 - Drivers: Capacity and Level of Service/Reliability
- Analyze alternative solutions, identify course of action, input to 5 year budget
- Requires continuously analyzing all available solutions and technologies

Distribution Planning

Current State Analysis Capabilities

- Varied data available per circuit
- 346 Circuits
 - 94 Circuits with Distribution Management System Control
 - 101 Circuits with 3-Phase Supervisory Control and Data Acquisition (SCADA)
 - 83 Circuits with 1-Phase SCADA
 - 68 Circuits without SCADA

Distribution Planning

Future Considerations

- Data needs depend on analytics, efficiency, and operational flexibility required
- Current project under consideration to upgrade to 3 phase SCADA on all circuits, \$115M
- Evolution towards more data
 - Benefits to utility and customers under evaluation
 - Advanced Distribution Resource Planning may require additional employees and significantly more data than currently available

Transmission Planning Overview

- Annual study of our transmission system
 - Required & Governed by NERC Standard TPL-001-4
 - Seasonal simulations analyzed out to 20 years
 - Requires reliable performance during outages
 - Performance requirements grow with each standard revision
- Drivers for Transmission Planning projects:
 - Reliability violations found during annual assessment
 - Generation Resource requests:
 - External developers
 - Internal IRP requests

14

Transmission Planning

Revised Standards Requirements Driving Infrastructure Needs

2003 Northeast Blackout	2004	Energy Policy Act of 2005	2007	2016 Standards 2.0
 Worst blackout to date in U.S. Task force is put together to investigate outage Final report concludes that to prevent future blackouts, govt. needs <u>mandatory</u> <u>reliability</u> <u>standards</u>. 	 Version 0 Reliability Standards In 2004, NERC begins translating it's operating policies into 90 measurable standards 	Authorizes the creation of an Electric Reliability Organization w/ oversight from NERC	NERC has been certified by FERC and reliability standards become mandatory for all Utilities	FERC & NERC improving Tighter standards New Transmission Planning modeling requirements

ANTS

Transmission Planning

Typical Study - Saddle Mountain Project

- New 230/115 kV station south of Othello
- Process of the study:
 - TPL studies determine system violations
 - Former studies help establish context
 - Other projects are analyzed for potential overlap
 - Alternative projects are developed and vetted
 - Complete study performed for primary alternative
- Regional study completed at Columbia Grid
- Results documented in annual assessment

Transmission Planning

Considerations During Project Selection

- Impact on the TPL requirements
 - Does it solve some violations but create others?
 - Does it improve reliability more than other projects?
- Short-term and long-term cost
- Commercial viability
- Time to construct
- Synergy with other TPL or Avista projects
- New technology possibilities
- Discoveries made during regional process

