

November 30, 2020

Vista Work Order No. 2002358

Ms. Delaney Peterson Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

Dear Ms. Peterson,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on November 03, 2020 under your Project Name 'GascoSiltronic: US Moorings'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2002358 Page 1 of 353

Vista Work Order No. 2002358 Case Narrative

Sample Condition on Receipt:

Four sediment samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 1613B

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2002358 Page 2 of 353

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	12
Certifications	13
Sample Receipt	16
Extraction Information	19
Sample Data - EPA Method 1613	26
Continuing Calibration	174
Initial Calibration	207

Work Order 2002358 Page 3 of 353

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2002358-01	USMPDI-055SC-A-01-02-201028	28-Oct-20 15:45	03-Nov-20 09:27	Amber Glass, 120 mL
2002358-02	USMPDI-055SC-A-02-03-201028	28-Oct-20 15:45	03-Nov-20 09:27	Amber Glass, 120 mL
2002358-03	USMPDI-055SC-A-03-04-201028	28-Oct-20 15:45	03-Nov-20 09:27	Amber Glass, 120 mL
2002358-04	USMPDI-055SC-A-04-05-201028	28-Oct-20 15:45	03-Nov-20 09:27	Amber Glass, 120 mL

Vista Project: 2002358 Client Project: GascoSiltronic: Navigation Channel

Work Order 2002358 Page 4 of 353

ANALYTICAL RESULTS

Work Order 2002358 Page 5 of 353

Sample ID: Method	l Blank						EPA Me	ethod 1613B
Matrix: Solid Sample Size: 10.0 g		QC Batch: B0K0115 Date Extracted: 14-Nov-2020	7:34	1	Date Analyzed: 80K0115-BLK1 20-Nov-20 12:2		DIOXIN	
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.197		IS	13C-2,3,7,8-TCDD	103	25 - 164	
1,2,3,7,8-PeCDD	ND	0.107			13C-1,2,3,7,8-PeCDD	95.7	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.0970			13C-1,2,3,4,7,8-HxCDD	105	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.104			13C-1,2,3,6,7,8-HxCDD	102	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.112			13C-1,2,3,7,8,9-HxCDD	105	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.128			13C-1,2,3,4,6,7,8-HpCDD	93.5	23 - 140	
OCDD	ND	0.281			13C-OCDD	81.1	17 - 157	
2,3,7,8-TCDF	ND	0.0552			13C-2,3,7,8-TCDF	103	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0452			13C-1,2,3,7,8-PeCDF	102	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0388			13C-2,3,4,7,8-PeCDF	103	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.103			13C-1,2,3,4,7,8-HxCDF	97.6	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0997			13C-1,2,3,6,7,8-HxCDF	94.5	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.111			13C-2,3,4,6,7,8-HxCDF	93.1	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.171			13C-1,2,3,7,8,9-HxCDF	95.8	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0742			13C-1,2,3,4,6,7,8-HpCDF	81.1	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0760			13C-1,2,3,4,7,8,9-HpCDF	78.6	26 - 138	
OCDF	ND	0.102			13C-OCDF	73.6	17 - 157	
				CRS	37Cl-2,3,7,8-TCDD	106	35 - 197	
				Toxic Equivalent Quotient (TEQ) Data (pg/g dry wt)				
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	0.197						
Total PeCDD	ND	0.107						
Total HxCDD	ND	0.112						
Total HpCDD	ND	0.128						
Total TCDF	ND	0.0552						
Total PeCDF	ND	0.0452						
Total HxCDF	ND	0.171						
Total HpCDF	ND	0.0760			[CL - Lower control limit - unner control li			

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 2002358 Page 6 of 353

Sample ID: OPR								EPA Method 1613E
Matrix: Solid Sample Size: 10.0 g			B0K0115 14-Nov-2020	0 7:34		Lab Sample: B0K0115-BS1 Date Analyzed: 20-Nov-20 10:08	Column: ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	20.0	20.0	99.8	67 - 158	IS	13C-2,3,7,8-TCDD	102	20 - 175
1,2,3,7,8-PeCDD	109	100	109	70 - 142		13C-1,2,3,7,8-PeCDD	101	21 - 227
1,2,3,4,7,8-HxCDD	99.6	100	99.6	70 - 164		13C-1,2,3,4,7,8-HxCDD	106	21 - 193
1,2,3,6,7,8-HxCDD	101	100	101	76 - 134		13C-1,2,3,6,7,8-HxCDD	105	25 - 163
1,2,3,7,8,9-HxCDD	100	100	100	64 - 162		13C-1,2,3,7,8,9-HxCDD	108	21 - 193
1,2,3,4,6,7,8-HpCDD	96.4	100	96.4	70 - 140		13C-1,2,3,4,6,7,8-HpCDD	100	26 - 166
OCDD	197	200	98.7	78 - 144		13C-OCDD	89.9	13 - 199
2,3,7,8-TCDF	17.6	20.0	88.1	75 - 158		13C-2,3,7,8-TCDF	102	22 - 152
1,2,3,7,8-PeCDF	98.0	100	98.0	80 - 134		13C-1,2,3,7,8-PeCDF	107	21 - 192
2,3,4,7,8-PeCDF	97.8	100	97.8	68 - 160		13C-2,3,4,7,8-PeCDF	110	13 - 328
1,2,3,4,7,8-HxCDF	91.6	100	91.6	72 - 134		13C-1,2,3,4,7,8-HxCDF	97.4	19 - 202
1,2,3,6,7,8-HxCDF	90.9	100	90.9	84 - 130		13C-1,2,3,6,7,8-HxCDF	94.6	21 - 159
2,3,4,6,7,8-HxCDF	90.8	100	90.8	70 - 156		13C-2,3,4,6,7,8-HxCDF	93.6	22 - 176
1,2,3,7,8,9-HxCDF	90.6	100	90.6	78 - 130		13C-1,2,3,7,8,9-HxCDF	94.6	17 - 205
1,2,3,4,6,7,8-HpCDF	90.2	100	90.2	82 - 122		13C-1,2,3,4,6,7,8-HpCDF	83.8	21 - 158
1,2,3,4,7,8,9-HpCDF	89.2	100	89.2	78 - 138		13C-1,2,3,4,7,8,9-HpCDF	81.7	20 - 186
OCDF	186	200	93.0	63 - 170		13C-OCDF	81.1	13 - 199
					CRS	37Cl-2,3,7,8-TCDD	111	31 - 191

LCL-UCL - Lower control limit - upper control limit

Work Order 2002358 Page 7 of 353

Sample ID: USMPI	OI-055SC-A-01-02-201028						EPA Met	hod 16131
Project: Gasco	or QEA, LLC oSiltronic: US Moorings ot-2020 15:45	Sample Size:	Sediment 19.9 g 50.2	Lab S QC B		Date Received: Date Extracted: 38 Column: ZB-DIC	14-Nov-2020	
Analyte Conc.	(pg/g)	DL EMPC	Qualifiers]	Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.321		IS	13C-2,3,7,8-TCDD	108	25 - 164	
1,2,3,7,8-PeCDD	0.475		J		13C-1,2,3,7,8-PeCDD	106	25 - 181	
1,2,3,4,7,8-HxCDD	0.576		J		13C-1,2,3,4,7,8-HxCDD	110	32 - 141	
1,2,3,6,7,8-HxCDD	2.92				13C-1,2,3,6,7,8-HxCDD	108	28 - 130	
1,2,3,7,8,9-HxCDD	1.41		J		13C-1,2,3,7,8,9-HxCDD	112	32 - 141	
1,2,3,4,6,7,8-HpCDD	74.1				13C-1,2,3,4,6,7,8-HpCDD	109	23 - 140	
OCDD	751				13C-OCDD	97.8	17 - 157	
2,3,7,8-TCDF	7.20				13C-2,3,7,8-TCDF	106	24 - 169	
1,2,3,7,8-PeCDF	7.33				13C-1,2,3,7,8-PeCDF	111	24 - 185	
2,3,4,7,8-PeCDF	4.93				13C-2,3,4,7,8-PeCDF	113	21 - 178	
1,2,3,4,7,8-HxCDF	10.4				13C-1,2,3,4,7,8-HxCDF	100	26 - 152	
1,2,3,6,7,8-HxCDF	2.63				13C-1,2,3,6,7,8-HxCDF	94.8	26 - 123	
2,3,4,6,7,8-HxCDF	1.19		J		13C-2,3,4,6,7,8-HxCDF	95.8	28 - 136	
1,2,3,7,8,9-HxCDF	0.389		J		13C-1,2,3,7,8,9-HxCDF	99.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	12.4				13C-1,2,3,4,6,7,8-HpCDF	88.4	28 - 143	
1,2,3,4,7,8,9-HpCDF	2.04		J		13C-1,2,3,4,7,8,9-HpCDF	89.5	26 - 138	
OCDF	32.1				13C-OCDF	86.9	17 - 157	
				CRS :	37C1-2,3,7,8-TCDD	113	35 - 197	
				,	Toxic Equivalent Quotient (TE	EQ) Data (pg/g dry v	vt)	
				-	ΓEQMinWHO2005Dioxin	5.97		
TOTALS								
Total TCDD	2.41	2.73						
Total PeCDD	3.32	4.10						
Total HxCDD	29.5							
Total HpCDD	243							
Total TCDF	22.8	24.6						
Total PeCDF	27.7							
Total HxCDF	29.9							
Total HpCDF DL - Sample specifc esti	35.5							

Work Order 2002358

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Sample ID: USMPDI-	-055SC-A-02-03-201028							EPA Me	thod 1613B
Project: GascoSi	QEA, LLC ltronic: US Moorings 2020 15:45	Sample Data Matrix: Sample Size: % Solids:	Sediment 15.2 g 67.4		Lab QC	oratory Data Sample: 2002358-02 Batch: B0K0115 e Analyzed: 20-Nov-20 1	Date Receive Date Extract 5:22 Column: ZB-I	ed: 14-Nov-2020	
Analyte Conc. (p	g/g)	DL EMP	С	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.30)4		IS	13C-2,3,7,8-TCDD	110	25 - 164	
1,2,3,7,8-PeCDD	ND	0.55	6			13C-1,2,3,7,8-PeCDD	109	25 - 181	
1,2,3,4,7,8-HxCDD	0.660			J		13C-1,2,3,4,7,8-HxCDD	114	32 - 141	
1,2,3,6,7,8-HxCDD	5.73					13C-1,2,3,6,7,8-HxCDD	113	28 - 130	
1,2,3,7,8,9-HxCDD	2.22			J		13C-1,2,3,7,8,9-HxCDD	119	32 - 141	
1,2,3,4,6,7,8-HpCDD	92.4					13C-1,2,3,4,6,7,8-HpCDD	108	23 - 140	
OCDD	1130					13C-OCDD	97.7	17 - 157	
2,3,7,8-TCDF	15.6					13C-2,3,7,8-TCDF	109	24 - 169	
1,2,3,7,8-PeCDF	38.7					13C-1,2,3,7,8-PeCDF	114	24 - 185	
2,3,4,7,8-PeCDF	18.9					13C-2,3,4,7,8-PeCDF	113	21 - 178	
1,2,3,4,7,8-HxCDF	53.1					13C-1,2,3,4,7,8-HxCDF	105	26 - 152	
1,2,3,6,7,8-HxCDF	19.0					13C-1,2,3,6,7,8-HxCDF	102	26 - 123	
2,3,4,6,7,8-HxCDF	5.39					13C-2,3,4,6,7,8-HxCDF	103	28 - 136	
1,2,3,7,8,9-HxCDF	1.74			J		13C-1,2,3,7,8,9-HxCDF	109	29 - 147	
1,2,3,4,6,7,8-HpCDF	33.9					13C-1,2,3,4,6,7,8-HpCDF	91.7	28 - 143	
1,2,3,4,7,8,9-HpCDF	7.37					13C-1,2,3,4,7,8,9-HpCDF	89.8	26 - 138	
OCDF	68.6					13C-OCDF	87.0	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	114	35 - 197	
					Toxic Equivalent Quotient (TEQ) Data (pg/g dry wt)				
						TEQMinWHO2005Dioxin	18.9		
TOTALS									
Total TCDD	2.28	2.58							
Total PeCDD	4.72	5.94	4						
Total HxCDD	41.2								
	206								
Total TCDF	38.1	39.8	8						
Total PeCDF	98.3								
Total HxCDF	109								
Total HpCDF DL - Sample specifc estima	85.5					L- Lower control limit - upper control			

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 2002358 Page 9 of 353

2,3,7,8-TCDD ND 0.168 IS 13C-2,3,7,8-TCDD 111 1,2,3,7,8-PeCDD ND 0.183 13C-1,2,3,7,8-PeCDD 108 1,2,3,4,7,8-HxCDD ND 0.132 13C-1,2,3,4,7,8-HxCDD 115 1,2,3,6,7,8-HxCDD ND 0.128 13C-1,2,3,6,7,8-HxCDD 113 1,2,3,7,8,9-HxCDD ND 0.138 13C-1,2,3,4,6,7,8-HxCDD 119 1,2,3,4,6,7,8-HpCDD 2.09 J 13C-1,2,3,4,6,7,8-HpCDD 111 0CDD 21.0 J 13C-0CDD 94.8 2,3,7,8-PeCDF ND 0.0662 J 13C-1,2,3,7,8-PeCDF 111 1,2,3,7,8-PeCDF ND 0.0426 J 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 J 13C-1,2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.0426 J 13C-1,2,3,4,7,8-PeCDF 104 1,2,3,4,7,8-HxCDF ND 0.0543 J 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,4,7,8-HxCDF ND 0.0605	14-Nov-2020	
2,3,7,8-TCDD	25 - 164 25 - 181	Qualifiers
1,2,3,7,8-PeCDD ND 0.183 13C-1,2,3,7,8-PeCDD 108 1,2,3,4,7,8-HxCDD ND 0.132 13C-1,2,3,4,7,8-HxCDD 115 1,2,3,6,7,8-HxCDD ND 0.128 13C-1,2,3,6,7,8-HxCDD 113 1,2,3,7,8,9-HxCDD ND 0.138 13C-1,2,3,7,8,9-HxCDD 119 1,2,3,4,6,7,8-HpCDD 2.09 J 13C-1,2,3,4,6,7,8-HpCDD 111 OCDD 21.0 13C-OCDD 94.8 2,3,7,8-TCDF 0.308 J 13C-2,3,7,8-PeCDF 111 1,2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-PeCDF ND 0.0446 13C-1,2,3,4,7,8-PeCDF 104 1,2,3,4,7,8-PeCDF ND 0.0543 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0605 13C-1,2,3,4,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0859 13C-1,2,3,4,6,7,8-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,	25 - 181	
1,2,3,4,7,8-HxCDD ND 0.132 13C-1,2,3,4,7,8-HxCDD 115 1,2,3,6,7,8-HxCDD ND 0.128 13C-1,2,3,6,7,8-HxCDD 113 1,2,3,7,8,9-HxCDD ND 0.138 13C-1,2,3,7,8,9-HxCDD 119 1,2,3,4,6,7,8-HpCDD 2.09 J 13C-0CDD 94.8 2,3,7,8-TCDF 0.308 J 13C-0CDD 94.8 2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 111 1,2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0605 13C-1,2,3,4,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0859 13C-1,2,3,4,6,7,8-HxCDF 102 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6		
1,2,3,6,7,8-HxCDD ND 0.128 13C-1,2,3,6,7,8-HxCDD 113 1,2,3,7,8,9-HxCDD ND 0.138 13C-1,2,3,7,8,9-HxCDD 119 1,2,3,4,6,7,8-HpCDD 2.09 J 13C-0,2,3,4,6,7,8-HpCDD 111 OCDD 21.0 13C-0CDD 94.8 2,3,7,8-TCDF 0.308 J 13C-2,3,7,8-TCDF 111 1,2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	22 141	
1,2,3,7,8,9-HxCDD ND 0.138 13C-1,2,3,7,8,9-HxCDD 119 1,2,3,4,6,7,8-HpCDD 2.09 J 13C-1,2,3,4,6,7,8-HpCDD 111 OCDD 21.0 13C-OCDD 94.8 2,3,7,8-TCDF 0.308 J 13C-2,3,7,8-TCDF 111 1,2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,4,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,7,8,9-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	32 - 141	
1,2,3,4,6,7,8-HpCDD 2.09 J 13C-1,2,3,4,6,7,8-HpCDD 111 OCDD 21.0 13C-OCDD 94.8 2,3,7,8-TCDF 0.308 J 13C-2,3,7,8-TCDF 111 1,2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	28 - 130	
OCDD 21.0 13C-OCDD 94.8 2,3,7,8-TCDF 0.308 J 13C-2,3,7,8-TCDF 111 1,2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	32 - 141	
2,3,7,8-TCDF 0.308 J 13C-2,3,7,8-TCDF 111 1,2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	23 - 140	
1,2,3,7,8-PeCDF ND 0.0662 13C-1,2,3,7,8-PeCDF 117 2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	17 - 157	
2,3,4,7,8-PeCDF ND 0.0426 13C-2,3,4,7,8-PeCDF 118 1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	24 - 169	
1,2,3,4,7,8-HxCDF ND 0.104 13C-1,2,3,4,7,8-HxCDF 104 1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	24 - 185	
1,2,3,6,7,8-HxCDF ND 0.0543 13C-1,2,3,6,7,8-HxCDF 99.9 2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	21 - 178	
2,3,4,6,7,8-HxCDF ND 0.0605 13C-2,3,4,6,7,8-HxCDF 102 1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	26 - 152	
1,2,3,7,8,9-HxCDF ND 0.0859 13C-1,2,3,7,8,9-HxCDF 108 1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	26 - 123	
1,2,3,4,6,7,8-HpCDF ND 0.0766 13C-1,2,3,4,6,7,8-HpCDF 92.7 1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	28 - 136	
1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	29 - 147	
1,2,3,4,7,8,9-HpCDF ND 0.0705 13C-1,2,3,4,7,8,9-HpCDF 88.6	28 - 143	
	26 - 138	
OCDF ND 0.127 13C-OCDF 84.5	17 - 157	
CRS 37Cl-2,3,7,8-TCDD 114	35 - 197	
Toxic Equivalent Quotient (TEQ) Data (pg/g dry wt))	
TEQMinWHO2005Dioxin 0.0580		
TOTALS		
Total TCDD 0.879 1.22		
Total PeCDD 0.353 1.09		
Total HxCDD 2.63		
Total HpCDD 5.61		
Total TCDF 0.516 0.792		
Total PeCDF ND 0.0662		
Total HxCDF ND 0.104		
Total HpCDF ND 0.0766 DL - Sample specific estimated detection limit LCL-UCL- Lower control limit - upper control limit		

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 2002358 Page 10 of 353

Project: GascoSilt Date Collected: 28-Oct-20 Analyte Conc. (pg 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1	QEA, LLC tronic: US Moorings 020 15:45 g/g) ND	Sample Da Matrix: Sample Si % Solids: DL I 0.0569 0.114 0.0922 0.0933	Sediment	Qualifiers	Lab QC	oratory Data Sample: 2002358-04 Batch: B0K0115 e Analyzed: 20-Nov-20 16:52 Labeled Standard	Date Received: Date Extracted: Column: ZB-DIO	14-Nov-2020	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND ND	0.0569 0.114 0.0922	EMPC	Qualifiers	IC	Labeled Standard	%R	LCL-UCL	Qualifiers
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	0.114 0.0922			IC				Quanners
1,2,3,4,7,8-HxCDD	ND ND	0.0922			13	13C-2,3,7,8-TCDD	108	25 - 164	
, , , , ,	ND					13C-1,2,3,7,8-PeCDD	105	25 - 181	
1 2 3 6 7 8-HvCDD		0.0022				13C-1,2,3,4,7,8-HxCDD	114	32 - 141	
1,2,5,0,7,0-11ACDD	ND	0.0933				13C-1,2,3,6,7,8-HxCDD	110	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.0966				13C-1,2,3,7,8,9-HxCDD	115	32 - 141	
1,2,3,4,6,7,8-HpCDD	1.25			J		13C-1,2,3,4,6,7,8-HpCDD	109	23 - 140	
OCDD	11.3					13C-OCDD	94.4	17 - 157	
2,3,7,8-TCDF	0.0923			J		13C-2,3,7,8-TCDF	105	24 - 169	
1,2,3,7,8-PeCDF	0.212			J		13C-1,2,3,7,8-PeCDF	111	24 - 185	
2,3,4,7,8-PeCDF	ND		0.0717			13C-2,3,4,7,8-PeCDF	111	21 - 178	
1,2,3,4,7,8-HxCDF	0.545			J		13C-1,2,3,4,7,8-HxCDF	100	26 - 152	
1,2,3,6,7,8-HxCDF	0.249			J		13C-1,2,3,6,7,8-HxCDF	96.6	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0515				13C-2,3,4,6,7,8-HxCDF	99.8	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0728				13C-1,2,3,7,8,9-HxCDF	104	29 - 147	
1,2,3,4,6,7,8-HpCDF	0.750			J		13C-1,2,3,4,6,7,8-HpCDF	91.3	28 - 143	
1,2,3,4,7,8,9-HpCDF	0.270			J		13C-1,2,3,4,7,8,9-HpCDF	90.3	26 - 138	
OCDF	0.846			J		13C-OCDF	86.2	17 - 157	
					CRS	37C1-2,3,7,8-TCDD	113	35 - 197	
						Toxic Equivalent Quotient (TEQ)	Data (pg/g dry w	it)	
						TEQMinWHO2005Dioxin	0.121		
TOTALS									•
Total TCDD	0.227								
	0.151		0.241						
	1.21								
	3.14								
	0.0923		0.226						
	0.325		0.397						
	0.969		1.04						
Total HpCDF DL - Sample specifc estimate	1.54					L- Lower control limit - upper control limit			

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 2002358 Page 11 of 353

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

K EMPC (specific projects only)

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2002358 Page 12 of 353

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2002358 Page 13 of 353

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water					
Description of Test	Method				
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA				
	1613/1613B				
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009				

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2002358 Page 15 of 353

ANCHOR OEA 1201 3rd Avenue Suite 2600 Seattle WA 98101

ENVIRONMENTAL SAMPLE CHAIN OF CUSTODY

COC ID:

VISTA-20201028-160308

POC: * Delaney Peterson (360-715-2707)

Project:

GascoSiltronic: US Moorings

Sample Custodian:

CO

1605 Cornwall Avenue, Bellingham, WA 98225

Client:

NW Natural

Lab:

VISTA

	roco communi, wende, beningnar	,														
COC Sample Number	Field Sample ID	Sample Type	Matrix	Collecte	llected Container # QC*		Collected Containers		Collected Date Time		Collected Date Time		Test Request	Method	TAT**	Preservative
001	USMPDI-055SC-A-01-02-201028	N	SE	10/28/2020	15:45	1		•								
							Dioxin/Furans	E1613B	30	4°C						
							Total solids (VISTA)	SM2540G	30	4°C						
002	USMPDI-055SC-A-02-03-201028	N	SE	10/28/2020	15:45	1										
		•	•	•		•	Dioxin/Furans	E1613B	30	4°C						
							Total solids (VISTA)	SM2540G	30	4°C						
003	USMPDI-055SC-A-03-04-201028	N	SE	10/28/2020	15:45	1										
		•	•	•			Dioxin/Furans	E1613B	30	4°C						
							Total solids (VISTA)	SM2540G	30	4°C						
004	USMPDI-055SC-A-04-05-201028	N	SE	10/28/2020	15:45	1										
		•	•	•		•	Dioxin/Furans	E1613B	30	4°C						
							Total solids (VISTA)	SM2540G	30	4°C						

Comment:					
1 /					
// /					
Relinguished by:	Received By:	Relinquished By:	Received By:	Relinquished By:	Received By:
Signature	signated with the signature of the signa	Signature	Signature	Signature	Signature
Print Name Sal La Now osc		Print Name	Print Name	Print Name	Print Name
Company Anchor OFA	Company A	Company	Company	Company	Company
Date/Time 25 120 @ 9 10	Date/Time 11/3/10 64:27	Date/Time	Date/Time	Date/Time	Date/Time

Sample Log-In Checklist

							•	age #	<u> </u>	יי_ יכ	_
Vista Work Orde	r#:	२००२	358					ГАТ			_
Samples	Date/Time			In	itials:		Loc	ation:	w	P-2	
• 1		00	9:27		We	الد	She	elf/Rack	.: <u> </u>	JA	
Delivered By:		UPS On Trac GLS DHL						Han Delive		Oth	ner
Preservation:	(G))	Blt	ue I	ce	l .	chni ce	Dry	Ice	No	ne
Temp °C: ろん	Temp °C: 3, (uncorrected) Probe used: Y / (h) Thermometer ID: \(\frac{\frac{12}{3}}{2} \)										
Temp °C: 3.1	(corrected	i) P	robe use	ea:	Y/(N		The	rmome	ter ID:	<u> </u>	_
		State of the state		(2000) (2000) (2000) (2000)	American State of the Control of the	The state of the s	The second secon	The second secon	YES	NO	NA
Shipping Contain	er(s) Intact?								<i>U</i>	1	
Shipping Custody	y Seals Intact	t?					_		ν		
Airbill 142			6992	3,	185				V	1	
Shipping Docume									~		
Shipping Contain			iste		Client	R	etain	R	eturn	Dis	pose
Chain of Custody	/ / Sample Do	ocumen	tation Pr	ese	ent?				~		
Chain of Custody									V		
Holding Time Acc	ceptable?								~		
Logged In:	Date/Time			In	nitials:		Loc	ation:	we	-3- KA	-11/03b
	11/03/2	0	13:57		KA		She	elf/Rack	(: <u>D</u>	-3	

Comments:

* ID.: LR - 3LC

COC Anomaly/Sample Acceptance Form completed?

Re P.io.: 6 Rev Date: 07/16/2020

Page: i of 1

CoC/Label Reconciliation Report WO# 2002358

LabNumber CoC Sample ID	SampleAlias	Sample Date/Time		Container	Sample BaseMatrix Comments
2002358-01 A USMPDI-055SC-A-01-02-201028	•	28-Oct-20 15:45	□ V	Amber Glass, 120 mL	Solid
2002358-02 A USMPDI-055SC-A-02-03-201028		28-Oct-20 15:45	□	Amber Glass, 120 mL	Solid
2002358-03 A USMPDI-055SC-A-03-04-201028		28-Oct-20 15:45		Amber Glass, 120 mL	Solid
2002358-04 A USMPDI-055SC-A-04-05-201028		28-Oct-20 15:45		Amber Glass, 120 mL	Solid

Checkmarks indicate that information on the COC reconciled with the sample label.

Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?				
Sample Custody Seals Intact?			\	
Adequate Sample Volume?	/			
Container Type Appropriate for Analysis(es)				
Preservation Documented: Na2S2O3 Trizma None Other		\)	
If Chlorinated or Drinking Water Samples, Acceptable Preservation?				

Verifed by/Date: Ka 11/03/20

Printed: 11/3/2020 3:06:06PM 2002358 Page 1 of 1

EXTRACTION INFORMATION

Work Order 2002358 Page 19 of 353

Process Sheet

Workorder: 2002358

Prep Expiration: 2021-10-28

Client: Anchor QEA, LLC

Workorder Due: 01-Dec-20 00:00

TAT: 28

Method: 1613 Full List

Matrix: Solid Client Matrix: Sediment Also run: Percent Solids

Prep Batch: <u>80</u> k0116

Prep Data Entered:

Date and Initials

Initial Sequence: SolC0057

LabSampleID	Recon ClientSampleID	Date Received	Location Comments
2002358-01	USMPDI-055SC-A-01-02-201028	03-Nov-20 09:27	WR-2 D-3
2002358-02	USMPDI-055SC-A-02-03-201028	03-Nov-20 09:27	WR-2 D-3
2002358-03	USMPDI-055SC-A-03-04-201028	03-Nov-20 09:27	WR-2 D-3
2002358-04	USMPDI-055SC-A-04-05-201028	03-Nov-20 09:27	WR-2 D-3

WO Comments: 1613: 10g dw

Pre-Prep Check Out: (44 11166120 Pre-Prep Check In: CHT 11/66/20 Prep Check Out: 4 170

CHT 11106/20 Prep Reconciled Initals/Date:_ GM 1/14/20

Page 1 of 1

PREPARATION BENCH SHEET

Ma	triv.	Solid
17114	u ix.	Solia

_		
Method:	1613	Full List

B0K0115	

Prepared using: HRMS - Soxhlet

Chemist:

Prep Date/Time: 14-Nov-20 07:34

							mn Packer:	N	A	IM	11/15/20	IM	11/15/20	IM	11/16/20			
Sox	VISTA Sample ID	G Eqv	Sample Amt. (g)	IS/NS CHEM/W DATE	'IT	CRS/PS CHEM/WIT DATE		AP CHEM/ DATE		AP ABSG CHEM/ CHEM/			AA CHEM/ DATE		Florisil CHEM/ DATE		RS CHEM/WIT DATE	
ΑI	B0K0115-BLK1	N/A	(10.00)	ao aun	14/20 11	1 148	11/15/20	14	A	IM	11/15/20	IM	11/15/20	IH	11/16/20	IM P	121/16/20	
A2	B0K0115-BS1	\downarrow	(10.00)	T	•	_	T	٦			T		T		T	9	T	
A3	2002357-01	b.58	6.77										Aveen by					
AH	2002357-02	5.77	5.93										T					
45	2002358-01	19.93	19.93						j				wellow,				W.	
Ab	2002358-02	14.83	15.15										T					
FA	2002358-03	16.74	17.30										green b					
48	2002358-04	12.52	12.59									line	T					
29	2002368-01	b.25	0.42															
AIC	2002368-02	6.46	7.04															
AII	2002368-03	6.30	0.95															
AI2	2002368-04	6.24	6.31										gray	3				
BI		6.43															1	
B 2	2002368-06	6.30	6.85										green t	ě				
B3	2002368-07	6.67	6.70				V		A		V		V		V	1	V	

PS/CRS: 2060701 10pt (1) Stop Da	ate/Time SOLV: 101 Other N/A Solv: 101 Ate/Time Solv: 101 Ate/Time	Balance ID: <u>HRMS-0</u> 8	Vial Transfer 2 IM 11/15/20 Vial Transfer Chemist/Date: 25 delay to clute AA column of 20% DEM:HEKANE
Diox) F PCB PAH PEST PBDE HCB \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 de 10		IM 11/16/20 C channel formed in AA column after elitting by 20x DCM. Hex 11/15/20 114

1 = Sample approached dryness on rotovap

2 = Sample bumped on rotovap; lost < 5%

5 = Sample homogenized in secondary container

6 = Sample clogged during extaction; pipetted and used Nitrogen to assist

7 = Sohxlet approached dryness

3 = Sample poured through Na2SO4 to remove water 4 = Precipitate present at Final Volume

PREPARATION BENCH SHEET

Mo	triv.	Solid
IVIZ	trix:	Sona

B0K0115

Chemist:	EM	

Method: 1613 Full List

Prepared using: HRMS - Soxhlet

Prep Date/Time: 14-Nov-20 07:34

						Colun	Column Packer:		NIA		11/15/20	IM 11/15/20		IM 11/16/20				
Sox	VISTA Sample ID		G Eqv	Sample Amt. (g)	IS/NS CHEM/WIT DATE	CHE	CRS/PS CHEM/WIT DATE		AP CHEM/ DATE		ABSG CHEM/ DATE		AA HEM/ DATE	EM/ CI		CHEM	RS CHEM/WIT DATE	
B4	2002368-08		6.37	7.09	00 8mm14120	IM ME	11/15/20	N	illisto	IM	11/15/20	IM I	1/15/20	IM	11/16/20	IM PR	41/16/20	
85	2002368-09	~ ~	6.13	6.38			_			•		•	T	-	T		Γ	
	2002368-10	(A)	7.01	19.5											•			
	2002368-11		6.53	6.68														
38	2002368-13	_	5.69	5.96														
89	2002409-01	3	16.38	16.97	<u> </u>		V		V		V		Wards.	·	V	1	/	

*14 11/15/20

I = Sample approached dryness on rotovap

2 = Sample bumped on rotovap; lost < 5%

- 3 = Sample poured through Na2SO4 to remove water
- 4 = Precipitate present at Final Volume
- 5 = Sample homogenized in secondary container
- 6 = Sample clogged during extaction; pipetted and used Nitrogen to assist
- 7 = Sohxlet approached dryness

Batch: B0K0115

	, •	\sim 1	1 • 1
\mathbf{N}	atrix	· • •	147
IVI	инк		1161
$T \wedge T$	$\alpha \alpha $		LIC

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
2002357-01	6.77 🗸	75.97292	5.1434	20	/ 14-Nov-20 07:34	/ACO 、	7		Sediment	1613 Full List
2002357-02	5.93 🗸	86.58228	5.1343	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002358-01	19.93 🗸	50.1805	10.0010	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002358-02	15.15 🗸	67.4359	10.2165	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002358-03	17.3 🗸	59.73155	10.3336	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002358-04	12.59 🗸	79.84293	10.0522	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-01	6.42 🗸	80.00001	5.1360	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-02	7.04 🗸	77.42719	5.4509	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-03	6.95 🗸	79.31818	5.5126	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-04	6.31	80.18647	5.0598	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-05	6.81 🗸	77.77779	5.2967	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-06	6.85 🗸	79.31034	5.4328	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-07	6.7 🗸	75.00001	5.0250	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-08	7.09 🗸	78.48101	5.5643	20	14-Nov-20 07:34	ACO	-		Sediment	1613 Full List
2002368-09	6.38 /	81.5047	5.2000	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-10	7.91 🗸	71.36564	5.6450	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-11	6.68 🗸	76.61018	5.1176	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002368-13	5.96	87.92271	5.2402	20	14-Nov-20 07:34	ACO			Sediment	1613 Full List
2002409-01	16.97 🗸	48.84393	8.2888	20	14-Nov-20 07:34	ACO			Soil	1613 Full List
B0K0115-BLK1	10 🗸			20	14-Nov-20 07:34	ACO				QC
B0K0115-BS1	10 🗸			20 🗸	14-Nov-20 07:34	ACO V	20F0107	√ 10 √		QC

All bolded data on report verified against written benchsheet by (initial/date) 14 11/16/20

Printed: 11/16/2020 4:01:47PM Page 1 of 1

Percent Moisture/ Percent Solids

D2216-90

BATCH ID B0K0052

Analyst: 0	
------------	--

Analyte:

Test Code: %Moist/%Solids

Dried at 110°C+/-5°C Oven ID: 01 (02)

Units: %

Data Entry Verified by: (Initial and Date) //// 11/14/20

<u>Date/Time IN:</u> <u>Date/Time OUT</u> 11/06/20 1249 ✓ 11/13/20 1338 ✓

st			11/06/20 1249	✓ 11/13/20 1338	}									
st RMS-09 ✓	В	С	D	E	F	G	Н	1	K	L	M	N	0	Р
		ŭ	J		CHT 11/06/20 ✓	CHT 11/13/20 🗸			CHT 11/06/20		111	N/A		CHT 11/06/20~
Particle Size	SampiD		SampType	Pan Tare Wt. (gms)	Wet Pan and Sample		Dry Sample Weight (g)	%Solids RawVal		CI-	pH Before	pH After	Acid Added	Sample Homogenized*
	2002358-01	A 🗸	Sample	1.2800 🗸	4.0500~	2.6700 ✓	1.3900	50.18	Mud 🗸	N/A	N/A	N/A	N/A	х
	2002358-02	A ~	Sample	1.2900 ✓	5.1900 ✓	3.9200 ✓	2.6300	67.44	Mud 🗸	N/A	N/A	N/A	N/A	х
	2002358-03	A ~	Sample	1.2700 ✓	5.7400✓	3.9400 ✓	2.6700	59.73	Mud ~			N/A	N/A	x
	2002358-04	A 🗸	Sample	1.2700 ✓	5.0900 🗸	4.3200 ✓	3.0500	79.84	Dirt _/	N/A		N/A	N/A	х
									_					
							- ·							
									_					
										_				
					.,									

^{*}Sample homogenized in sample container unless otherwise noted.

BCH_PMOIST_B0K0052

11/14/2020 7:28 AM

Percent Moisture/ Percent Solids

D2216-90

BATCH ID B0K0052

-	Analyst: CHT	Test Code: %Moist/%Solids	
-	18000, 3000		Data Entry Verified by:
۱	Analyte:	Units: %	(Initial and Date) 🚧
-	Dried at 110°C+/-5°C		·
	Oven ID: 01 (02)		

Inst HRMS-9	В	C	Date/Time IN: 110h/70	Date/Time OUT 11/13/20 13/3 %	F	G	н		ĸ	L	M	N	0	P
i,				Intial and Date:	CHT min 120		"		CHT IV					CHT 11/06/20
Particle Size	SampiD		SampType	Tare Wt. (gms)	Wet Pan and Sample Weight (g)	Dry Pan and Sample Weight (g)	Dry Sample Weight (g)	%Solids RawVal	Visual Inspection	CI-	pH Before	pH After	Acid Added	Sample Homogenized*
	2002358-01	Δ	Sample	1.28	4.05	Weight (g)			MUA					
	2002358-02		Sample	1.29	5.19	3.92	_					\supset		7
	2002358-03		Sample	1.27	5.74	3.92 3.94			1					
	2002358-04	J	Sample	1.27	5.09	4.32			DIM					
_														
									-	Н				
										Н		\dashv		
												\Box		
										\vdash				
										-		_		
										\square		_		

^{*}Sample homogenized in sample container unless otherwise noted.

BCH_PMOIST_B0K0052.xls

11/6/2020 7:34 AM

SAMPLE DATA – EPA METHOD 1613

Work Order 2002358 Page 26 of 353

Page 1 of 2

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-7.qld

Last Altered: Printed:

Friday, November 20, 2020 1:14:19 PM Pacific Standard Time Monday, November 23, 2020 8:24:34 AM Pacific Standard Time

GRB 11/23/2020 C7 11/25/2020

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.950	10.000	26.112		1.001				0.197	
2	2 1,2,3,7,8-PeCDD			NO	0.885	10.000	30.819		1.000				0.107	
3	3 1,2,3,4,7,8-HxCDD			NO	1.02	10.000	34.135		1.000				0.0970	
4	4 1,2,3,6,7,8-HxCDD			NO	0.915	10.000	34.263		1.000				0.104	
5	5 1,2,3,7,8,9-HxCDD			NO	0.934	10.000	34.530		1.000				0.112	
6	6 1,2,3,4,6,7,8-HpCDD			NO	0.870	10.000	38.020		1.000				0.128	
7	7 OCDD			NO	0.872	10.000	40.977		1.000				0.281	
8	8 2,3,7,8-TCDF			NO	0.824	10.000	25.396		1.000				0.0552	
9	9 1,2,3,7.8-PeCDF			NO	0.963	10.000	29.557		1.000				0.0452	
10	10 2,3,4,7,8-PeCDF			NO	1.07	10.000	30.608		1.000				0.0388	
11	11 1,2,3,4,7,8-HxCDF			NO	0.953	10.000	33.220		1.000				0.103	1
12	12 1,2,3,6,7,8-HxCDF			NO	1.01	10.000	33.358		1.000				0.0997	
13	13 2,3,4,6,7,8-HxCDF			NO	0.991	10.000	34.022		1.000				0.111	
14	14 1,2,3,7,8,9-HxCDF			NO	0.951	10.000	35.030		1.000				0.171	
15	15 1,2,3,4,6,7,8-HpCDF			NO	0.999	10.000	36.607		1.000				0.0742	
16	16 1,2,3,4,7,8,9-HpCDF			NO	1.12	10.000	38.648		1.000				0.0760	
17	17 OCDF			NO	0.868	10.000	41.273		1.000				0.102	
18	18 13C-2,3,7,8-TCDD	5.75e5	0.80	NO	1.11	10.000	26.074	26.08	1.030	1.030	206.36	103	0.398	ļ
19	19 13C-1,2,3,7,8-PeCDD	4.13e5	0.64	NO	0.859	10.000	30.792	30.81	1.216	1.217	191.42	95.7	0.275	
20	20 13C-1,2,3,4,7,8-HxCDD	3.23e5	1.30	NO	0.700	10.000	34.135	34.13	1.014	1.014	210.42	105	0.803	
21	21 13C-1,2,3,6,7,8-HxCDD	3.71e5	1.28	NO	0.833	10.000	34.273	34.25	1.018	1.017	203.21	102	0.675	
22	22 13C-1,2,3,7,8,9-HxCDD	3.50e5	1.25	NO	0.762	10.000	34.516	34.52	1.025	1.025	209.58	105	0.738	
23	23 13C-1,2,3,4,6,7,8-HpCDD	2.66e5	1.03	NO	0.650	10.000	38.000	38.02	1.129	1.129	186.93	93.5	0.972	
24	24 13C-OCDD	3.84e5	0.92	NO	0.539	10.000	40.966	40.98	1.217	1.217	324.35	81.1	0.532	
25	25 13C-2,3,7,8-TCDF	7.82e5	0.79	NO	0.981	10.000	25.395	25.39	1.003	1.003	206.20	103	0.383	
26	26 13C-1,2,3,7,8-PeCDF	6.21e5	1.59	NO	0.792	10.000	29.524	29.55	1.166	1.167	203.21	102	0.770	
27	27 13C-2,3,4,7,8-PeCDF	6.20e5	1.58	NO	0.778	10.000	30.582	30.61	1.208	1.209	206.44	103	0.784	
28	28 13C-1,2,3,4,7,8-HxCDF	4.09e5	0.49	NO	0.954	10.000	33.226	33.22	0.987	0.987	195.26	97.6	0.582	
29	29 13C-1,2,3,6,7,8-HxCDF	4.17e5	0.51	NO	1.01	10.000	33.357	33.36	0.991	0.991	189.01	94.5	0.552	
30	30 13C-2,3,4,6,7,8-HxCDF	3.76e5	0.50	NO	0.921	10.000	34.027	34.02	1.011	1.010	186.25	93.1	0.603	

U:\VG12.PRO\Results\201120R1\201120R1-7.qld

Last Altered: Printed:

Friday, November 20, 2020 1:14:19 PM Pacific Standard Time Monday, November 23, 2020 8:24:34 AM Pacific Standard Time

Name: 201120R1_7, Date: 20-Nov-2020, Time: 12:23:20, ID: B0K0115-BLK1 Method Blank 10, Description: Method Blank

BIT.	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
31	31 13C-1,2,3,7,8,9-HxCDF	3.38e5	0.49	NO	0.803	10.000	35.024	35.03	1.040	1.041	191.65	95.8	0.691	
32	32 13C-1,2,3,4,6,7,8-HpCDF	2.62e5	0.43	NO	0.735	10.000	36.593	36.60	1.087	1.087	162.25	81.1	0.701	
33	33 13C-1,2,3,4,7,8,9-HpCDF	1.96e5	0.41	NO	0.568	10.000	38.630	38.65	1.147	1.148	157.13	78.6	0.909	
34	34 13C-OCDF	4.07e5	0.84	NO	0.629	10.000	41.249	41.26	1.225	1.226	294.49	73.6	0.502	
35	35 37CI-2,3,7,8-TCDD	2.32e5			1.09	10.000	26.074	26.10	1.030	1.031	84.832	106	0.111	
36	36 13C-1,2,3,4-TCDD	5.02e5	0.82	NO	1.00	10.000	25.370	25.31	1.000	1.000	200.00	100	0.442	
37	37 13C-1,2,3,4-TCDF	7.73e5	0.77	NO	1.00	10.000	23.870	23.81	1.000	1.000	200.00	100	0.376	
38	38 13C-1,2,3,4,6,9-HxCDF	4.39e5	0.50	NO	1.00	10.000	33.710	33.67	1.000	1.000	200.00	100	0.556	
39	39 Total Tetra-Dioxins				0.950	10.000	24.620		0.000				0.0385	
40	40 Total Penta-Dioxins				0.885	10.000	29.960		0.000				0.0639	
41	41 Total Hexa-Dioxins				0.915	10.000	33.635		0.000				0.0655	
42	42 Total Hepta-Dioxins				0.870	10.000	37.640		0.000				0.0482	
43	43 Total Tetra-Furans				0.824	10.000	23.610		0.000				0.0284	
44	44 1st Func. Penta-Furans				0.963	10.000	26.930		0.000				0.0226	
45	45 Total Penta-Furans				0.963	10.000	29.275		0.000				0.0221	
46	46 Total Hexa-Furans				0.991	10.000	33.555		0.000				0.0345	
47	47 Total Hepta-Furans				0.999	10.000	37.835		0.000				0.0329	

Work Order 2002358 Page 28 of 353

Page 1 of 2

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-7.qld

Last Altered: Printed:

Friday, November 20, 2020 1:14:19 PM Pacific Standard Time Monday, November 23, 2020 8:24:34 AM Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_7, Date: 20-Nov-2020, Time: 12:23:20, ID: B0K0115-BLK1 Method Blank 10, Description: Method Blank

Tetra-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA I	n/y	Resp	Conc.	EMPC	DL
C. C.									

Penta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Hexa-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp m2 Re	sp RA	n/y	Resp	Conc.	EMPC	DL
1									

Hepta-Dioxins

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1										

Tetra-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Re	p RA n/y	Resp	Conc.	EMPC	DL
18866								

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
4										

Page 29 of 353

Page 2 of 2

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-7.qld

Last Altered: Printed:

Friday, November 20, 2020 1:14:19 PM Pacific Standard Time Monday, November 23, 2020 8:24:34 AM Pacific Standard Time

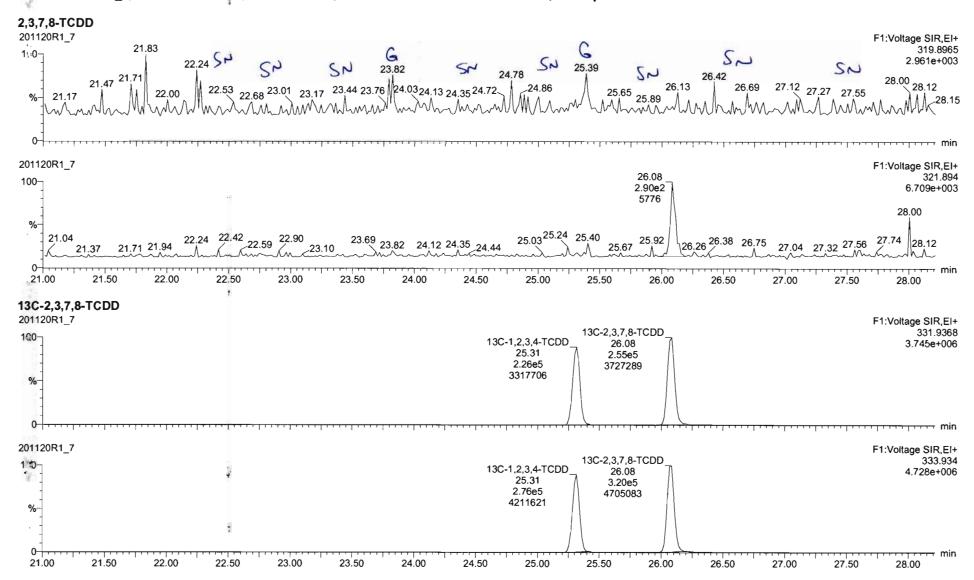
Name: 201120R1_7, Date: 20-Nov-2020, Time: 12:23:20, ID: B0K0115-BLK1 Method Blank 10, Description: Method Blank

Penta-Furans

Name	RT	m1 Height m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1. San al 2										

Hexa-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
101111111111111111111111111111111111111									

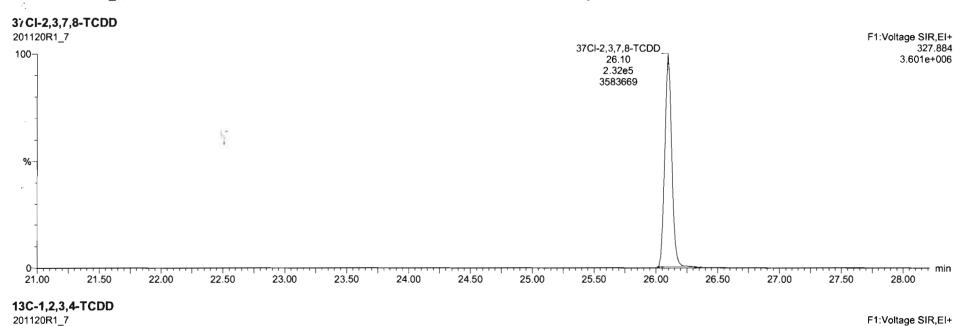

Hepta-Furans

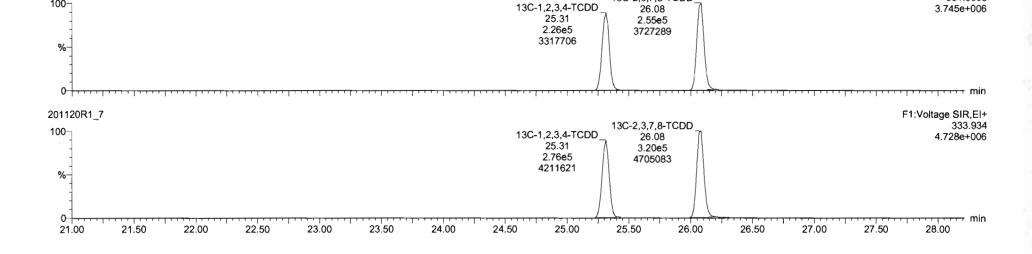
Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
15									

Work Order 2002358 Page 30 of 353

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

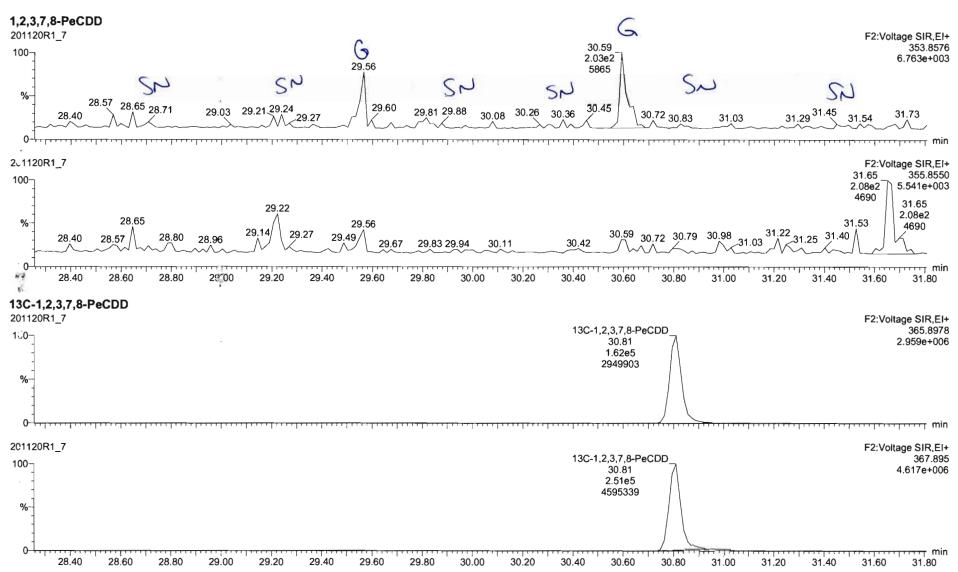

Untitled


Last Altered: Printed:

100-

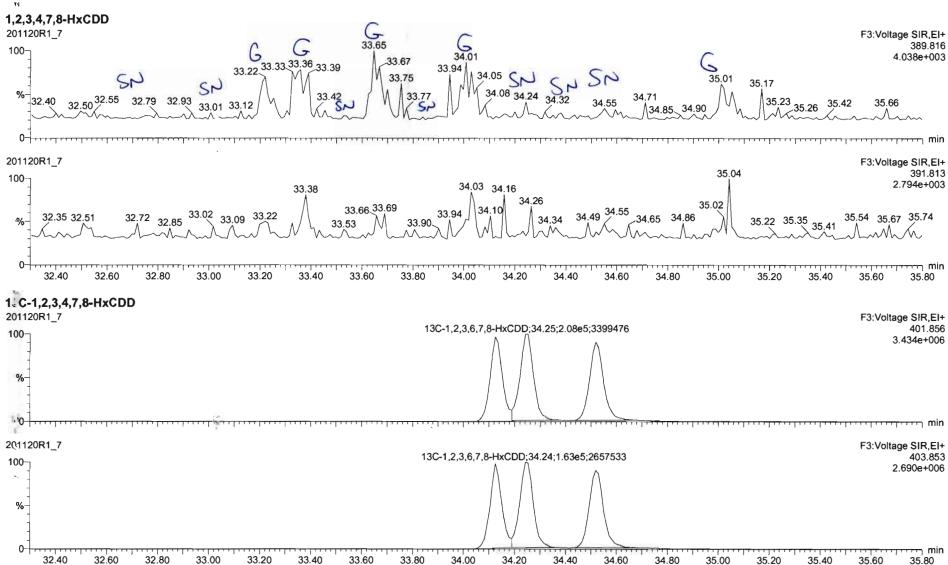
Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Name: 201120R1 7, Date: 20-Nov-2020, Time: 12:23:20, ID: B0K0115-BLK1 Method Blank 10, Description: Method Blank

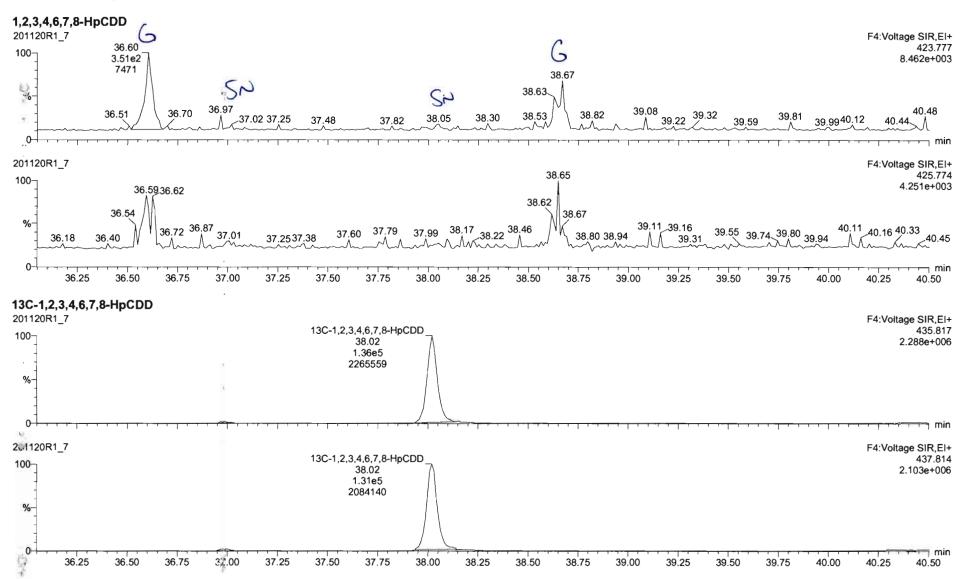

13C-2,3,7,8-TCDD

331.9368

Untitled


Last Altered: Printed:

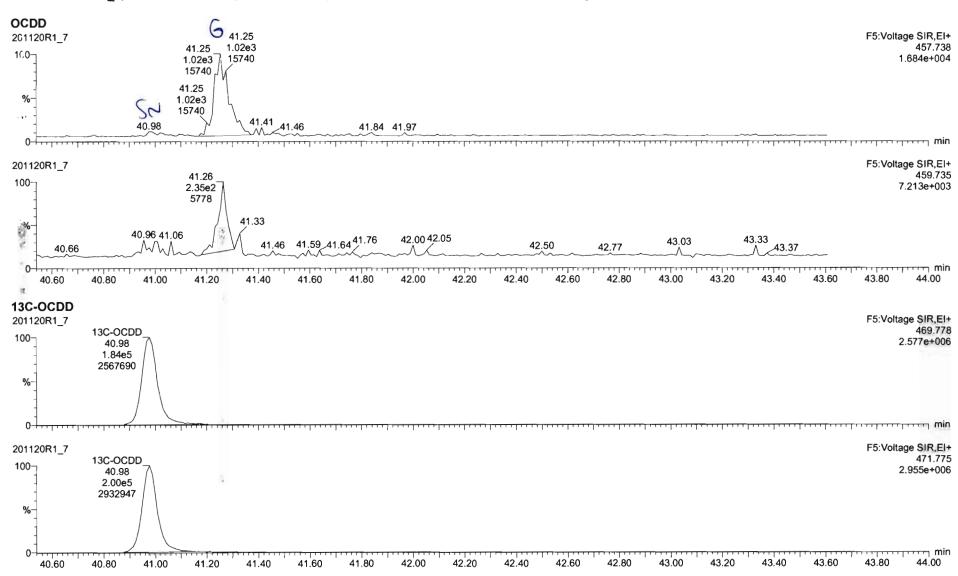
Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 24, 2020 9:56:20 AM Pacific Standard Time

Untitled

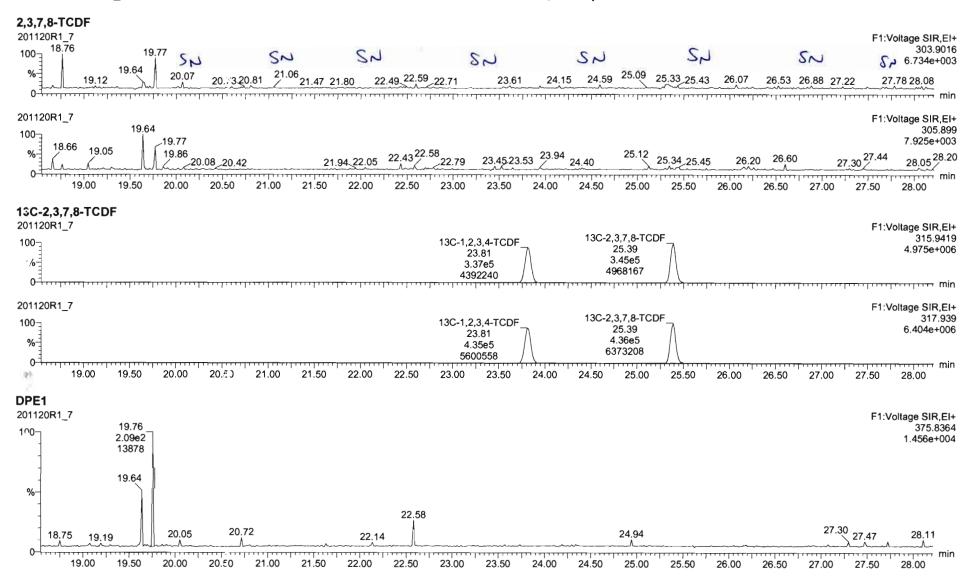
Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Quantify Sample Report Vista Analytical Laboratory MassLynx 4.1 SCN815

vista Analyticai Labo

Dataset:

Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

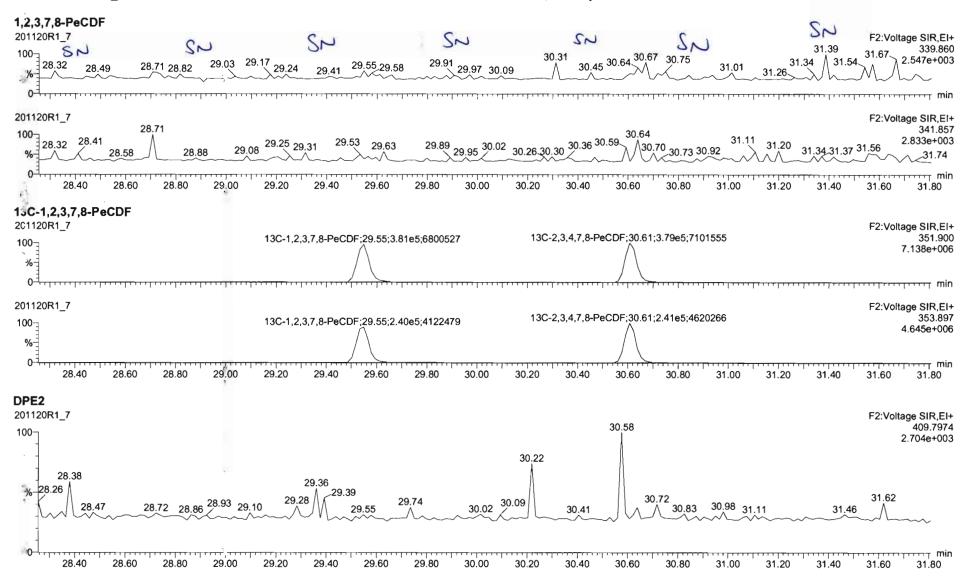
C taset:

Untitled

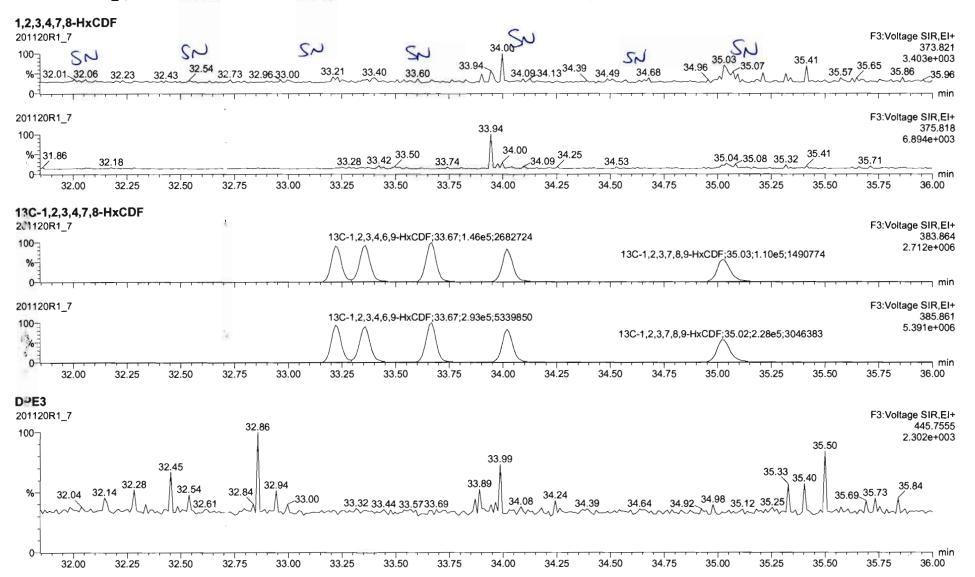
Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

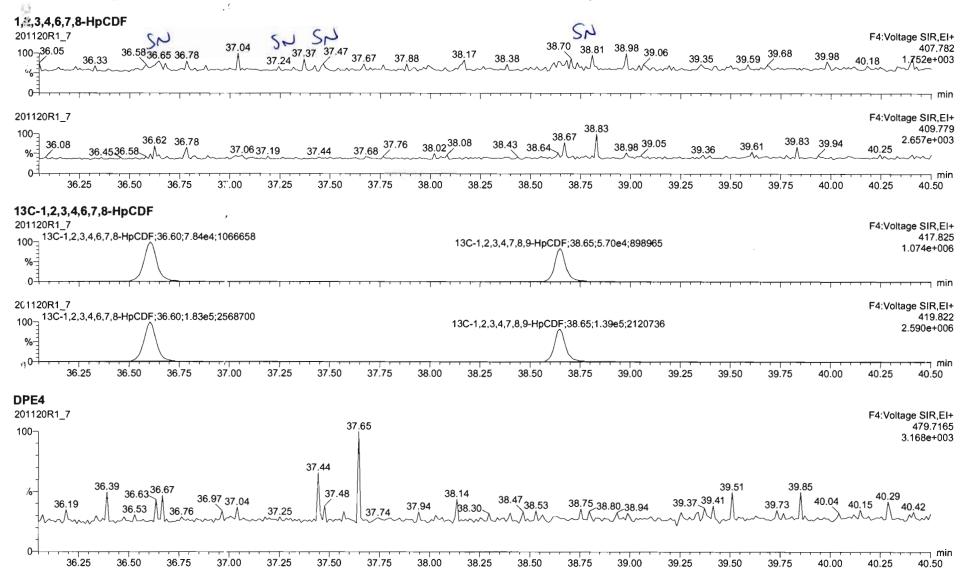
L. st Altered: Printed:


Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

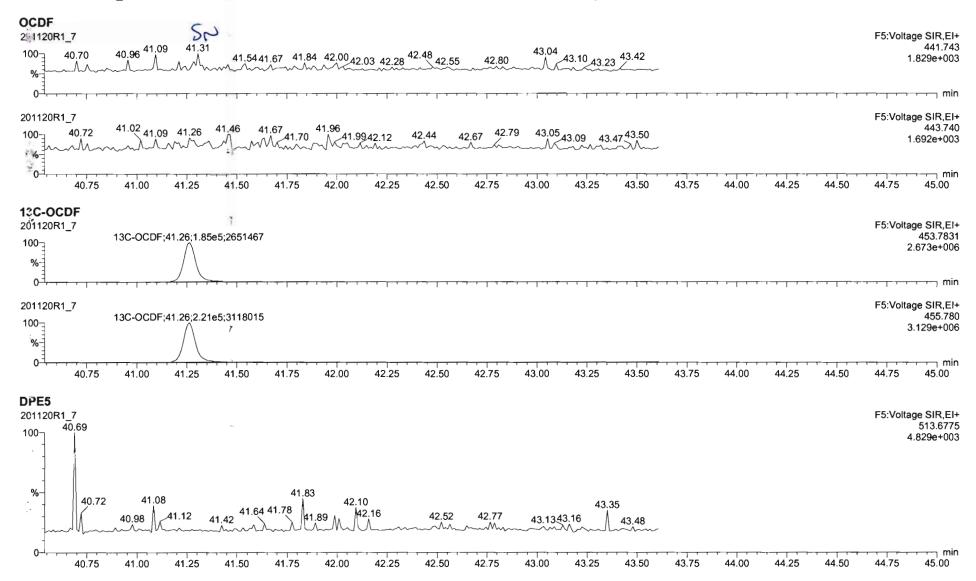
Untitled


Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

U:\VG12.PRO\Results\201120R1\201120R1-4.qld

Last Altered:

Monday, November 23, 2020 8:19:21 AM Pacific Standard Time

Printed:

Monday, November 23, 2020 8:20:09 AM Pacific Standard Time

GPB 11/23/2020 CT11/7 C/2020

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

F 30	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	5.45e4	0.78	NO	0.950	10.000	26.097	26.10	1.001	1.001	19.954		0.0735	20.0
2	2 1,2,3,7,8-PeCDD	2.11e5	0.62	NO	0.885	10.000	30.804	30.83	1.000	1.001	108.59		0.148	109
3	3 1,2,3,4,7,8-HxCDD	1.73e5	1.26	NO	1.02	10.000	34.135	34.14	1.000	1.000	99.568		0.247	99.6
4	4 1,2,3,6,7,8-HxCDD	1.86e5	1.24	NO	0.915	10.000	34.253	34.25	1.000	1.000	100.62		0.249	101
5	5 1,2,3,7,8,9-HxCDD	1.78e5	1.23	NO	0.934	10.000	34.519	34.53	1.000	1.001	100.32		0.285	100
6	6 1,2,3,4,6,7,8-HpCDD	1.26e5	1.00	NO	0.870	10.000	38.009	38.02	1.000	1.000	96.438		0.543	96.4
7	7 OCDD	1.93e5	0.87	NO	0.872	10.000	40.935	40.96	1.000	1.001	197.50		0.414	197
8	8 2,3,7,8-TCDF	5.49e4	0.73	NO	0.824	10.000	25.396	25.40	1.000	1.001	17.619		0.0565	17.6
9	9 1,2,3,7,8-PeCDF	3.01e5	1.57	NO	0.963	10.000	29.542	29.55	1.000	1.001	98.036		0.239	98.0
10	10 2,3,4,7,8-PeCDF	3.37e5	1.54	NO	1.07	10.000	30.608	30.62	1.000	1.000	97.814		0.187	97.8
11	11 1,2,3,4,7,8-HxCDF	1.87e5	1.21	NO	0.953	10.000	33.220	33.23	1.000	1.000	91.589		0.279	91.6
12	12 1,2,3,6,7,8-HxCDF	2.01e5	1.19	NO	1.01	10.000	33.348	33.37	1.000	1.001	90.859		0.278	90.9
13	13 2,3,4,6,7,8-HxCDF	1.79e5	1.21	NO	0.991	10.000	34.022	34.03	1.000	1.000	90.806		0.313	90.8
14	14 1,2,3,7,8,9-HxCDF	1.51e5	1.21	NO	0.951	10.000	35.009	35.03	1.000	1.001	90.559		0.474	90.6
15	15 1,2,3,4,6,7,8-HpCDF	1.28e5	0.98	NO	0.999	10.000	36.586	36.60	1.000	1.001	90.205		0.592	90.2
16	16 1,2,3,4,7,8,9-HpCDF	1.07e5	0.97	NO	1.12	10.000	38.638	38.65	1.000	1.000	89.158		0.620	89.2
17	17 OCDF	1.90e5	0.84	NO	0.868	10.000	41.241	41.24	1.000	1.000	185.90		0.365	186
18	18 13C-2,3,7,8-TCDD	5.75e5	0.79	NO	1.11	10.000	26.073	26.07	1.030	1.030	204.11	102	0.371	
19	19 13C-1,2,3,7,8-PeCDD	4.40e5	0.64	NO	0.859	10.000	30.792	30.80	1.216	1.217	201.60	101	0.293	
20	20 13C-1,2,3,4,7,8-HxCDD	3.42e5	1.29	NO	0.700	10.000	34.125	34.13	1.014	1.014	211.84	106	0.667	
21	21 13C-1,2,3,6,7,8-HxCDD	4.04e5	1.29	NO	0.833	10.000	34.263	34.24	1.018	1.017	210.26	105	0.561	
22	22 13C-1,2,3,7,8,9-HxCDD	3.80e5	1.27	NO	0.762	10.000	34.505	34.51	1.025	1.025	216.16	108	0.613	
23	23 13C-1,2,3,4,6,7,8-HpCDD	3.01e5	1.04	NO	0.650	10.000	37.989	38.01	1.129	1.129	200.64	100	0.955	
24	24 13C-OCDD	4.48e5	0.89	NO	0.539	10.000	40.954	40.94	1.217	1.216	359.50	89.9	0.603	- 1
25	25 13C-2,3,7,8-TCDF	7.55e5	0.77	NO	0.981	10.000	25.395	25.39	1.003	1.003	203.87	102	0.321	
26	26 13C-1,2,3,7,8-PeCDF	6.39e5	1.62	NO	0.792	10.000	29.524	29.53	1.166	1.167	213.69	107	0.834	
27	27 13C-2,3,4,7,8-PeCDF	6.45e5	1.58	NO	0.778	10.000	30.582	30.61	1.208	1.209	219.65	110	0.849	
28	28 13C-1,2,3,4,7,8-HxCDF	4.29e5	0.50	NO	0.954	10.000	33.216	33.22	0.987	0.987	194.73	97.4	0.638	
29	29 13C-1,2,3,6,7,8-HxCDF	4.40e5	0.50	NO	1.01	10.000	33.347	33.35	0.991	0.991	189.25	94.6	0.605	
30	30 13C-2,3,4,6,7,8-HxCDF	3.98e5	0.50	NO	0.921	10.000	34.017	34.02	1.011	1.011	187.18	93.6	0.660	
31	31 13C-1,2,3,7,8,9-HxCDF	3.51e5	0.49	NO	0.803	10.000	35.013	35.01	1.040	1.040	189.28	94.6	0.757	

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-4.qld

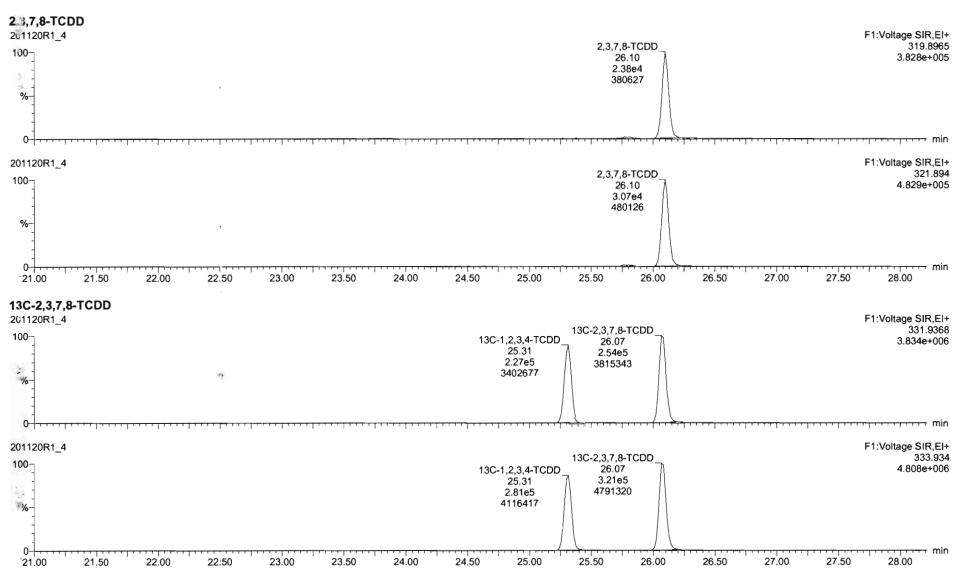
Last Altered: Printed:

Monday, November 23, 2020 8:19:21 AM Pacific Standard Time Monday, November 23, 2020 8:20:09 AM Pacific Standard Time

Name: 201120R1_4, Date: 20-Nov-2020, Time: 10:08:05, ID: B0K0115-BS1 OPR 10, Description: OPR

	# Name	Resp	RA	n/y	RRF	wt/voi	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	2.85e5	0.42	NO	0.735	10.000	36.582	36.58	1.087	1.087	167.56	83.8	0.774	
33	33 13C-1,2,3,4,7,8,9-HpCDF	2.14e5	0.42	NO	0.568	10.000	38.618	38.64	1.147	1.148	163.40	81.7	1.00	
34	34 13C-OCDF	4.71e5	0.84	NO	0.629	10.000	41.237	41.23	1.225	1.225	324.21	81.1	0.602	
35	35 37Cl-2,3,7,8-TCDD	2.46e5			1.09	10.000	26.073	26.10	1.030	1.031	88.863	111	0.0829	
36	36 13C-1,2,3,4-TCDD	5.08e5	0.80	NO	1.00	10.000	25.370	25.31	1.000	1.000	200.00	100	0.411	
37	37 13C-1,2,3,4-TCDF	7.55e5	0.79	NO	1.00	10.000	23.870	23.81	1.000	1.000	200.00	100	0.315	
38	38 13C-1,2,3,4,6,9-HxCDF	4.62e5	0.50	NO	1.00	10.000	33.710	33.66	1.000	1.000	200.00	100	0.608	

Work Order 2002358 Page 45 of 353

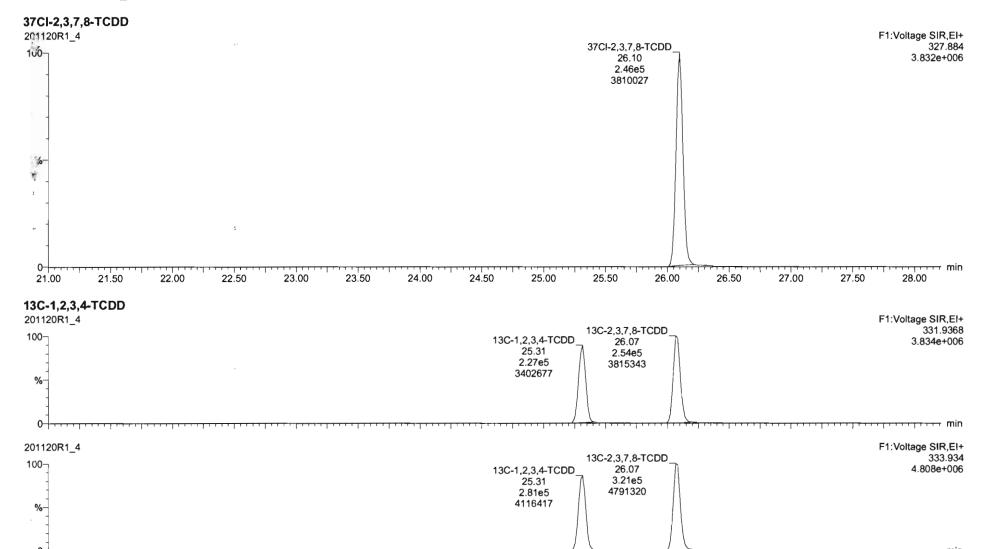

Quantify Sample Report Vista Analytical Laboratory

D :taset:

Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



t:

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Name: 201120R1_4, Date: 20-Nov-2020, Time: 10:08:05, ID: B0K0115-BS1 OPR 10, Description: OPR

21.00

21.50

22.00

22.50

23.00

23.50

24.00

24.50

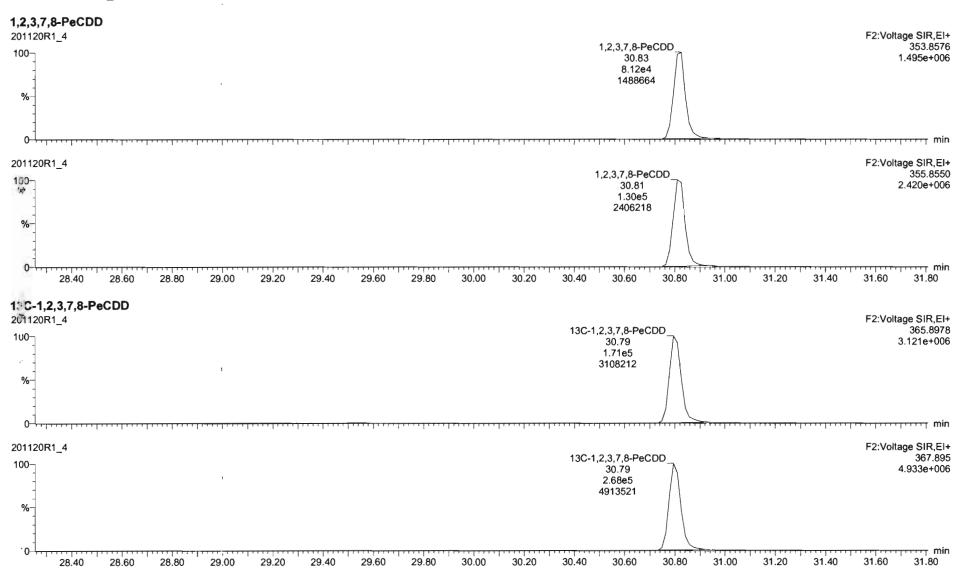
25.00

25.50

26.00

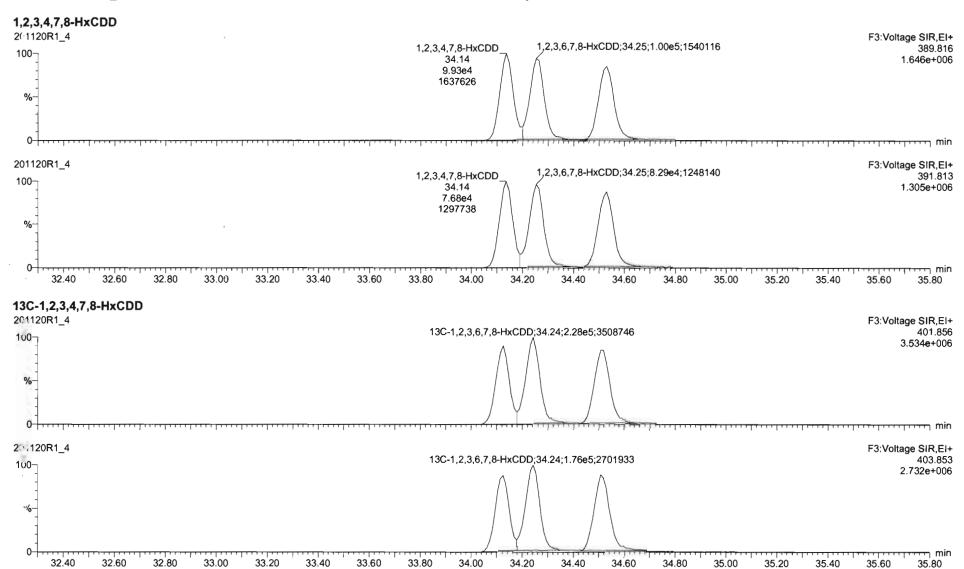
26.50

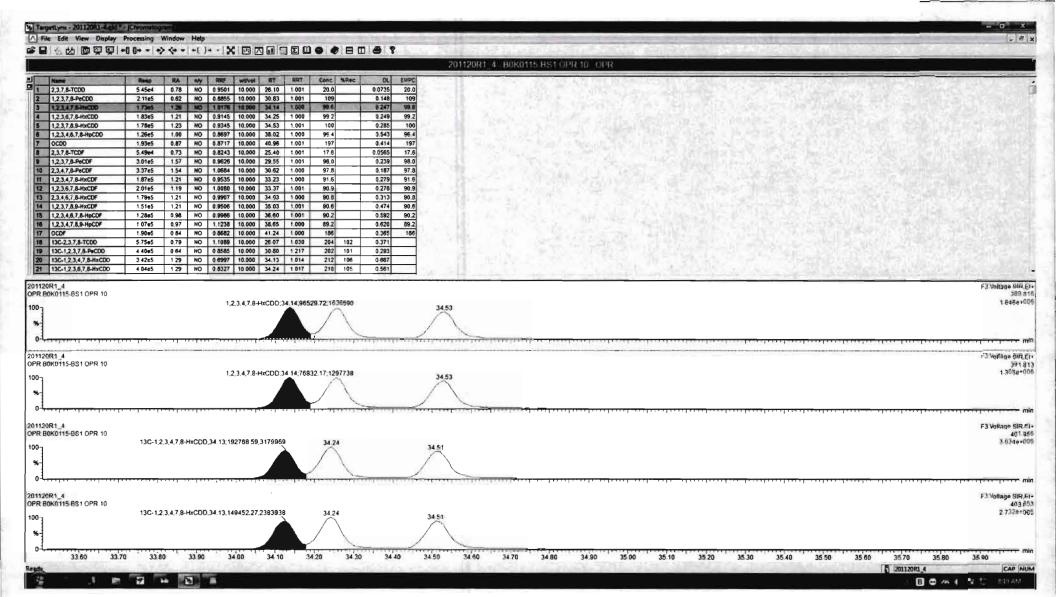
27.00

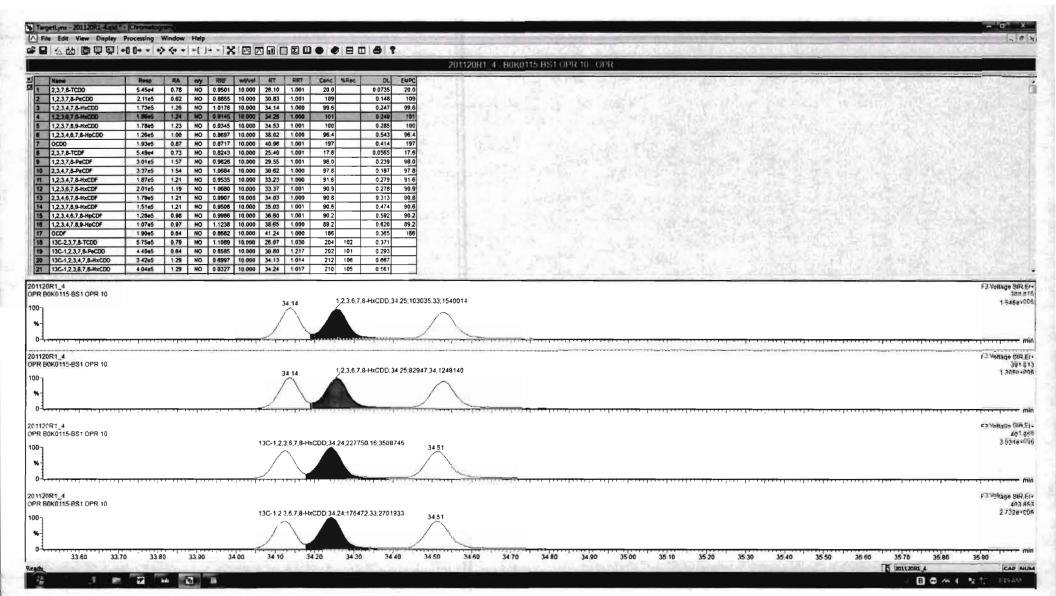

28.00

27.50

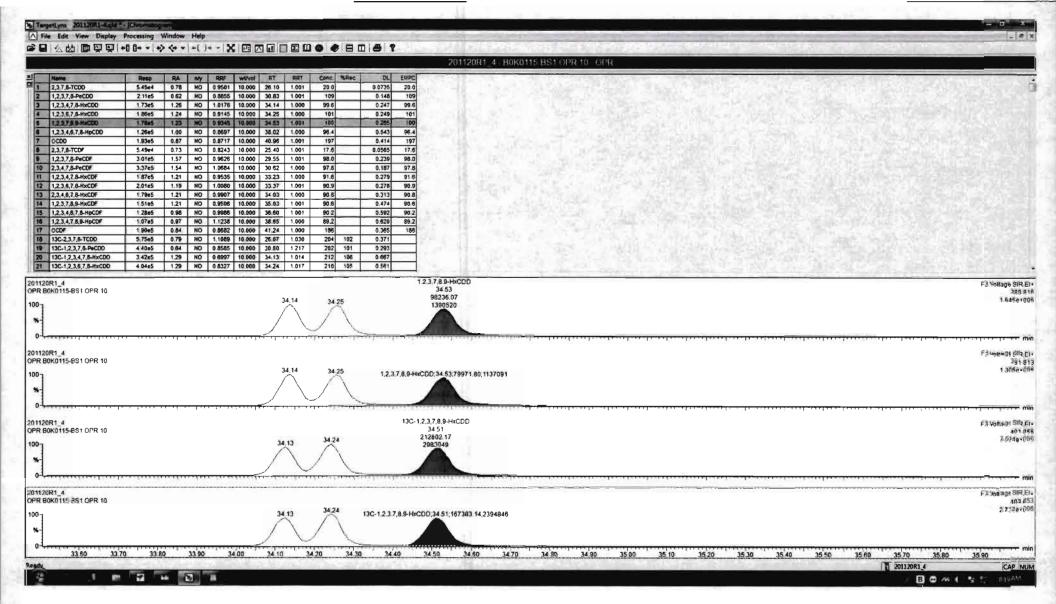
Untitled


Last Altered: Printed:


Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

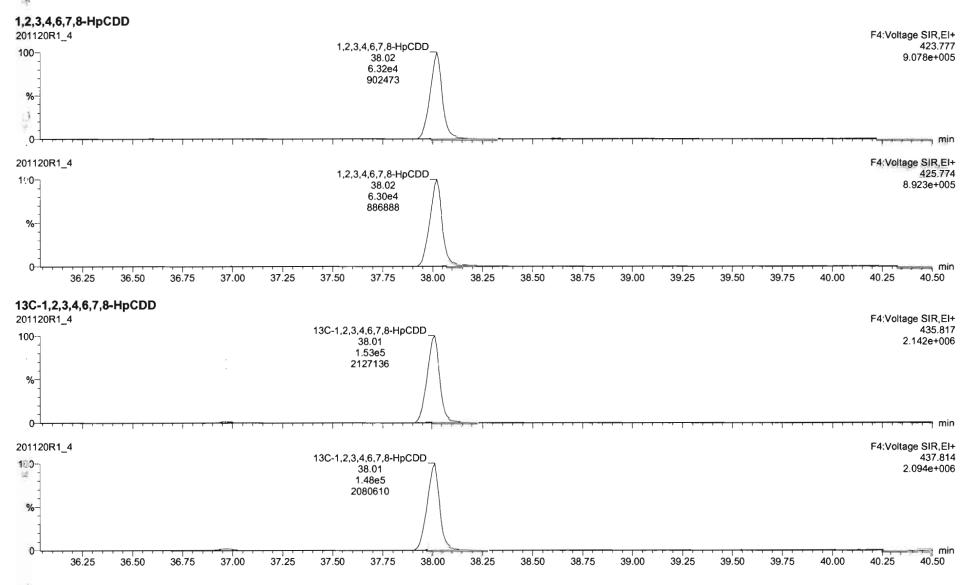

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Work Order 2002358 Page 50 of 353

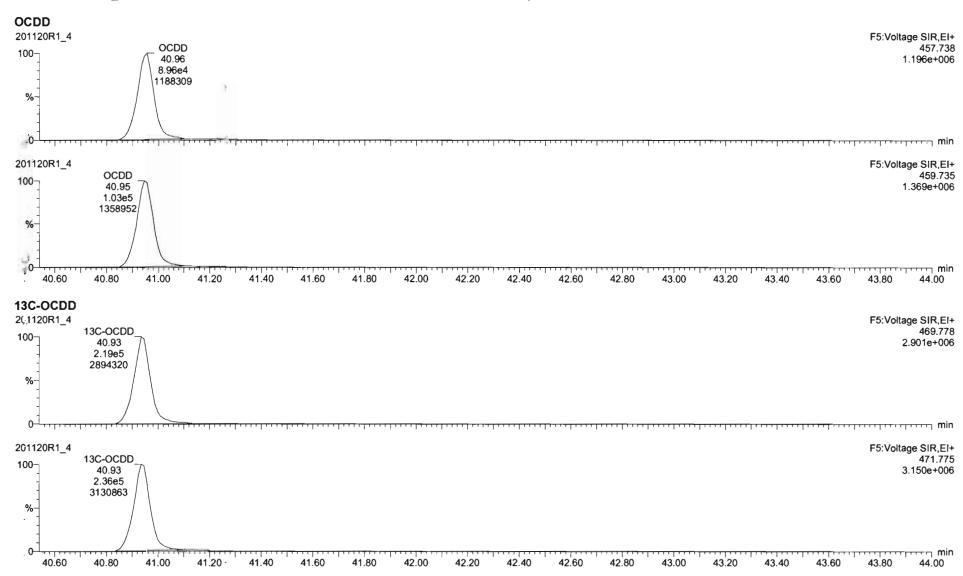
Work Order 2002358 Page 51 of 353

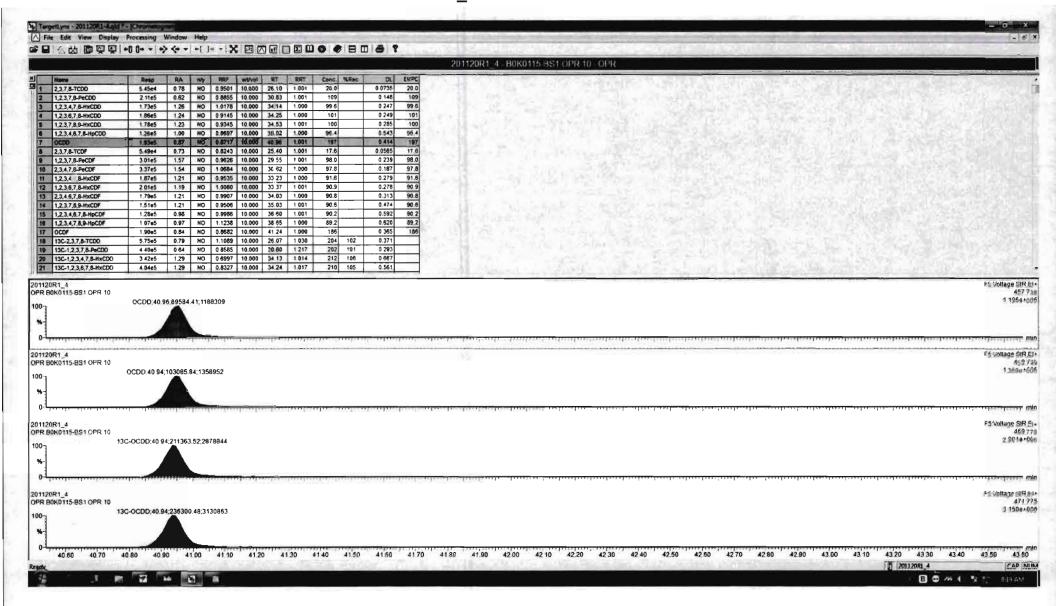


Work Order 2002358 Page 52 of 353

Untitled

Last Altered: Printed:

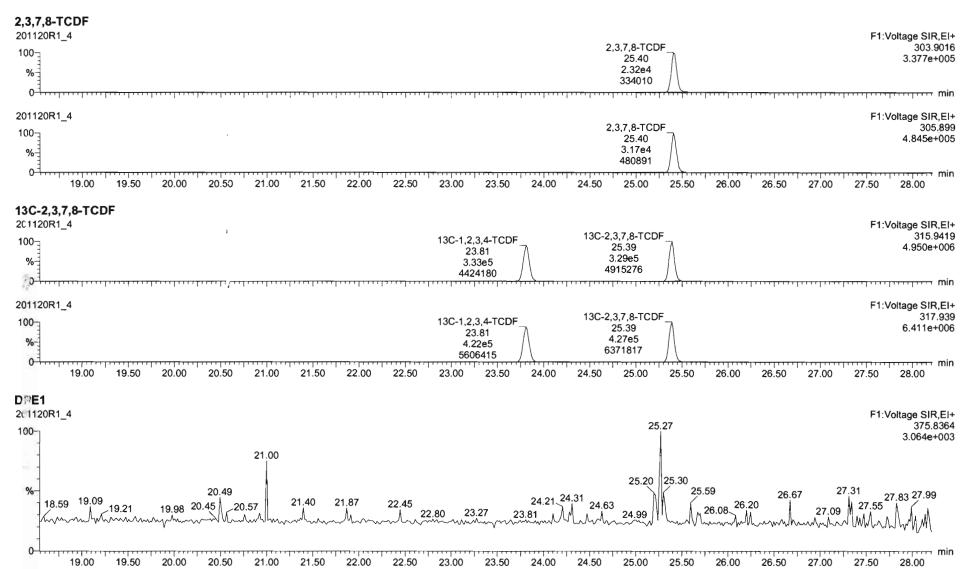

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Untitled

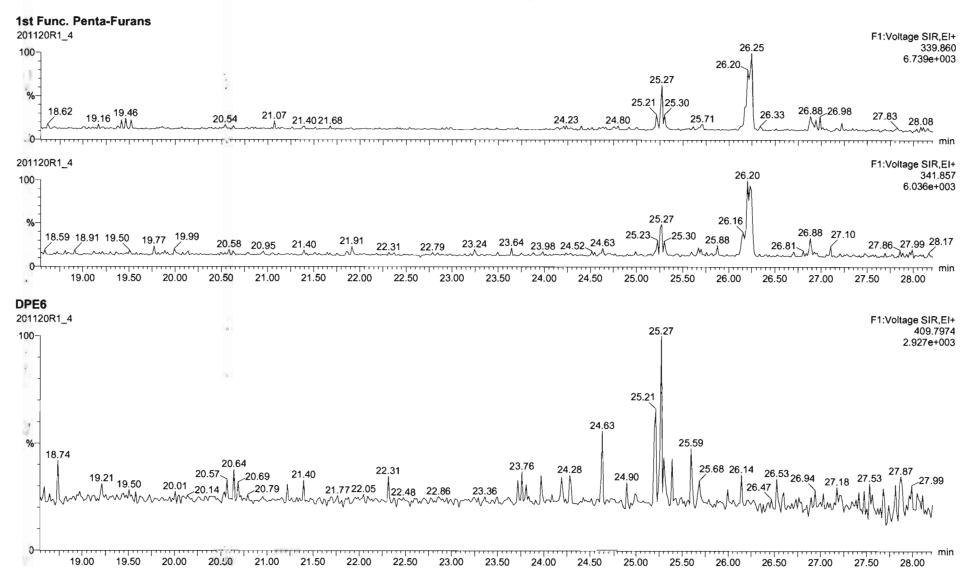
Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Work Order 2002358 Page 55 of 353

Untitled

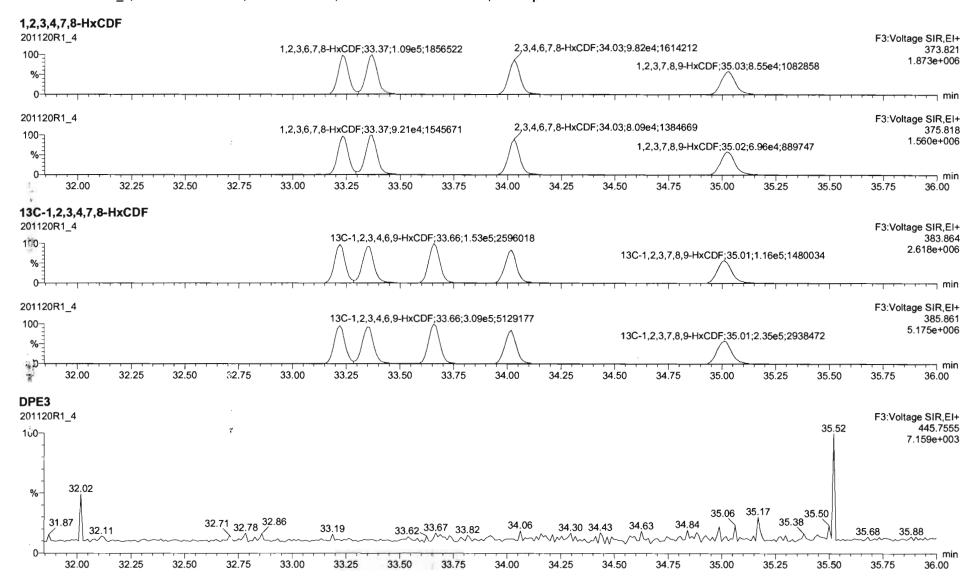

Last Altered: Punted: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

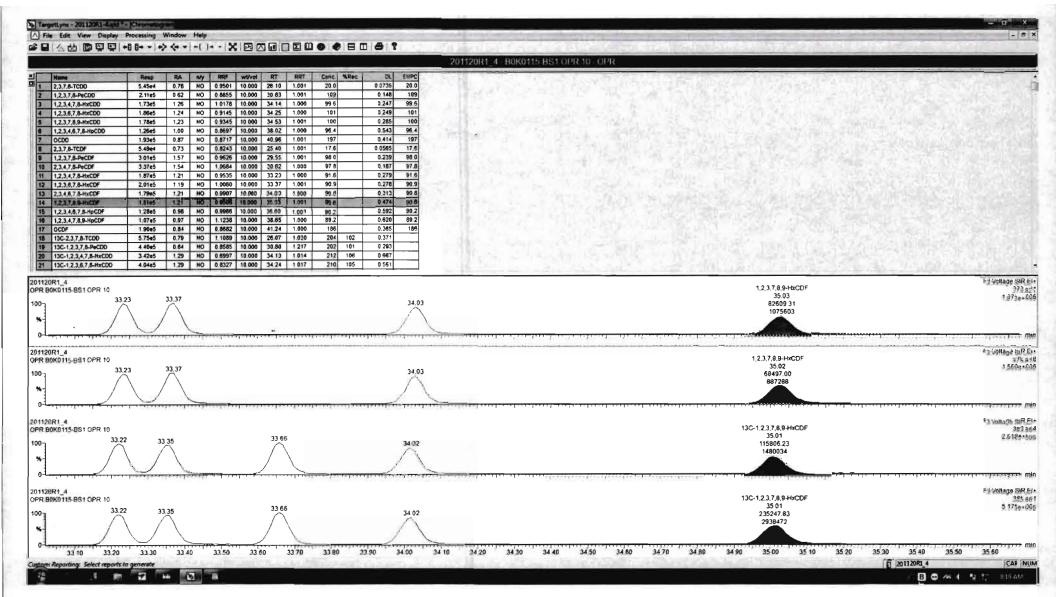
Untitled


Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

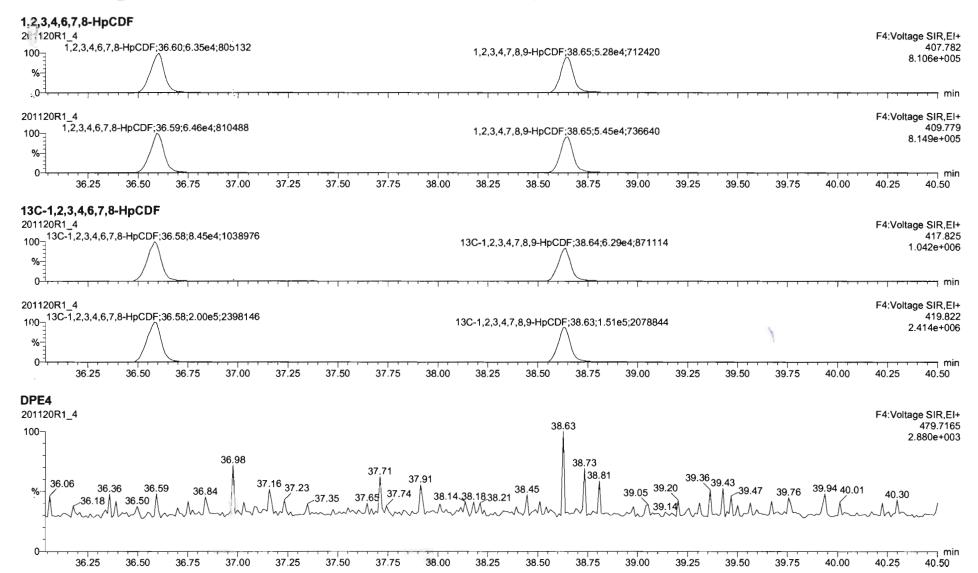

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



D staset:

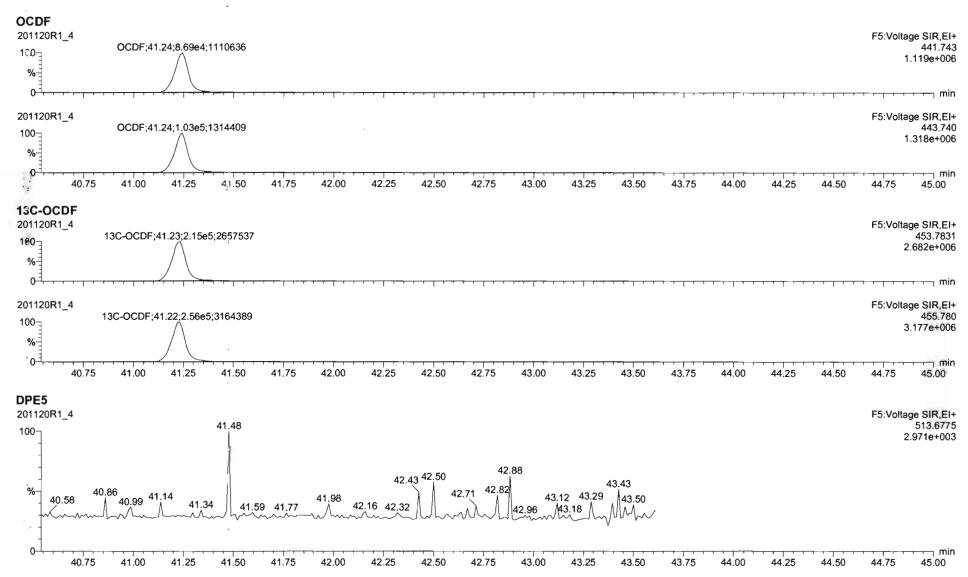
Untitled

Last Altered: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

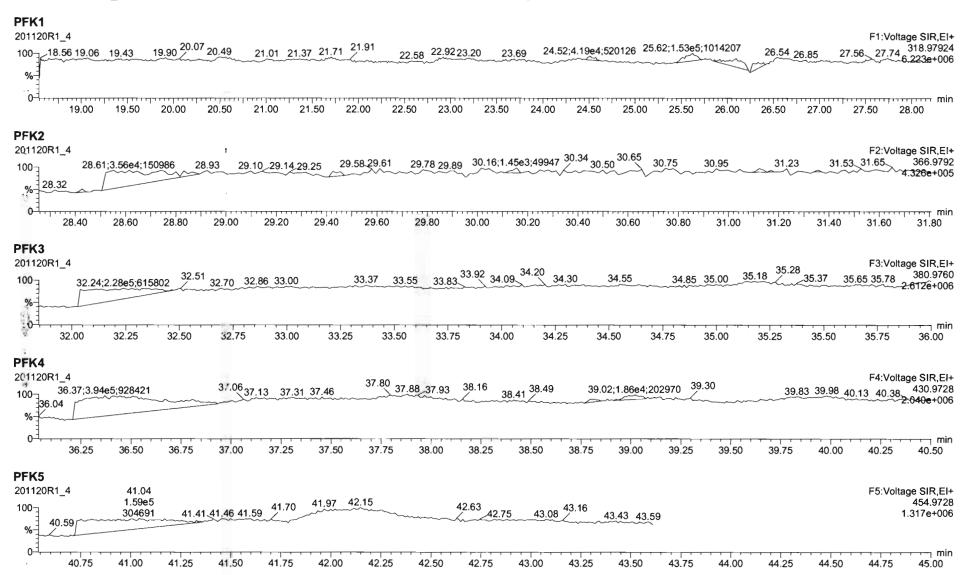


Detaset:

Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled


Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

U:\VG12.PRO\Results\201120R1\201120R1-10.qld

Last Altered:

Monday, November 23, 2020 9:13:47 AM Pacific Standard Time

Printed:

Monday, November 23, 2020 9:15:21 AM Pacific Standard Time

GRB 11/23/2020 CT 11/30/2020

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

and the same of	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	1.12e3	0.56	YES	0.950	10.001 /	26.112	26.10	1.001	1.001	0.38681		0.114	0.321
2	2 1,2,3,7,8-PeCDD	9.63e2	0.65	NO	0.885	10.001	30.819	30.83	1.000	1.001	0.47496		0.110	0.475
3	3 1,2,3,4,7,8-HxCDD	1.13e3	1.10	NO	1.02	10.001	34.146	34.15	1.000	1.000	0.57648		0.242	0.576
4	4 1,2,3,6,7,8-HxCDD	5.98e3	1.11	NO	0.915	10.001	34.263	34.26	1.000	1.000	2.9221		0.241	2.92
5	5 1,2,3,7,8,9-HxCDD	2.81e3	1.10	NO	0.934	10.001	34.529	34.54	1.000	1.001	1.4088		0.257	1.41
6	6 1,2,3,4,6,7,8-HpCDD	1.14e5	1.01	NO	0.870	10.001	38.009	38.02	1.000	1.000	74.054		0.736	74.1
7	7 OCDD	8.63e5	0.87	NO	0.872	10.001	40.945	40.96	1.000	1.000	751.45		0.807	751
8	8 2,3,7,8-TCDF	2.39e4	0.74	NO	0.824	10.001	25.396	25.42	1.000	1.001	7.2000		0.120	7.20
9	9 1,2,3,7,8-PeCDF	2.41e4	1.51	NO	0.963	10.001	29.557	29.55	1.000	1.000	7.3325		0.138	7.33
10	10 2,3,4,7,8-PeCDF	1.79e4	1.68	NO	1.07	10.001	30.608	30.62	1.000	1.000	4.9292		0.117	4.93
11	11 1,2,3,4,7,8-HxCDF	2.35e4	1.22	NO	0.953	10.001	33.230	33.24	1.000	1.000	10.371		0.121	10.4
12	12 1,2,3,6,7,8-HxCDF	6.30e3	1.19	NO	1.01	10.001	33.358	33.38	1.000	1.001	2.6250		0.120	2.63
13	13 2,3,4,6,7,8-HxCDF	2.60e3	1.16	NO	0.991	10.001	34.032	34.04	1.000	1.000	1.1932		0.131	1.19
14	14 1,2,3,7,8,9-HxCDF	7.41e2	1.32	NO	0.951	10.001	35.020	35.04	1.000	1.001	0.38886		0.190	0.389
15	15 1,2,3,4,6,7,8-HpCDF	2.00e4	1.00	NO	0.999	10.001	36.596	36.61	1.000	1.001	12.351		0.228	12.4
16	16 1,2,3,4,7,8,9-HpCDF	2.91e3	1.03	NO	1.12	10.001	38.637	38.65	1.000	1.000	2.0380		0.224	2.04
17	17 OCDF	3.80e4	0.84	NO	0.868	10.001	41.240	41.25	1.000	1.001	32.070		0.182	32.1
18	18 13C-2,3,7,8-TCDD	6.06e5	0.79	NO	1.11	10.001	26.073	26.08	1.030	1.030	216.70	108	0.207	
19	19 13C-1,2,3,7,8-PeCDD	4.58e5	0.64	NO	0.859	10.001	30.792	30.81	1.216	1.217	211.51	106	0.422	
20	20 13C-1,2,3,4,7,8-HxCDD	3.85e5	1.31	NO	0.700	10.001	34.135	34.14	1.014	1.014	220.44	110	0.525	
21	21 13C-1,2,3,6,7,8-HxCDD	4.48e5	1.27	NO	0.833	10.001	34.273	34.25	1.018	1.017	215.28	108	0.441	
22	22 13C-1,2,3,7,8,9-HxCDD	4.27e5	1.26	NO	0.762	10.001	34.515	34.52	1.025	1.025	224.70	112	0.482	
23	23 13C-1,2,3,4,6,7,8-HpCDD	3.53e5	1.05	NO	0.650	10.001	38.000	38.01	1.129	1.129	217.74	109	0.847	
24	24 13C-OCDD	5.27e5	88.0	NO	0.539	10.001	40.966	40.94	1.217	1.216	391.19	97.8	0.649	
25	25 13C-2,3,7,8-TCDF	8.04e5	0.77	NO	0.981	10.001	25.395	25.39	1.003	1.003	211.44	106	0.329	
26	26 13C-1,2,3,7,8-PeCDF	6.83e5	1.59	NO	0.792	10.001	29.524	29.55	1.166	1.167	222.61	111	0.625	
27	27 13C-2,3,4,7,8-PeCDF	6.82e5	1.63	NO	0.778	10.001	30.582	30.61	1.208	1.209	226.11	113	0.636	
28	28 13C-1,2,3,4,7,8-HxCDF	4.76e5	0.49	NO	0.954	10.001	33.226	33.23	0.987	0.987	199.94	100	0.638	
29	29 13C-1,2,3,6,7,8-HxCDF	4.76e5	0.50	NO	1.01	10.001	33.357	33.36	0.991	0.991	189.51	94.8	0.605	
30	30 13C-2,3,4,6,7,8-HxCDF	4.40e5	0.50	NO	0.921	10.001	34.027	34.03	1.011	1.011	191.49	95.8	0.661	
31	31 13C-1,2,3,7,8,9-HxCDF	4.01e5	0.51	NO	0.803	10.001	35.024	35.02	1.040	1.040	199.75	99.9	0.757	

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-10.qld

Last Altered: Printed:

Monday, November 23, 2020 9:13:47 AM Pacific Standard Time Monday, November 23, 2020 9:15:21 AM Pacific Standard Time

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	3.25e5	0.43	NO	0.735	10.001	36.593	36.59	1.087	1.087	176.86	88.4	0.619	
33	33 13C-1,2,3,4,7,8,9-HpCDF	2.54e5	0.42	NO	0.568	10.001	38.630	38.64	1.147	1.148	178.99	89.5	0.802	
34	34 13C-OCDF	5.46e5	0.87	NO	0.629	10.001	41.249	41.23	1.225	1.225	347.53	86.9	0.650	
35	35 37CI-2,3,7,8-TCDD	2.49e5			1.09	10.001	26.073	26.10	1.030	1.031	90.728	113	0.122	ľ
36	36 13C-1,2,3,4-TCDD	5.04e5	0.80	NO	1.00	10.001	25.370	25.31	1.000	1.000	199.98	100	0.229	
37	37 13C-1,2,3,4-TCDF	7.75e5	0.78	NO	1.00	10.001	23.870	23.82	1.000	1.000	199.98	100	0.322	l
33	38 13C-1,2,3,4,6,9-HxCDF	4.99e5	0.50	NO	1.00	10.001	33.710	33.67	1.000	1.000	199.98	100	0.608	l
39	39 Total Tetra-Dioxins				0.950	10.001	24.620		0.000		2.4095		0.114	2.73
40	40 Total Penta-Dioxins				0.885	10.001	29.960		0.000		3.3238		0.110	4.10
41	41 Total Hexa-Dioxins				0.915	10.001	33.635		0.000		29.502		0.257	29.5
42	42 Total Hepta-Dioxins				0.870	10.001	37.640		0.000		243.11		0.736	243
43	43 Total Tetra-Furans				0.824	10.001	23.610		0.000		22.750		0.120	24.6
44	44 1st Func. Penta-Furans				0.963	10.001	26.930		0.000		3.8180		0.0259	3.82
45	45 Total Penta-Furans				0.963	10.001	29.275		0.000		23.927		0.134	23.9
46	46 Total Hexa-Furans				0.991	10.001	33.555		0.000		29.922		0.136	29.9
47	47 Total Hepta-Furans				0.999	10.001	37.835		0.000		35.482		0.239	35.5

Work Order 2002358 Page 65 of 353

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-10.qld

Last Altered: Printed: Monday, November 23, 2020 9:13:47 AM Pacific Standard Time Monday, November 23, 2020 9:15:21 AM Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39
Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

Tetra-Dioxins

563.78	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	22.28	7.651e3	9.818e3	6.420e2	8.298e2	0.77	NO	1.472e3	0.51114	0.51114	0.114
2	Total Tetra-Dioxins	22.65	4.723e3	3.531e3	3.044e2	3.707e2	0.82	NO	6.751e2	0.23446	0.23446	0.114
3	Total Tetra-Dioxins	23.16	2.683e3	4.272e3	1.768e2	2.622e2	0.67	NO	4.390e2	0.15248	0.15248	0.114
4	Total Tetra-Dioxins	24.01	1.791e3	2.785e3	1.229e2	1.823e2	0.67	NO	3.052e2	0.10599	0.10599	0.114
5	Total Tetra-Dioxins	24.20	2.743e3	3.192e3	2.099e2	2.606e2	0.81	NO	4.706e2	0.16343	0.16343	0.114
6	Total Tetra-Dioxins	24.44	4.499e3	5.185e3	2.340e2	2.655e2	0.88	NO	4.995e2	0.17348	0.17348	0.114
7	Total Tetra-Dioxins	25.83	2.123e4	2.271e4	1.371e3	1.706e3	0.80	NO	3.077e3	1.0685	1.0685	0.114
8	2,3,7,8-TCDD	26.10	5.484e3	1.093e4	4.023e2	7.173e2	0.56	YES	1.120e3	0.00000	0.32114	0.114

Penta-Dioxins

A LIVE	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.54	1.310e4	2.212e4	8.894e2	1.597e3	0.56	NO	2.486e3	1.2261	1.2261	0.110
2	Total Penta-Dioxins	29.03	7.274e3	9.925e3	3.733e2	5.282e2	0.71	NO	9.015e2	0.44458	0.44458	0.110
3	Total Penta-Dioxins	29.55	9.714e3	1.371e4	5.090e2	7.474e2	0.68	NO	1.256e3	0.61957	0.61957	0.110
4	Total Penta-Dioxins	29.75	6.730e3	1.209e4	3.123e2	5.510e2	0.57	NO	0.000e0	0.00000	0.42573	0.110
5	Total Penta-Dioxins	29.77	4.567e3	7.446e3	2.018e2	3.030e2	0.67	NO	0.000e0	0.00000	0.24894	0.110
6	Total Penta-Dioxins	30.02	9.030e3	9.161e3	4.619e2	6.709e2	0.69	NO	1.133e3	0.55862	0.55862	0.110
7	1,2,3,7,8-PeCDD	30.83	7.578e3	1.250e4	3.792e2	5.839e2	0.65	NO	9.631e2	0.47496	0.47496	0.110
8	Total Penta-Dioxins	30.89	1.834e3	2.038e3	9.741e1	1.243e2	0.78	YES	0.000e0	0.00000	0.099921	0.110

Work Order 2002358 Page 66 of 353

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-10.qld

Last Altered: Printed:

Monday, November 23, 2020 9:13:47 AM Pacific Standard Time Monday, November 23, 2020 9:15:21 AM Pacific Standard Time

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

Hexa-Dioxins

182	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.51	2.140e5	1.645e5	1.134e4	9.001e3	1.26	NO	2.034e4	10.587	10.587	0.257
2	Total Hexa-Dioxins	33.11	2.713e4	2.219e4	1.447e3	1.275e3	1.13	NO	2.722e3	1.4167	1.4167	0.257
3	Total Hexa-Dioxins	: 33.40	1.551e5	1.219e5	1.102e4	8.759e3	1.26	NO	1.977e4	10.293	10.293	0.257
4	Total Hexa-Dioxins	33.51	3.627e4	2.481e4	1.902e3	1.434e3	1.33	NO	3.336e3	1.7362	1.7362	0.257
5	1,2,3,4,7,8-HxCDD	34.15	1.167e4	1.034e4	5.918e2	5.380e2	1.10	NO	1.130e3	0.57648	0.57648	0.242
6	1,2,3,6,7,8-HxCDD	34.26	5.140e4	4.600e4	3.148e3	2.834e3	1.11	NO	5.982e3	2.9221	2.9221	0.241
7	Total Hexa-Dioxins	34.41	9.408e3	7.306e3	5.757e2	5.035e2	1.14	NO	1.079e3	0.56173	0.56173	0.257
8	1,2,3,7,8,9-HxCDD	34.54	2.428e4	2.120e4	1.475e3	1.339e3	1.10	NO	2.814e3	1.4088	1.4088	0.257

Hepta-Dioxins

0.0180	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.99	1.738e6	1.701e6	1.303e5	1.294e5	1.01	NO	2.597e5	169.06	169.06	0.736
2	1,2,3,4,6,7,8-HpCDD	38.02	9.620e5	9.241e5	5.707e4	5.668e4	1.01	NO	1.138e5	74.054	74.054	0.736

Work Order 2002358

Dataset: U:\VG12.PRO\Results\201120R1\201120R1-10.qld

Last Altered: Monday, November 23, 2020 9:13:47 AM Pacific Standard Time Printed: Monday, November 23, 2020 9:15:21 AM Pacific Standard Time

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

Tetra-Furans

1986	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.05	2.637e3	4.497e3	2.226e2	3.329e2	0.67	NO	5.555e2	0.16759	0.16759	0.120
2	Total Tetra-Furans	20.63	3.412e3	5.443e3	2.769e2	4.136e2	0.67	NO	6.904e2	0.20829	0.20829	0.120
3	Total Tetra-Furans	21.40	1.870e4	2.734e4	1.714e3	2.426e3	0.71	NO	4.140e3	1.2488	1.2488	0.120
4	Total Tetra-Furans	22.31	3.374e4	4.356e4	3.034e3	4.016e3	0.76	NO	7.050e3	2.1268	2.1268	0.120
5	Total Tetra-Furans	22.82	1.570e4	2.559e4	1.347e3	1.874e3	0.72	NO	3.221e3	0.97181	0.97181	0.120
6	Total Tetra-Furans	22.90	3.381e3	6.008e3	2.789e2	3.448e2	0.81	NO	6.237e2	0.18815	0.18815	0.120
7	Total Tetra-Furans	23.16	8.572e3	9.781e3	6.991e2	9.200e2	0.76	NO	1.619e3	0.48844	0.48844	0.120
8	Total Tetra-Furans	23.56	2.858e3	3.366e3	2.011e2	2.840e2	0.71	NO	4.851e2	0.14633	0.14633	0.120
9	Total Tetra-Furans	23.67	2.892e3	4.111e3	1.839e2	2.423e2	0.76	NO	4.263e2	0.12860	0.12860	0.120
10	Total Tetra-Furans	23.88	1.728e4	2.688e4	7.652e2	1.101e3	0.70	NO	0.000e0	0.00000	0.56298	0.120
11	Total Tetra-Furans	23.91	1.885e4	2.978e4	1.721e3	2.495e3	0.69	NO	0.000e0	0.00000	1.2719	0.120
12	Total Tetra-Furans	24.40	1.442e5	1.984e5	9.912e3	1.380e4	0.72	NO	2.372e4	7.1547	7.1547	0.120
13	Total Tetra-Furans	24.72	7.861e3	1.322e4	4.573e2	6.799e2	0.67	NO	1.137e3	0.34307	0.34307	0.120
14	Total Tetra-Furans	25.28	2.291e4	2.834e4	1.560e3	1.945e3	0.80	NO	3.504e3	1.0572	1.0572	0.120
15	2,3,7,8-TCDF	25.42	1.407e5	2.021e5	1.013e4	1.374e4	0.74	NO	2.387e4	7.2000	7.2000	0.120
16	Total Tetra-Furans	25.73	7.198e3	9.903e3	6.016e2	7.091e2	0.85	NO	1.311e3	0.395 3 9	0.39539	0.120
17	Total Tetra-Furans	25.99	3.325e3	4.804e3	1.931e2	2.857e2	0.68	NO	4.789e2	0.14446	0.14446	0.120
18	Total Tetra-Furans	27.33	2.053e4	2.315e4	1.128e3	1.460e3	0.77	NO	2.588e3	0.78081	0.78081	0.120

Penta-Furans function 1

1000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1st Func. Penta-Furans	26.94	1.267e5	7.832e4	7.731e3	4.807e3	1.61	NO	1.254e4	3.8180	3.8180	0.0259

Work Order 2002358 Page 68 of 353

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-10.qld

Last Altered: Printed:

Monday, November 23, 2020 9:13:47 AM Pacific Standard Time Monday, November 23, 2020 9:15:21 AM Pacific Standard Time

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

Penta-Furans

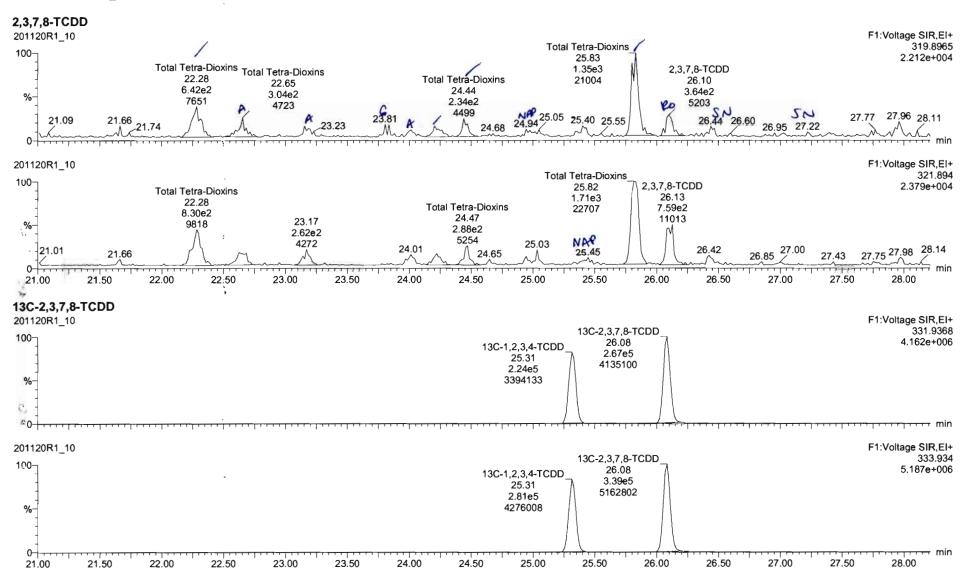
2000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.40	1.369e4	1.015e4	8.938e2	5.480e2	1.63	NO	1.442e3	0.43905	0.43905	0.134
2	Total Penta-Furans	28.57	1.578e5	9.286e4	1.054e4	6.694e3	1.57	NO	1.723e4	5.2471	5.2471	0.134
3	Total Penta-Furans	29.21	3.506e4	2.450e4	2.307e3	1.626e3	1.42	NO	3.933e3	1.1976	1.1976	0.134
4	Total Penta-Furans	29.36	4.140e4	2.416e4	2.259e3	1.314e3	1.72	NO	3.573e3	1.0880	1.0880	0.134
5	1,2,3,7,8-PeCDF	29.55	2.481e5	1.720e5	1.452e4	9.587e3	1.51	NO	2.411e4	7.3325	7.3325	0.138
6	Total Penta-Furans	29.81	1.377e5	8.376e4	6.346e3	4.114e3	1.54	NO	1.046e4	3.1851	3.1851	0.134
7	Total Penta-Furans	30.44	9.394e3	4.986e3	3.906e2	2.438e2	1.60	NO	6.344e2	0.19318	0.19318	0.134
8	2,3,4,7,8-PeCDF	30.62	2.103e5	1.243e5	1.125e4	6.694e3	1.68	NO	1.795e4	4.9292	4.9292	0.117
9	Total Penta-Furans	31.54	1.104e4	6.098e3	6.506e2	3.838e2	1.70	NO	1.034e3	0.31496	0.31496	0.134

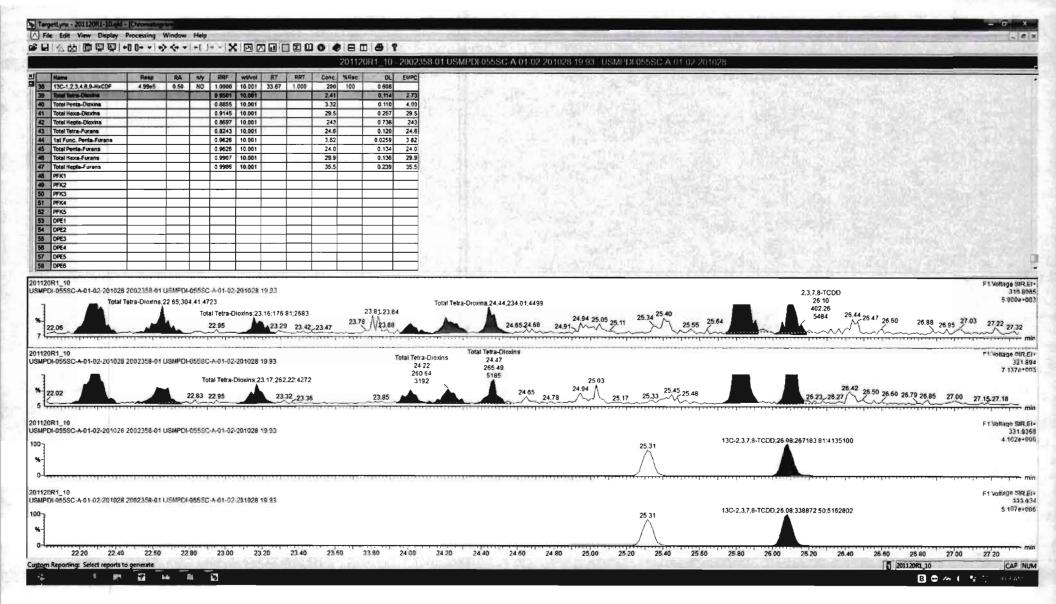
Hexa-Furans

100000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.97	3.753e4	3.290e4	1.995e3	1.667e3	1.20	NO	3.661e3	1.6485	1.6485	0.136
2	Total Hexa-Furans	32.14	1.255e5	1.025e5	6.567e3	5.373e3	1.22	NO	1.194e4	5.3757	5.3757	0.136
3	Total Hexa-Furans	32.78	1.683e5	1.449e5	8.689e3	7.168e3	1.21	NO	1.586e4	7.1394	7.1394	0.136
4	Total Hexa-Furans	33.11	5.090e3	5.090e3	2.916e2	2.701e2	1.08	NO	5.617e2	0.25288	0.25288	0.136
5	1,2,3,4,7,8-HxCDF	33.24	2.313e5	1.933e5	1.296e4	1.059e4	1.22	NO	2.355e4	10.371	10.371	0.121
6	1,2,3,6,7,8-HxCDF	33.38	5.604e4	4.918e4	3.426e3	2.873e3	1.19	NO	6.299e3	2.6250	2.6250	0.120
7	2,3,4,6,7,8-HxCDF	34.04	2.179e4	1.671e4	1.400e3	1.204e3	1.16	NO	2.603e3	1.1932	1.1932	0.131
8	1,2,3,7,8,9-HxCDF	35.04	1.557e4	1.099e4	4.217e2	3.190e2	1.32	NO	7.407e2	0.38886	0.38886	0.190
9	Total Hexa-Furans	35.06	2.287e4	1.616e4	1.162e3	8.973e2	1.29	NO	2.059e3	0.92703	0.92703	0.136

Hepta-Furans

100	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	36.61	1.352e5	1.459e5	1.003e4	1.000e4	1.00	NO	2.003e4	12.351	12.351	0.228
2	Total Hepta-Furans	37.34	2.038e5	2.081e5	1.483e4	1.563e4	0.95	NO	3.047e4	21.093	21.093	0.239
3	1,2,3,4,7,8,9-HpCDF	38.65	2.541e4	2.177e4	1.472e3	1.434e3	1.03	NO	2.906e3	2.0380	2.0380	0.224

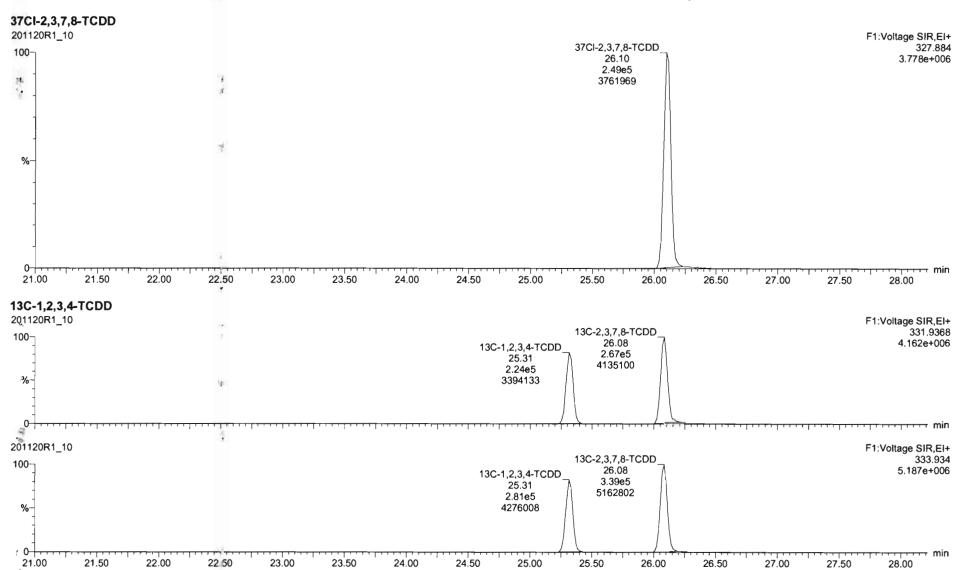

Page 69 of 353


Untitled

Last Altered: Printed:

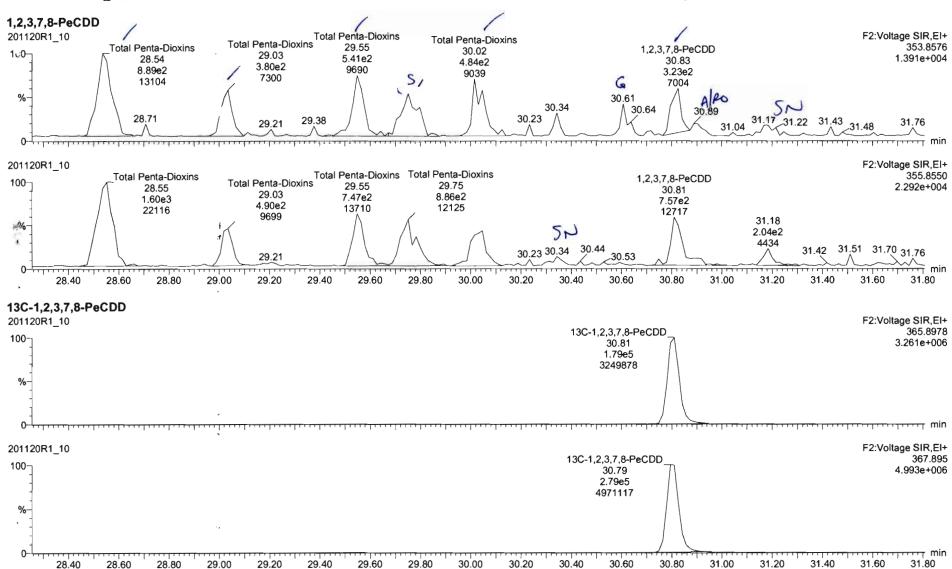
Saturday, November 2', 2020 9:51:32 AM Pacific Standard Time Saturday, November 2', 2020 9:56:20 AM Pacific Standard Time

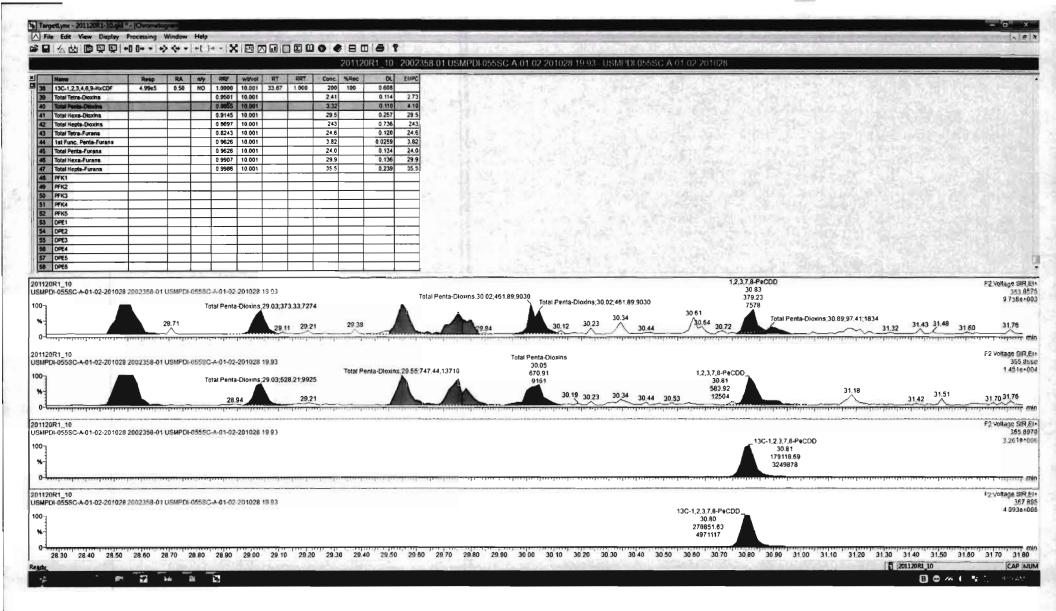
Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028



Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

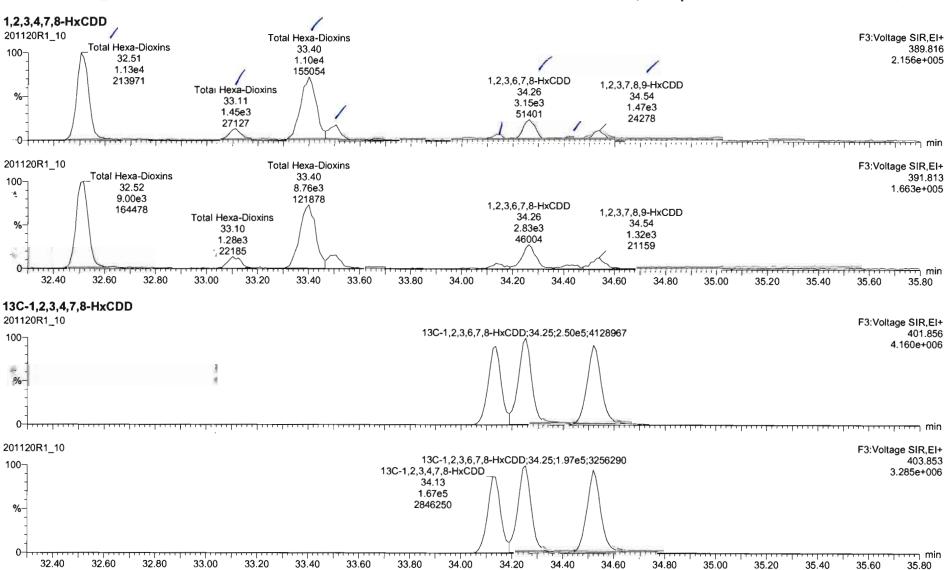

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

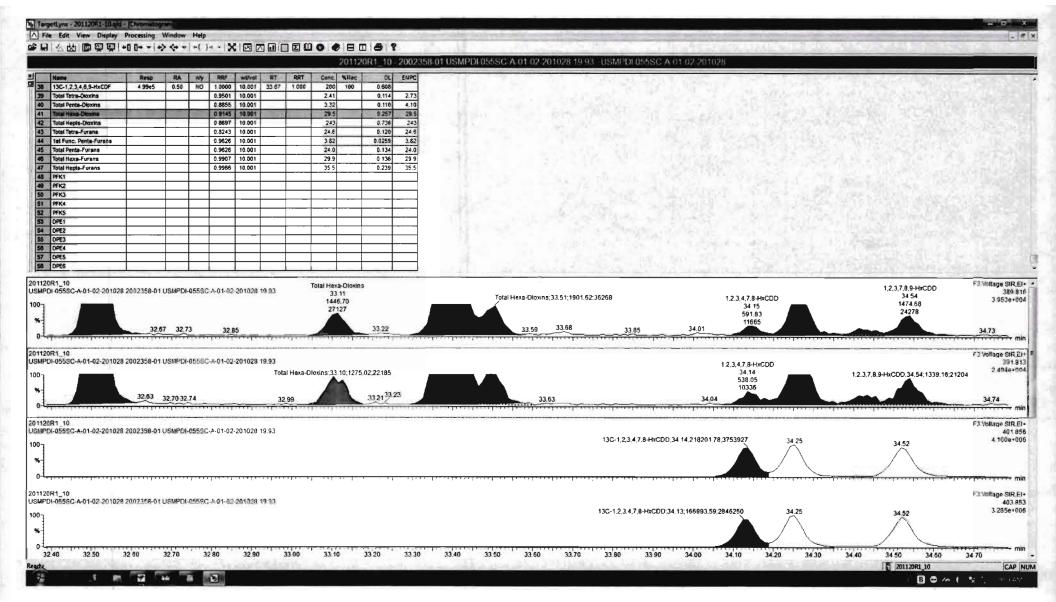


Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

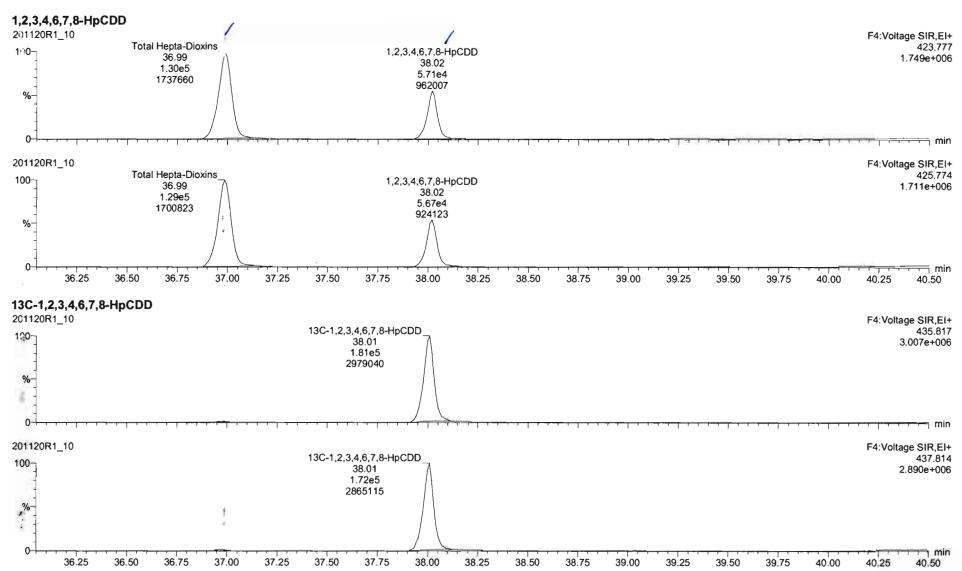




Untitled

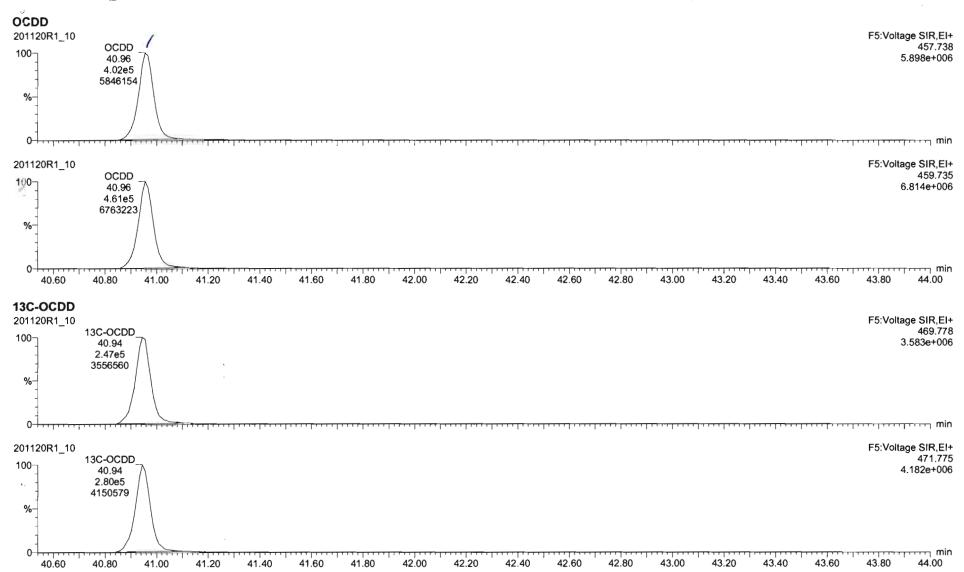
Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

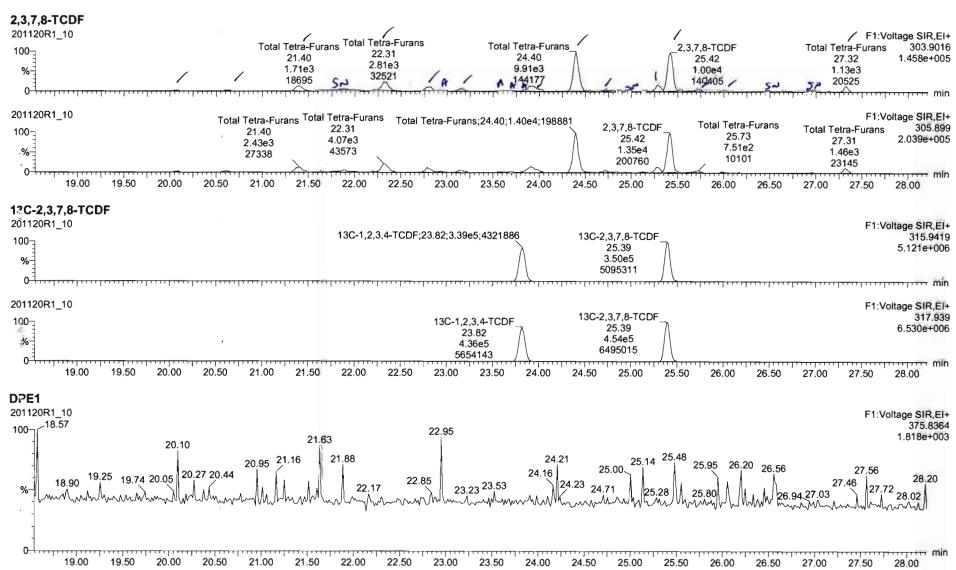


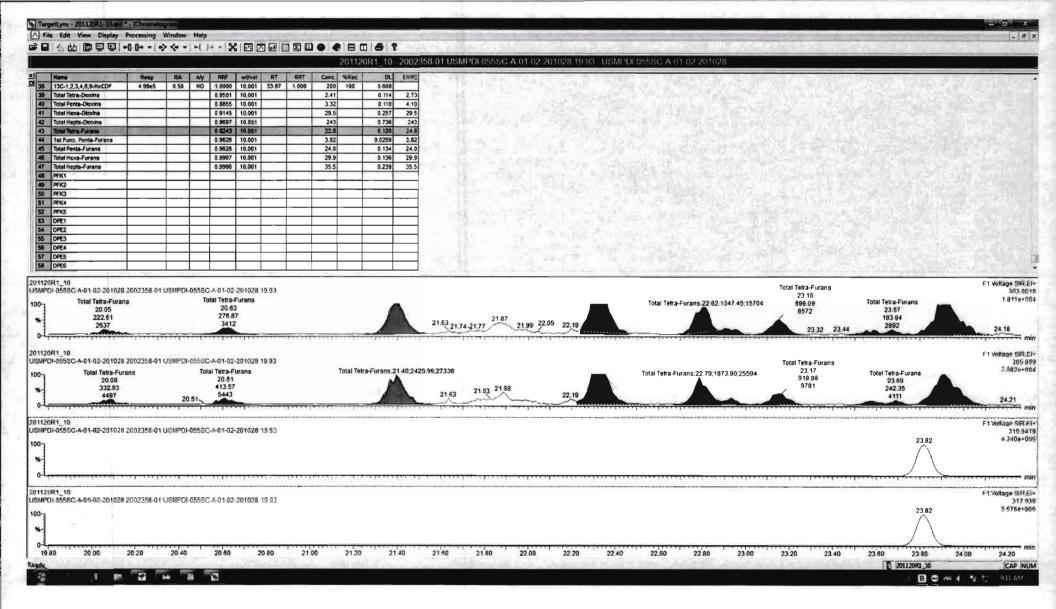
Work Order 2002358 Page 76 of 353

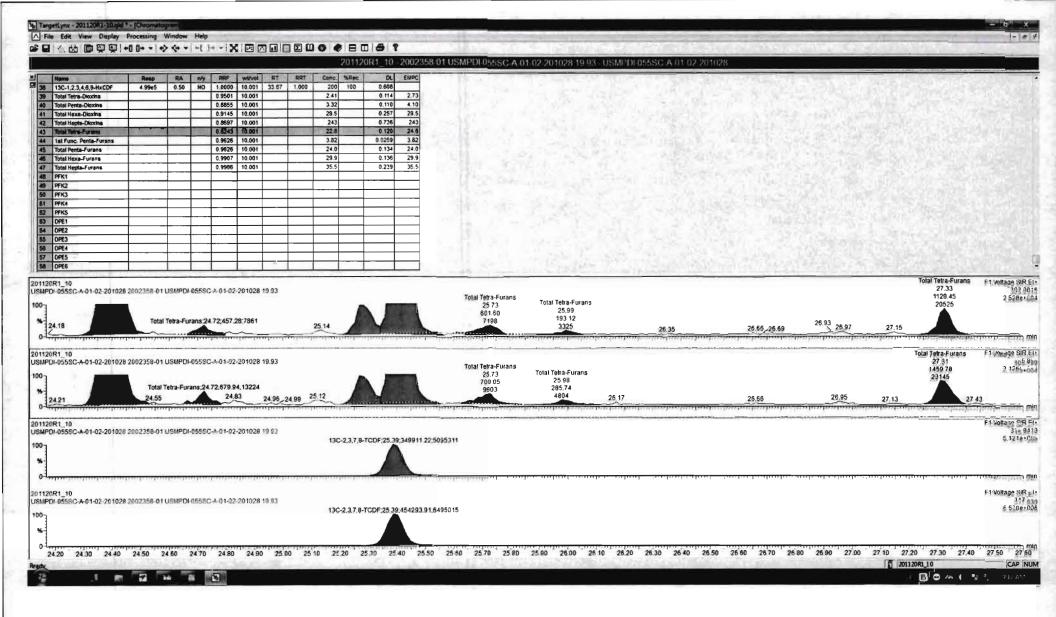
Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

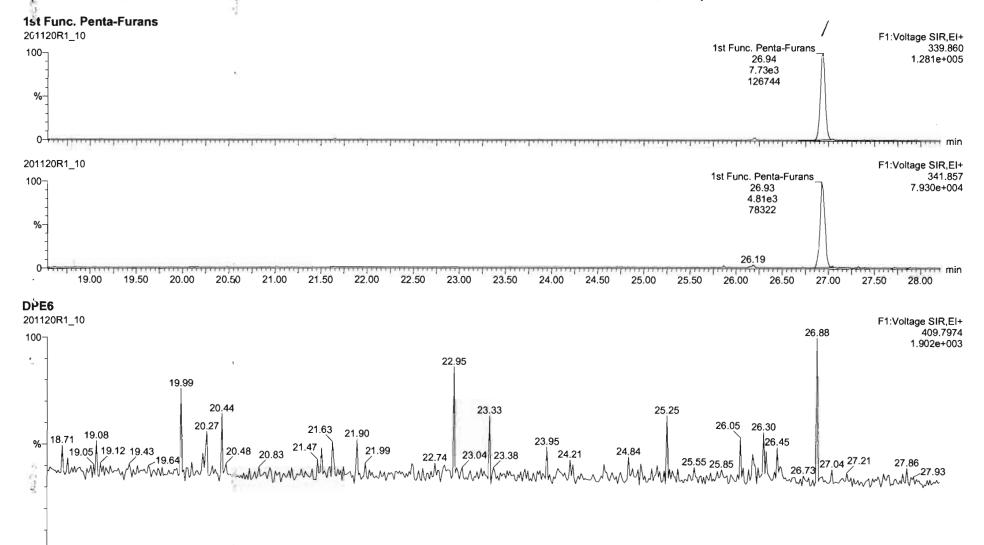
Untitled


Last Altered: Printed:


Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Work Order 2002358 Page 80 of 353

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Name: 201120R1_10, Date: 20-Nov-2020, Time: 14:38:03, ID: 2002358-01 USMPDI-055SC-A-01-02-201028 19.93, Description: USMPDI-055SC-A-01-02-201028

19.00

19.50

20.00

20.50

21.00

21.50

22.00

22.50

23.00

23.50

24.00

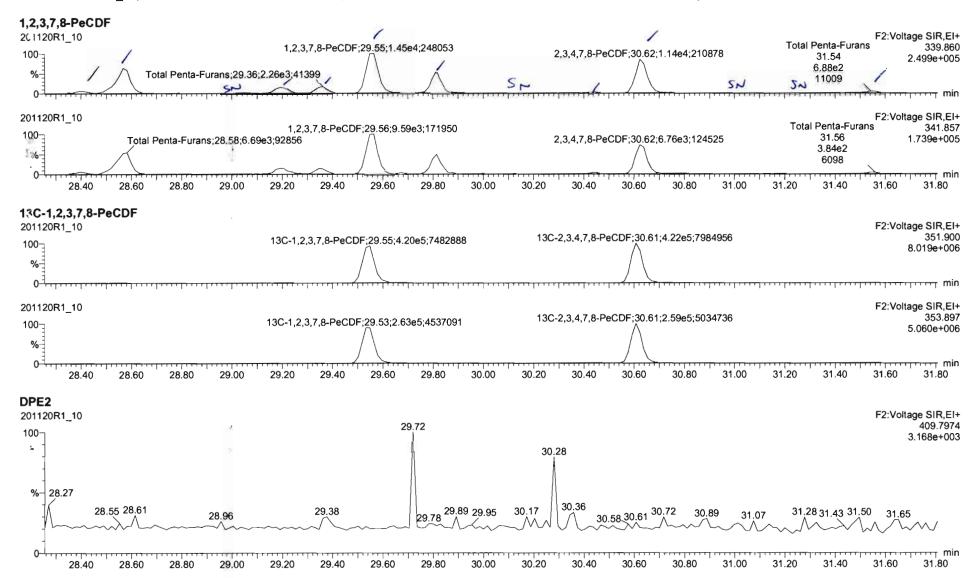
24.50

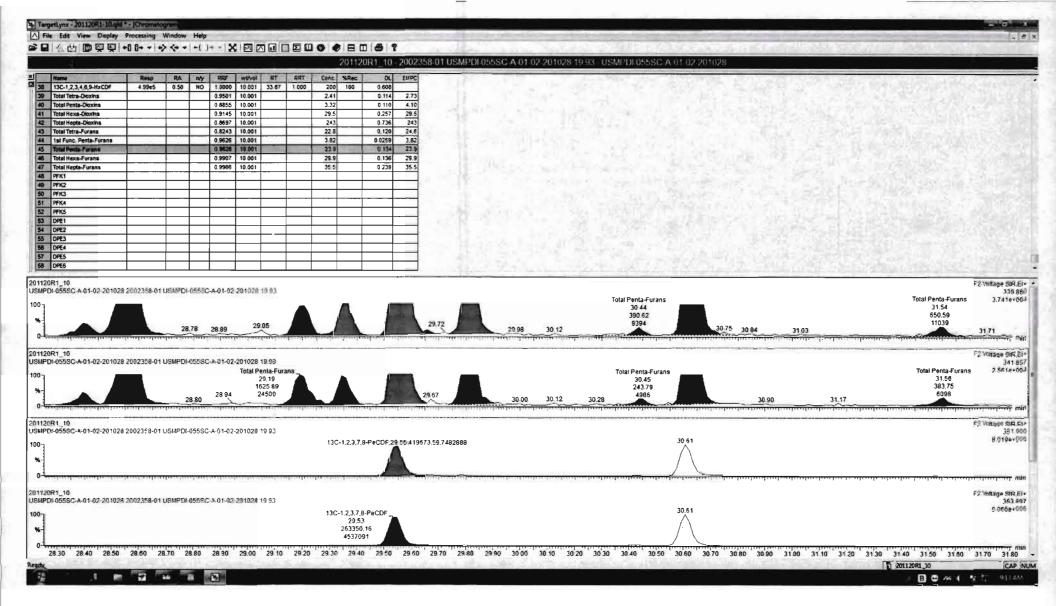
25.00

25.50

26.00

26.50

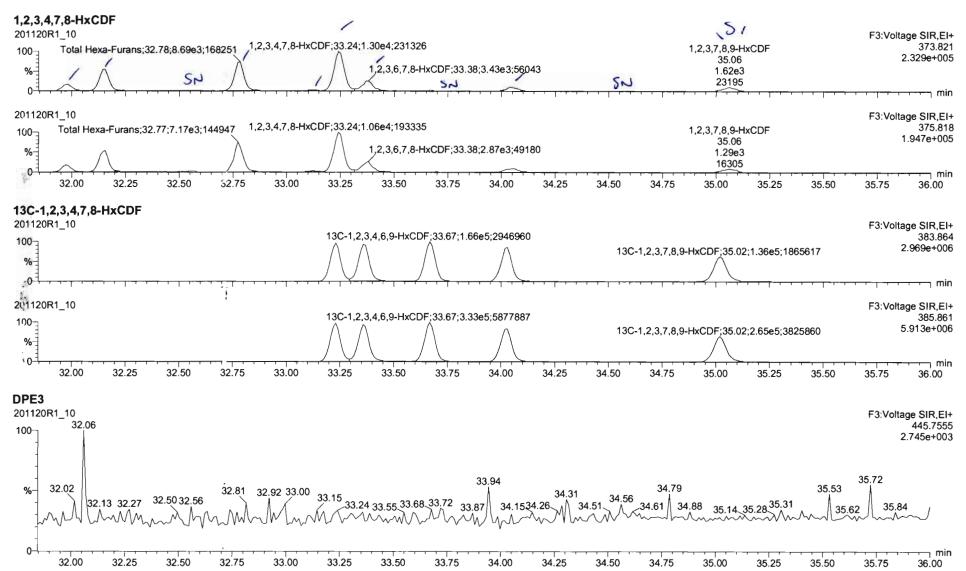

27.00

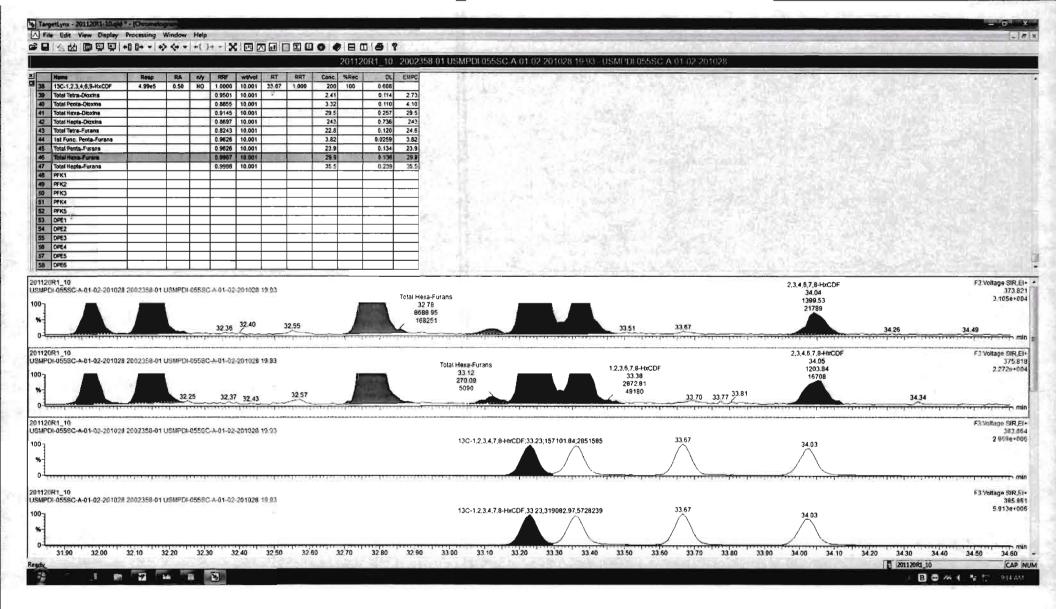

28.00

27.50

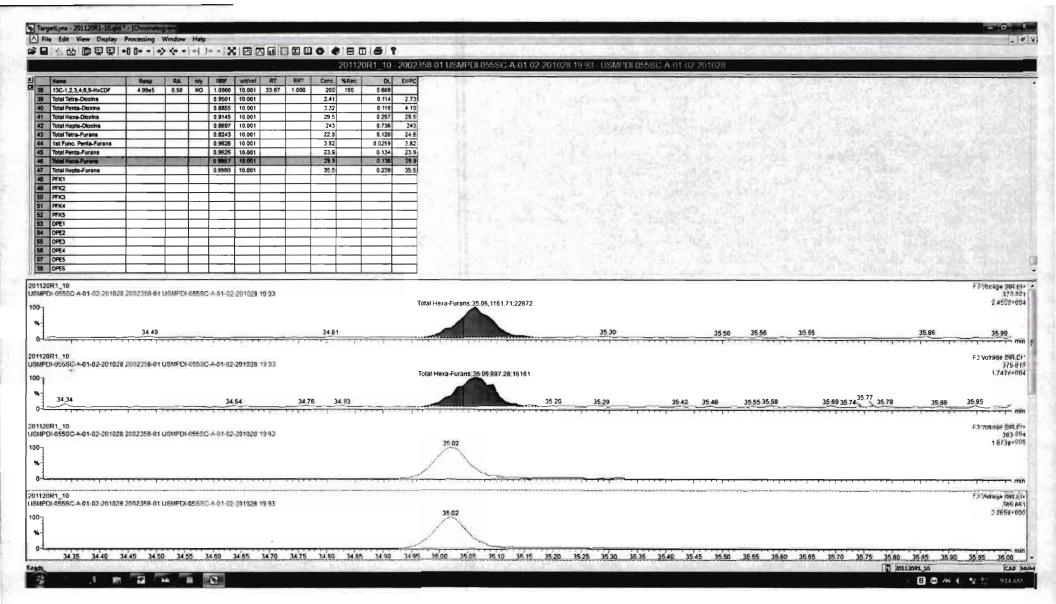
Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

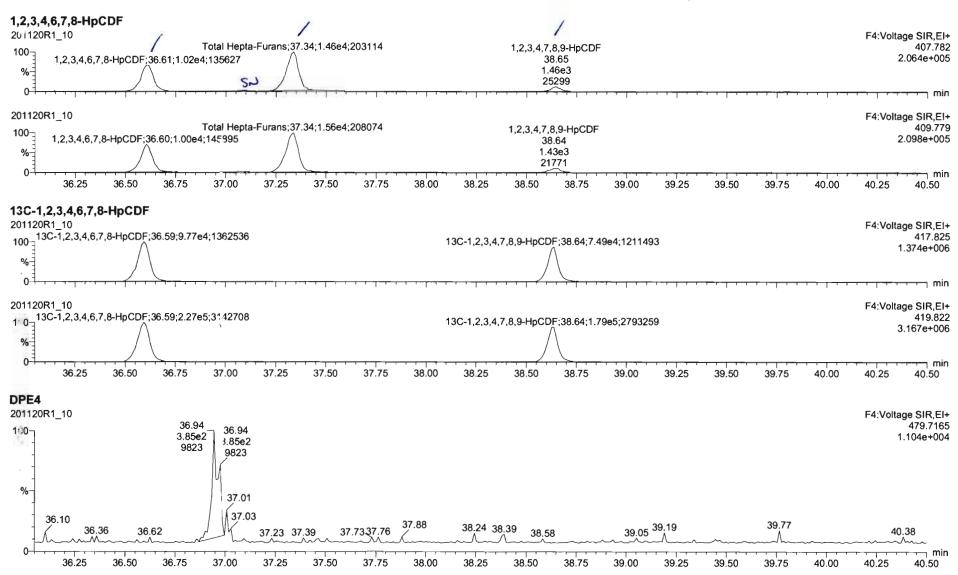


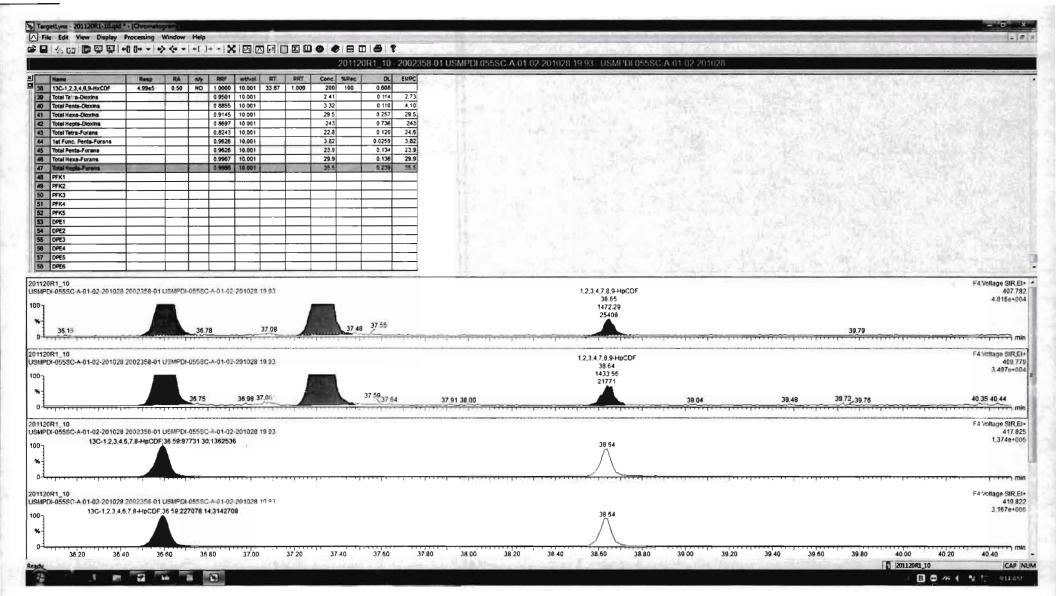

Work Order 2002358 Page 84 of 353

Untitled


Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

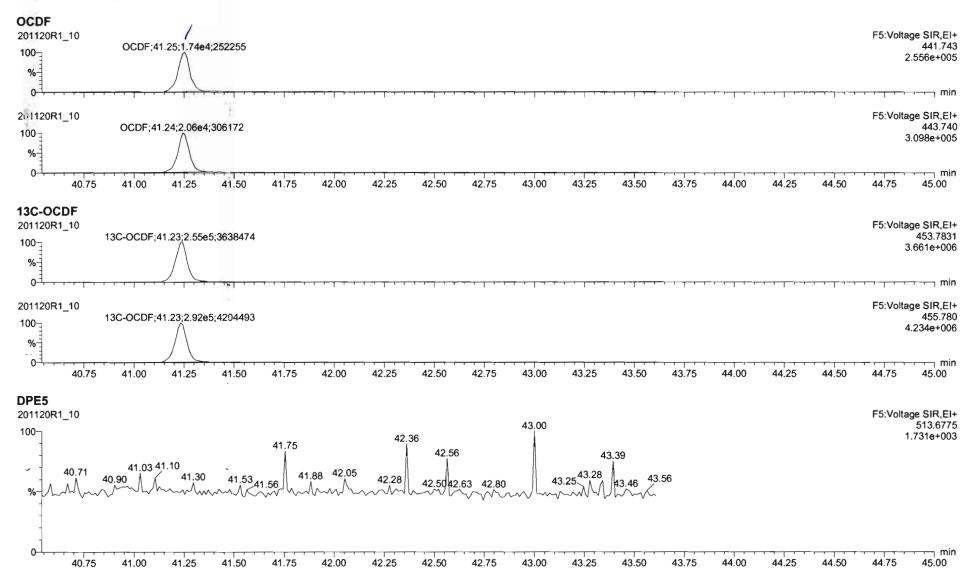

Work Order 2002358 Page 86 of 353



Work Order 2002358 Page 87 of 353

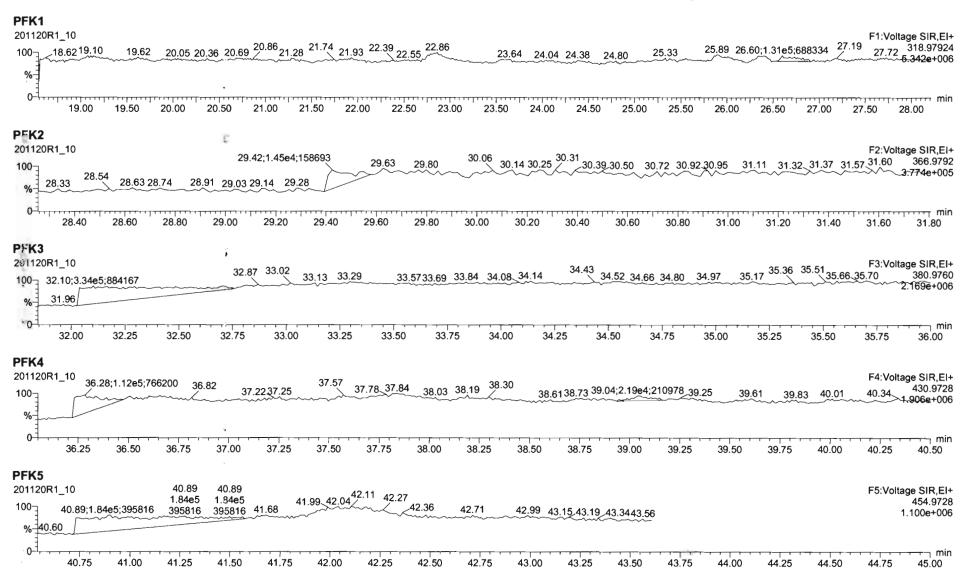
Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Page 89 of 353

Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Page 1 of 2

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-11.qld

Last Altered: Printed:

Monday, November 23, 2020 9:56:08 AM Pacific Standard Time Monday, November 23, 2020 9:56:39 AM Pacific Standard Time

GFB 11/23/2020

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

	# Maria	Deen	DA	nh.	DDE	udhal	Dend DT	RT	Pred.RRT	RRT	Cono	%Rec	DL	EMPC
17/1/3	# Name 1 2,3,7,8-TCDD	1.09e3	0.50	n/y YES	0.950	wt/vol 10.217	Pred.RT 26.112	26.11	1.001	1.001	Conc. 0.39481	70Nec	0.109	0.304
2		1.09e3 1.33e3	0.50	YES	0.885	10.217	30.819	30.83	1.001	1.001	0.66987		0.156	0.556
	2 1,2,3,7,8-PeCDD	1.33e3 1.22e3	1.28	NO NO	1.02	10.217	34.146	34.15	1.000	1.000	0.65952		0.136	0.556
3	3 1,2,3,4,7,8-HxCDD													I
4	4 1,2,3,6,7,8-HxCDD	1.13e4	1.17	NO	0.915	10.217	34.263	34.27	1.000	1.001	5.7288		0.276	5.73
5	5 1,2,3,7,8,9-HxCDD	4.30e3	1.20	NO	0.934	10.217	34.540	34.54	1.000	1.000	2.2206		0.290	2.22
6	6 1,2,3,4,6,7,8-HpCDD	1.29e5	1.02	NO	0.870	10.217	38.009	38.02	1.000	1.000	92.404		1.01	92.4
7	7 OCDD	1.18e6	0.88	NO	0.872	10.217	40.977	40.99	1.000	1.000	1131.5		0.845	1130
8	8 2,3,7,8-TCDF	5.16e4	0.74	NO	0.824	10.217	25.396	25.42	1.000	1.001	15.596		0.132	15.6
5	9 1,2,3,7,8-PeCDF	1.25e5	1.56	NO	0.963	10.217	29.557	29.56	1.000	1.001	38.738		0.177	38.7
10	10 2,3,4,7,8-PeCDF	6.68e4	1.54	NO	1.07	10.217	30.623	30.62	1.000	1.000	18.946		0.162	18.9
11	11 1,2,3,4,7,8-HxCDF	1.15e5	1,19	NO	0.953	10.217	33.230	33.24	1.000	1.000	53.086		0.188	53.1
12	12 1,2,3,6,7,8-HxCDF	4.46e4	1.21	NO	1.01	10.217	33.358	33.38	1.000	1.001	18.990		0.183	19.0
13	13 2,3,4,6,7,8-HxCDF	1.15e4	1.14	NO	0.991	10.217	34.032	34.05	1.000	1.001	5.3935		0.212	5.39
14	14 1,2,3,7,8,9-HxCDF	3.28e3	1.24	NO	0.951	10.217	35.020	35.04	1.000	1.001	1.7385		0.284	1.74
15	15 1,2,3,4,6,7,8-HpCDF	5.21e4	0.98	NO	0.999	10.217	36.596	36.60	1.000	1.000	33.944		0.281	33.9
16	16 1,2,3,4,7,8,9-HpCDF	9.62e3	0.93	NO	1.12	10.217	38.637	38.65	1.000	1.000	7.3735		0.265	7.37
17	17 OCDF	7.43e4	0.86	NO	0.868	10.217	41.272	41.28	1.000	1.000	68.644		0.326	68.6
18	18 13C-2,3,7,8-TCDD	5.70e5	0.79	NO	1.11	10.217	26.073	26.08	1.030	1.030	215.27	110	0.302	
19	19 13C-1,2,3,7,8-PeCDD	4.39e5	0.63	NO	0.859	10.217	30.792	30.81	1.216	1.217	214.22	109	0.368	
20	20 13C-1,2,3,4,7,8-HxCDD	3.56e5	1.30	NO	0.700	10.217	34.135	34.14	1.014	1.014	223.55	114	0.588	
21	21 13C-1,2,3,6,7,8-HxCDD	4.20e5	1.27	NO	0.833	10.217	34.273	34.25	1.018	1.017	221.70	113	0.494	
22	22 13C-1,2,3,7,8,9-HxCDD	4.06e5	1.28	NO	0.762	10.217	34.515	34.53	1.025	1.026	233.79	119	0.540	
23	23 13C-1,2,3,4,6,7,8-HpCDD	3.14e5	1.05	NO	0.650	10.217	38.000	38.01	1.129	1.129	212.11	108	0.720	
24	24 13C-OCDD	4.70e5	0.90	NO	0.539	10.217	40.966	40.98	1.217	1.217	382.59	97.7	0.714	
25	25 13C-2,3,7,8-TCDF	7.86e5	0.77	NO	0.981	10.217	25.395	25.39	1.003	1.003	214.18	109	0.336	
26	26 13C-1,2,3,7,8-PeCDF	6.58e5	1.61	NO	0.792	10.217	29.524	29.55	1.166	1.167	222.28	114	0.764	
27	27 13C-2,3,4,7,8-PeCDF	6.46e5	1.64	NO	0.778	10.217	30.582	30.62	1.208	1.210	222.01	113	0.778	
28	28 13C-1,2,3,4,7,8-HxCDF	4.45e5	0.50	NO	0.954	10.217	33.226	33.23	0.987	0.987	204.85	105	0.742	
29	29 13C-1,2,3,6,7,8-HxCDF	4.56e5	0.49	NO	1.01	10.217	33.357	33.36	0.991	0.991	198.99	102	0.703	
30	30 13C-2,3,4,6,7,8-HxCDF	4.23e5	0.52	NO	0.921	10.217	34.027	34.03	1.011	1.011	201.49	103	0.768	
31	31 13C-1,2,3,7,8,9-HxCDF	3.89e5	0.51	NO	0.803	10.217	35.024	35.02	1.040	1.040	212.40	108	0.880	

Cataset:

U:\VG12.PRO\Results\201120R1\201120R1-11.qld

Last Altered: Printed:

Monday, November 23, 2020 9:56:08 AM Pacific Standard Time Monday, November 23, 2020 9:56:39 AM Pacific Standard Time

Name: 201120R1_11, Date: 20-Nov-2020, Time: 15:22:58, ID: 2002358-02 USMPDI-055SC-A-02-03-201028 15.15, Description: USMPDI-055SC-A-02-03-201028

	# Name	Resp	RA	n/y	RRF	wt/voi	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
32	32 13C-1,2,3,4,6,7,8-HpCDF	3.01e5	0.42	NO	0.735	10.217	36.593	36.59	1.087	1.087	179.51	91.7	0.773	
33	33 13C-1,2,3,4,7,8,9-HpCDF	2.27e5	0.42	NO	0.568	10.217	38.630	38.64	1.147	1.148	175.76	89.8	1.00	
34	34 13C-OCDF	4.88e5	0.84	NO	0.629	10.217	41.249	41.26	1.225	1.226	340.55	87.0	0.567	
35	35 37CI-2,3,7,8-TCDD	2.32e5			1.09	10.217	26.073	26.10	1.030	1.031	89.100	114	0.0673	
36	36 13C-1,2,3,4-TCDD	4.68e5	0.81	NO	1.00	10.217	25.370	25.31	1.000	1.000	195.76	100	0.335	
37	37 13C-1,2,3,4-TCDF	7.32e5	0.78	NO	1.00	10.217	23.870	23.82	1.000	1.000	195.76	100	0.329	
38	38 13C-1,2,3,4,6,9-HxCDF	4.46e5	0.49	NO	1.00	10.217	33.710	33.67	1.000	1.000	195.76	100	0.707	
39	39 Total Tetra-Dioxins				0.950	10.217	24.620		0.000		2.2806		0.109	2.58
40	40 Total Penta-Dioxins				0.885	10.217	29.960		0.000		4.7175		0.150	5.94
41	41 Total Hexa-Dioxins				0.915	10.217	33.635		0.000		41.233		0.295	41.2
42	42 Total Hepta-Dioxins				0.870	10.217	37.640		0.000		206.01		1.01	206
43	43 Total Tetra-Furans				0.824	10.217	23.610		0.000		38.128		0.132	39.8
44	44 1st Func. Penta-Furans				0.963	10.217	26.930		0.000		5.2121		0.0317	5.21
45	45 Total Penta-Furans				0.963	10.217	29.275		0.000		93.073		0.178	93.1
46	46 Total Hexa-Furans				0.991	10.217	33.555		0.000		108.61		0.211	109
47	47 Total Hepta-Furans				0.999	10.217	37.835		0.000		85.451		0.288	85.5

Work Order 2002358 Page 93 of 353

Dataset: U:\VG12.PRC

U:\VG12.PRO\Results\201120R1\201120R1-11.qld

Last Altered:

Monday, November 23, 2020 9:56:08 AM Pacific Standard Time

Printed:

Monday, November 23, 2020 9:56:39 AM Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_11, Date: 20-Nov-2020, Time: 15:22:58, ID: 2002358-02 USMPDI-055SC-A-02-03-201028 15.15, Description: USMPDI-055SC-A-02-03-201028

Tetra-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	22,27	7.836e3	1.036e4	6.747e2	8.728e2	0.77	NO	1.548e3	0.55915	0.55915	0.109
2	Total Tetra-Dioxins	22.64	3.003e3	5.036e3	2.927e2	4.299e2	0.68	NO	7.225e2	0.26107	0.26107	0.109
3	Total Tetra-Dioxins	23.16	3.957e3	3.561e3	2.638e2	3.231e2	0.82	NO	5.868e2	0.21203	0.21203	0.109
4	Total Tetra-Dioxins	24.01	3.457e3	5.271e3	2.654e2	3.827e2	0.69	NO	6.481e2	0.23416	0.23416	0.109
5	Total Tetra-Dioxins	24.22	2.042e3	2.335e3	1.497e2	1.937e2	0.77	NO	3.435e2	0.12410	0.12410	0.109
6	Total Tetra-Dioxins	24.46	3.827e3	5.634e3	2.740e2	3.508e2	0.78	NO	6.248e2	0.22575	0.22575	0.109
7	Total Tetra-Dioxins	25.4 2	1.881e3	3.062e3	1.503e2	1.759e2	0.85	NO	3.262e2	0.11786	0.11786	0.109
8	Total Tetra-Dioxins	25.83	1.015e4	1.230e4	6.130e2	8.994e2	0.68	NO	1.512e3	0.54646	0.54646	0.109
9	2,3,7,8-TCDD	26.11	5.443e3	1.146e4	3.656e2	7.271e2	0.50	YES	1.093e3	0.00000	0.30368	0.109

Penta-Dioxins

2010	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.57	1.857e4	3.020e4	1.224e3	1.984e3	0.62	NO	3.208e3	1.6141	1.6141	0.150
2	Total Penta-Dioxins	29.03	6.117e3	9.342e3	2.924e2	4.056e2	0.72	NO	6.980e2	0.35120	0.35120	0.150
3	Total Penta-Dioxins	29.56	1.569e4	1.565e4	7.345e2	1.049e3	0.70	NO	1.784e3	0.89762	0.89762	0.150
4	Total Penta-Dioxins	29.74	1.363e4	1.854e4	4.544e2	6.646e2	0.68	NO	1.119e3	0.56308	0.56308	0.150
5	Total Penta-Dioxins	29.75	1.005e4	1.441e4	5.357e2	7.979e2	0.67	NO	0.000e0	0.00000	0.67102	0.150
6	Total Penta-Dioxins	30.06	8.611e3	1.426e4	6.372e2	1.011e3	0.63	NO	1.648e3	0.82937	0.82937	0.150
7	1,2,3,7,8-PeCDD	30.83	8.398e3	1.897e4	4.271e2	9.042e2	0.47	YES	1.331e3	0.00000	0.55607	0.150
8	Total Penta-Dioxins	30.87	4.499e3	6.648e3	1.855e2	2.915e2	0.64	NO	4.770e2	0.23999	0.23999	0.150
9	Total Penta-Dioxins	31.18	4.060e3	5.932e3	1.600e2	2.814e2	0.57	NO	4.414e2	0.22212	0.22212	0.150

Work Order 2002358 Page 94 of 353

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-11.qld

Last Altered: Printed:

Monday, November 23, 2020 9:56:08 AM Pacific Standard Time Monday, November 23, 2020 9:56:39 AM Pacific Standard Time

Name: 201120R1_11, Date: 20-Nov-2020, Time: 15:22:58, ID: 2002358-02 USMPDI-055SC-A-02-03-201028 15.15, Description: USMPDI-055SC-A-02-03-201028

Haxa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.52	2.079e5	1.656e5	1.042e4	8.554e3	1.22	NO	1.897e4	10.304	10.304	0.295
2	Total Hexa-Dioxins	33.10	1.808e4	1.613e4	1.031e3	8.383e2	1.23	NO	1.869e3	1.0152	1.0152	0.295
3	Total Hexa-Dioxins	33.40	2.858e5	2.348e5	2.045e4	1.649e4	1.24	NO	3.694e4	20.065	20.065	0.295
4	Total Hexa-Dioxins	33.49	1.931e4	1.605e4	9.975e2	7.456e2	1.34	NO	1.743e3	0.94688	0.94688	0.295
5	1,2,3,4,7,8-HxCDD	34.15	1.250e4	1.033e4	6.846e2	5.366e2	1.28	NO	1.221e3	0.65952	0.65952	0.284
в	1,2,3,6,7,8-HxCDD	34.27	9.668e4	8.668e4	6.075e3	5.176e3	1.17	NO	1.125e4	5.7288	5.7288	0.276
7	Total Hexa-Dioxins	34.42	6.997e3	5.584e3	2.990e2	2.409e2	1.24	NO	5.399e2	0.29329	0.29329	0.295
8	1,2,3,7,8,9-HxCDD	34.54	3.654e4	3.210e4	2.348e3	1.951e3	1.20	NO	4.299e3	2.2206	2.2206	0.290

Hepta-Dioxins

73/100	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	п/у	Resp	Conc.	EMIPC	DL
1	Total Hepta-Dioxins	37.00	1.033e6	1.003e6	7.990e4	7.846e4	1.02	NO	1.584e5	113.60	113.60	1.01
2	1,2,3,4,6,7,8-HpCDD	38.02	1.030e6	1.006e6	6.508e4	6.372e4	1.02	NO	1.288e5	92.404	92.404	1.01

Work Order 2002358 Page 95 of 353

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-11.qld

Last Altered: Printed:

Monday, November 23, 2020 9:56:08 AM Pacific Standard Time Monday, November 23, 2020 9:56:39 AM Pacific Standard Time

Name: 201120R1_11, Date: 20-Nov-2020, Time: 15:22:58, ID: 2002358-02 USMPDI-055SC-A-02-03-201028 15.15, Description: USMPDI-055SC-A-02-03-201028

Tetra-Furans

19 Oct 1	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	20.08	3.294e3	5.469e3	2.774e2	3.828e2	0.72	NO	6.602e2	0.19947	0.19947	0.132
2	Total Tetra-Furans	20.60	4.438e3	5.895e3	4.064e2	5.566e2	0.73	NO	9.629e2	0.29096	0.29096	0.132
3	Total Tetra-Furans	21.40	1.829e4	2.468e4	1.654e3	2.323e3	0.71	NO	3.977e3	1.2016	1.2016	0.132
4	Total Tetra-Furans	22.31	5.290e4	7.451e4	5.097e3	6.976e3	0.73	NO	1.207e4	3.6481	3.6481	0.132
5	Total Tetra-Furans	22.80	2.222e4	2.510e4	1.591e3	2.180e3	0.73	NO	3.771e3	1.1395	1.1395	0.132
6	Total Tetra-Furans	22.90	4.861e3	5.497e3	3.005e2	4.509e2	0.67	NO	7.514e2	0.22705	0.22705	0.132
7	Total Tetra-Furans	23.16	9.802e3	1.456e4	8.147e2	1.100e3	0.74	NO	1.915e3	0.57867	0.57867	0.132
8.	Total Tetra-Furans	23.58	2.149e3	2.446e3	1.269e2	1.627e2	0.78	NO	2.896e2	0.087517	0.087517	0.132
9	Total Tetra-Furans	23.67	3.199e3	3.375e3	1.611e2	2.411e2	0.67	NO	4.022e2	0.12153	0.12153	0.132
10	Total Tetra-Furans	23.91	2.119e4	2.921e4	1.449e3	2.032e3	0.71	NO	0.000e0	0.00000	1.0517	0.132
11	Total Tetra-Furans	23.95	1.338e4	1.941e4	8.638e2	1.126e3	0.77	NO	0.000e0	0.00000	0.60125	0.132
12	Total Tetra-Furans	24.40	2.542e5	3.453e5	1.832e4	2.535e4	0.72	NO	4.367e4	13.195	13.195	0.132
13	Total Tetra-Furans	24.74	9.573e3	8.329e3	4.967e2	5.652e2	0.88	NO	1.062e3	0.32085	0.32085	0.132
14	Total Tetra-Furans	25.28	2.187e4	2.661e4	1.239e3	1.652e3	0.75	NO	2.892e3	0.87370	0.87370	0.132
15	2,3,7,8-TCDF	25.42	3.315e5	4.555e5	2.188e4	2.974e4	0.74	NO	5.161e4	15.596	15.596	0.132
16	Total Tetra-Furans	27.34	1.564e4	1.974e4	9.860e2	1.161e3	0.85	NO	2.147e3	0.64879	0.64879	0.132

Penta-Furans function 1

98-50	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1st Func. Penta-Furans	26.94	1.585e5	1.101e5	1.025e4	6.456e3	1.59	NO	1.671e4	5.2121	5.2121	0.0317

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-11.qld

Last Altered: Printed:

Monday, November 23, 2020 9:56:08 AM Pacific Standard Time Monday, November 23, 2020 9:56:39 AM Pacific Standard Time

Name: 201120R1_11, Date: 20-Nov-2020, Time: 15:22:58, ID: 2002358-02 USMPDI-055SC-A-02-03-201028 15.15, Description: USMPDI-055SC-A-02-03-201028

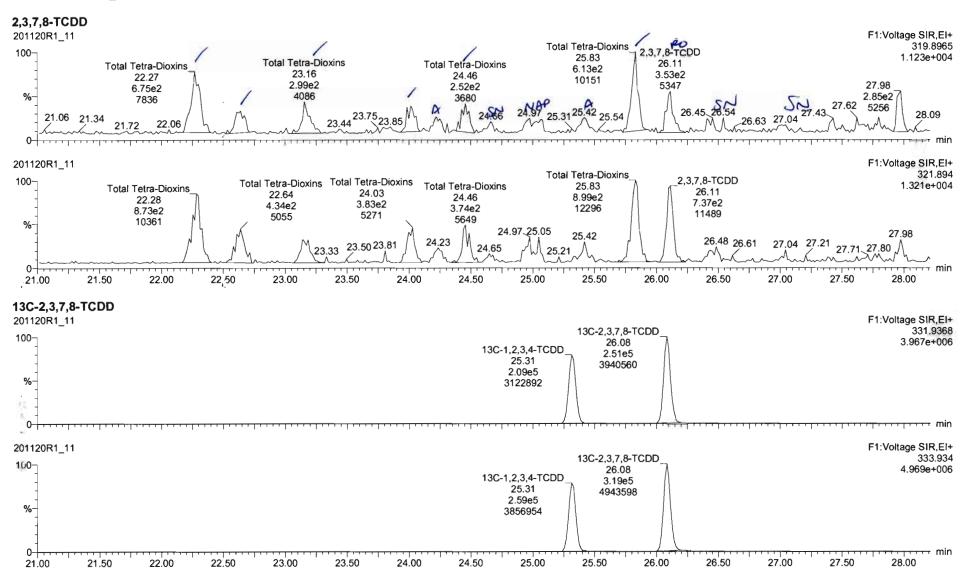
Fenta-Furans

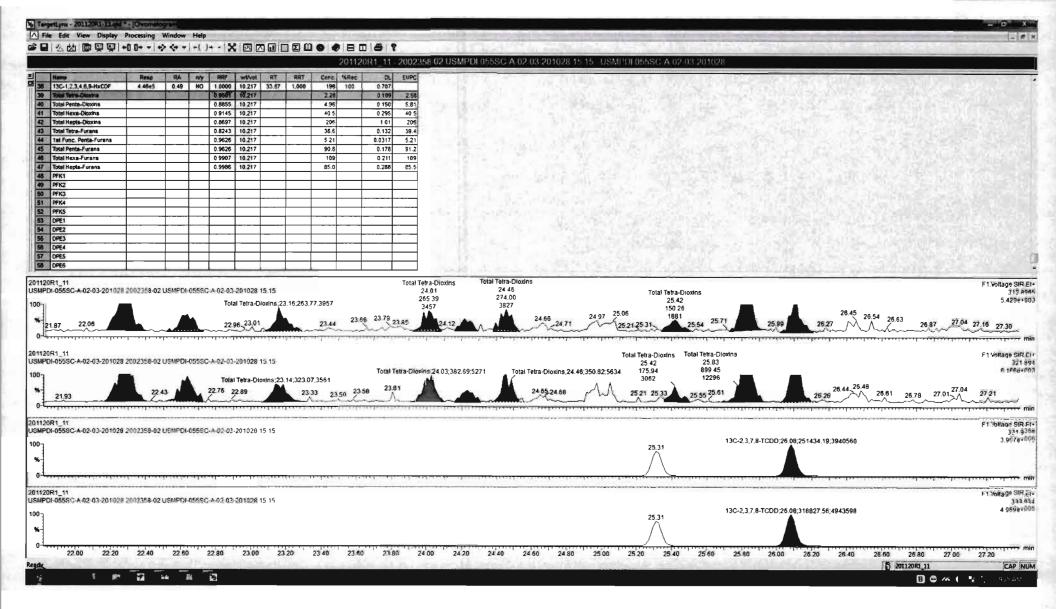
	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	п/у	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.41	1.781e4	8.797e3	1.041e3	6.018e2	1.73	NO	1.643e3	0.51266	0.51266	0.178
2	Total Penta-Furans	28.58	5.669e5	3.495e5	3.385e4	2.189e4	1.55	NO	5.574e4	17.390	17.390	0.178
3	Total Penta-Furans	29.21	3.872e4	2.392e4	2.156e3	1.486e3	1.45	NO	3.642e3	1.1363	1.1363	0.178
4	Total Penta-Furans	29.36	1.213e5	7.505e4	6.117e3	3.870e3	1.58	NO	9.987e3	3.1158	3.1158	0.178
5	1,2,3,7,8-PeCDF	29.56	1.384e6	8.947e5	7.644e4	4.891e4	1.56	NO	1.253e5	38.738	38.738	0.177
6	Total Penta-Furans	29.66	2.281e4	1.204e4	9.338e2	6.078e2	1.54	NO	1.542e3	0.48098	0.48098	0.178
7	Total Penta-Furans	29.81	4.561e5	2.675e5	2.372e4	1.488e4	1.59	NO	3.860e4	12.043	12.043	0.178
8	2,3,4,7,8-PeCDF	30.62	7.481e5	4.827e5	4.050e4	2.626e4	1.54	NO	6.676e4	18.946	18.946	0.162
9	Total Penta-Furans	31.56	2.270e4	1.588e4	1.348e3	9.295e2	1.45	NO	2.277e3	0.71046	0.71046	0.178

Hexa-Furans

de Chi	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	31.98	6.301e4	4.948e4	3.190e3	2.492e3	1.28	NO	5.682e3	2.6237	2.6237	0.211
2	Total Hexa-Furans	32.15	2.852e5	2.335e5	1.363e4	1.155e4	1.18	NO	2.518e4	11.628	11.628	0.211
3	Total Hexa-Furans	32.56	7.404e3	3.629e3	2.887e2	2.063e2	1.40	NO	4.949e2	0.22852	0.22852	0.211
4	Total Hexa-Furans	32.78	2.490e5	2.068e5	1.261e4	1.084e4	1.16	NO	2.345e4	10.829	10.829	0.211
5	Total Hexa-Furans	33.11	1.021e4	7.273e3	5.604e2	5.061e2	1.11	NO	1.067e3	0.49244	0.49244	0.211
6	1,2,3,4,7,8-HxCDF	33.24	1.128e6	9.661e5	6.257e4	5.246e4	1.19	NO	1.150e5	53.086	53.086	0.188
7	1,2,3,6,7,8-HxCDF	33.38	4.184e5	3.363e5	2.443e4	2.014e4	1.21	NO	4.457e4	18.990	18.990	0.183
8	2,3,4,6,7,8-HxCDF	34.05	9.705e4	7.751e4	6.156e3	5.379e3	1.14	NO	1.154e4	5.3935	5.3935	0.212
9.	1,2,3,7,8,9-HxCDF	35.04	6.734e4	5.828e4	1.817e3	1.463e3	1.24	NO	3.280e3	1.7385	1.7385	0.284
10	Total Hexa-Furans	35.06	8.066e4	6.790e4	4.222e3	3.575e3	1.18	NO	7.797e3	3.6001	3.6001	0.211

Hepta-Furans

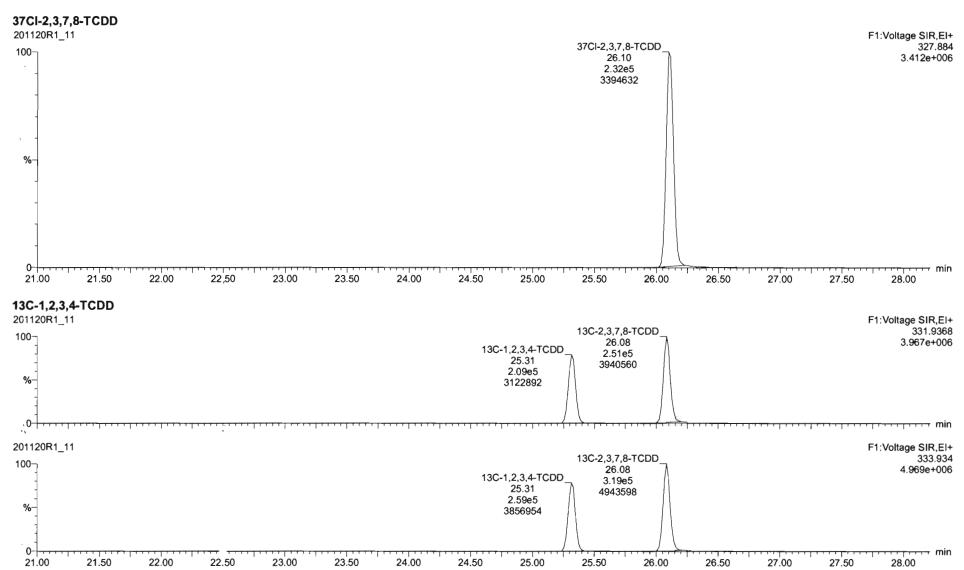

SAFE.	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	36.60	3.601e5	3.441e5	2.571e4	2.635e4	0.98	NO	5.206e4	33.944	33.944	0.281
2	Total Hepta-Furans	37.08	4.897e3	6.303e3	4.442e2	4.708e2	0.94	NO	9.149e2	0.67960	0.67960	0.288
3.	Total Hepta-Furans	37.34	3.976e5	4.172e5	2.872e4	2.978e4	0.96	NO	5.850e4	43.453	43.453	0.288
4	1,2,3,4,7,8,9-HpCDF	38.65	7.612e4	9.180e4	4.631e3	4.986e3	0.93	NO	9.617e3	7.3735	7.3735	0.265


Work Order 2002358 Page 97 of 353

Untitled

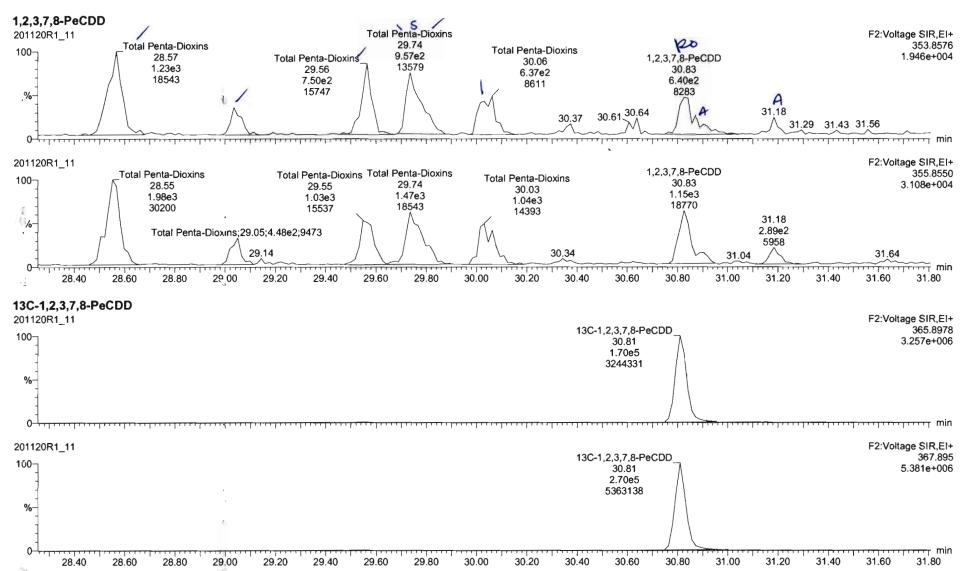
Last Altered: Printed:

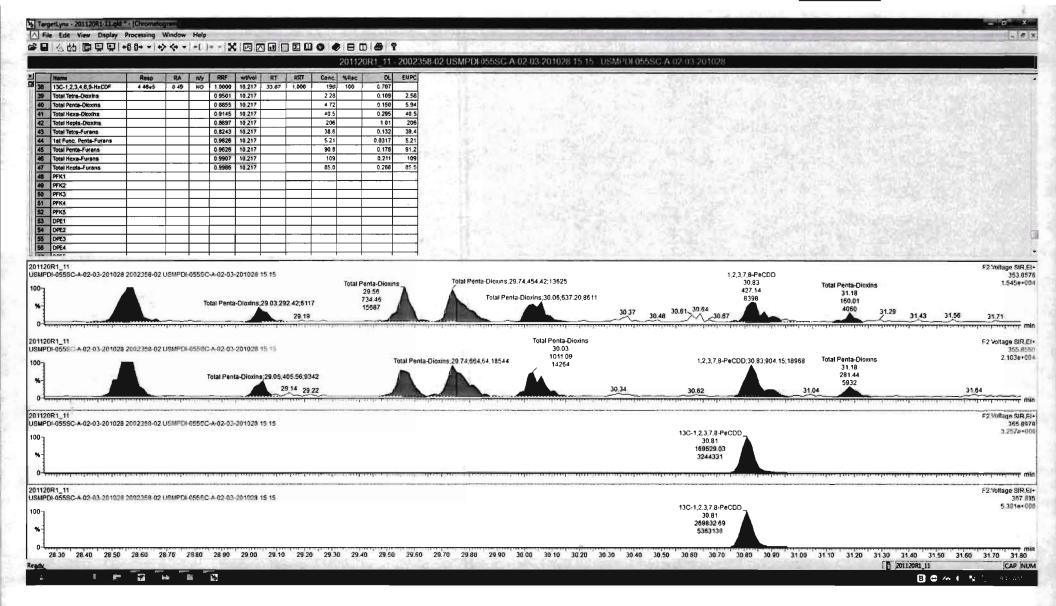
Saturday, November 2⁻, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Page 99 of 353

Untitled

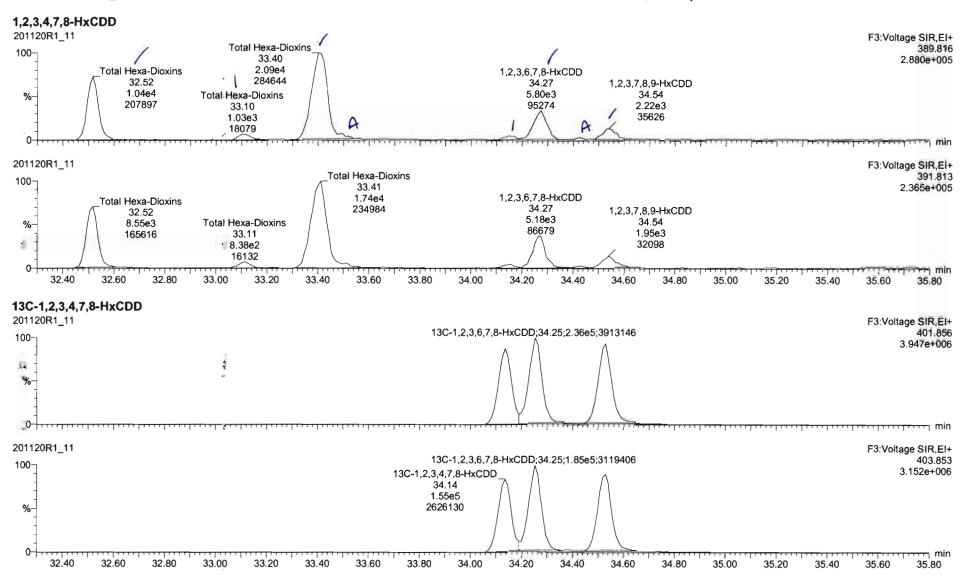

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

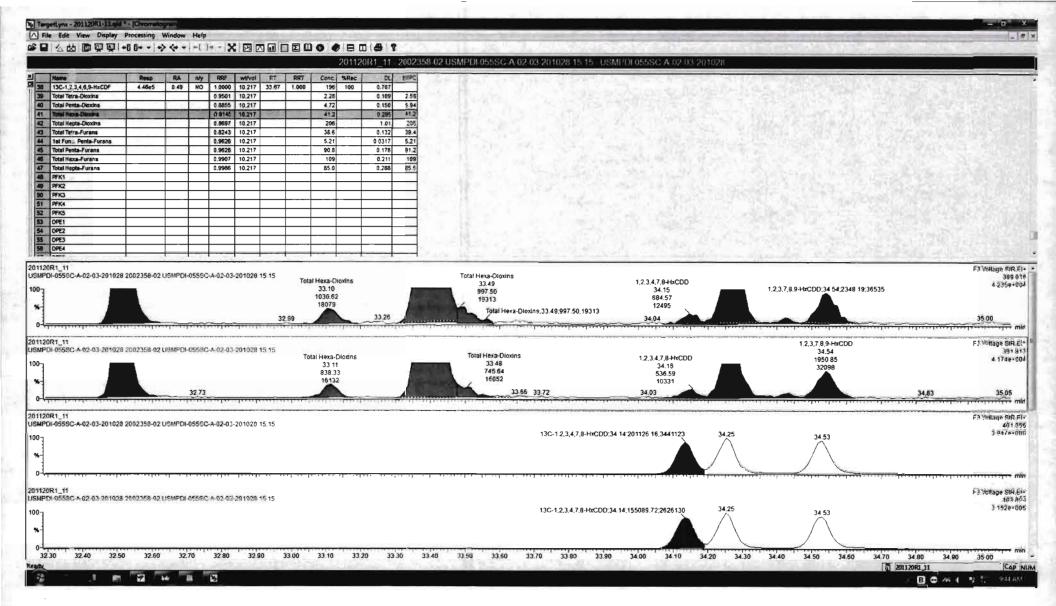


Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

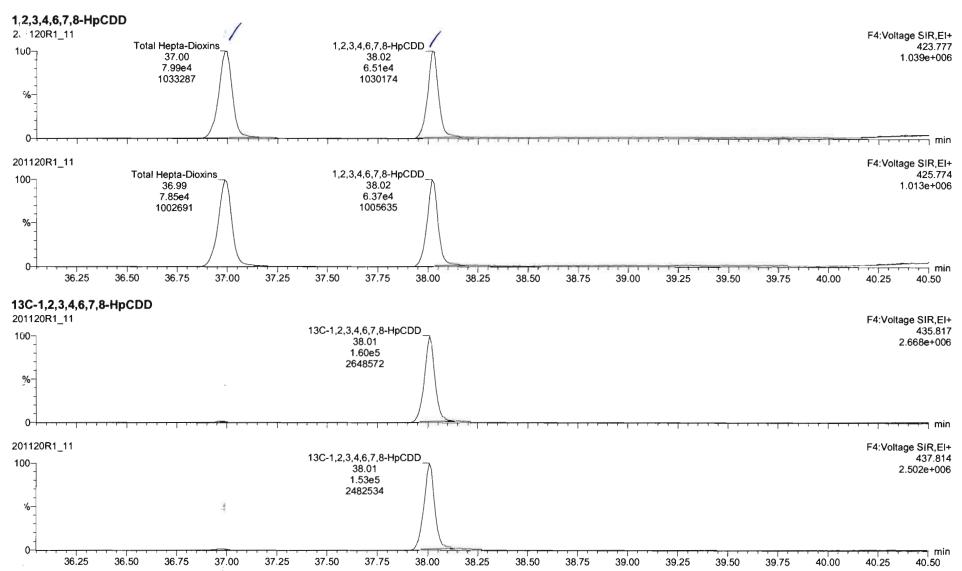

Work Order 2002358 Page 102 of 353


(A)

Dataset:

Untitled

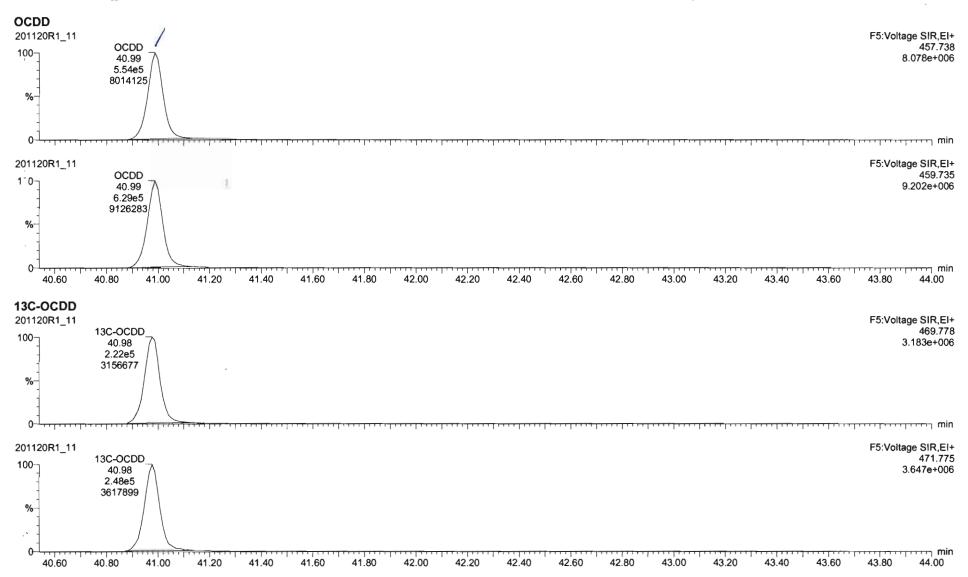
Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Work Order 2002358 Page 104 of 353

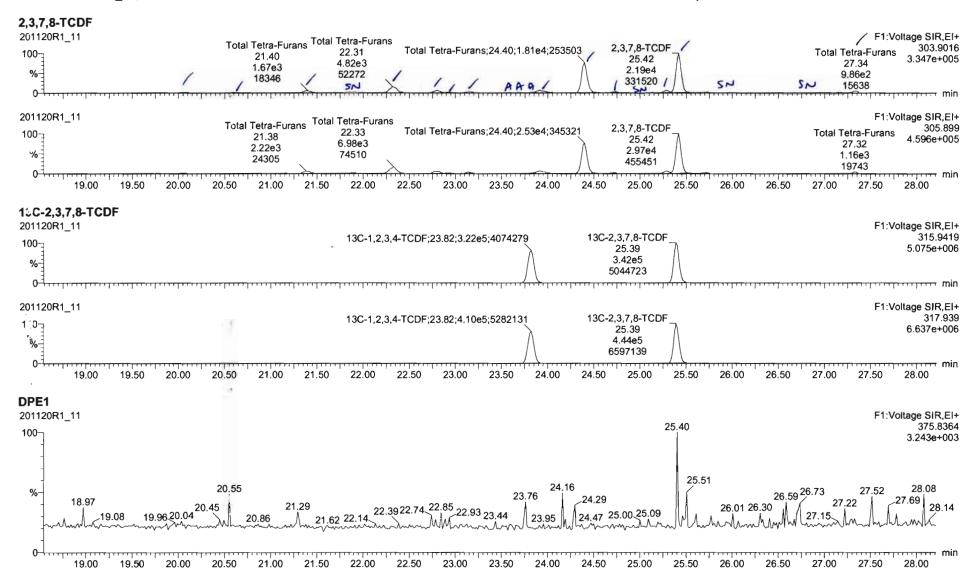
Untitled

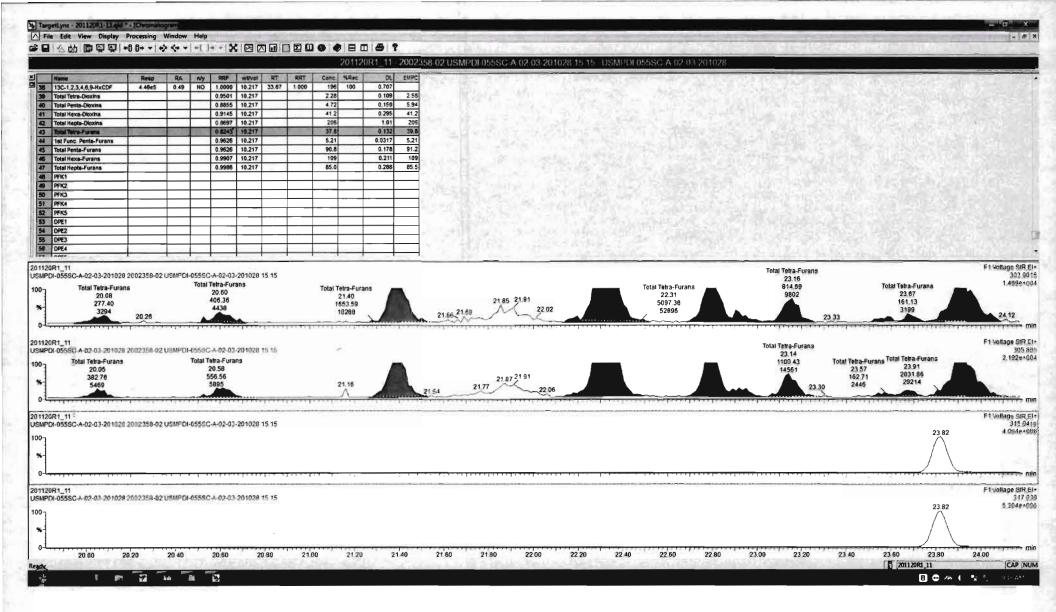
Last Altered: Printed:

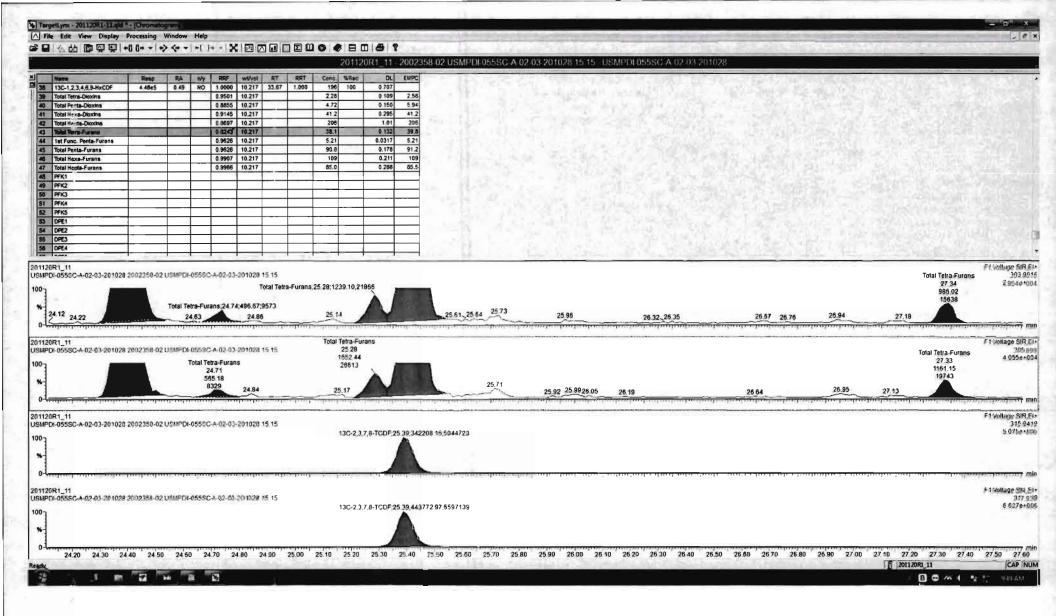

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

Last Altered: Printed:

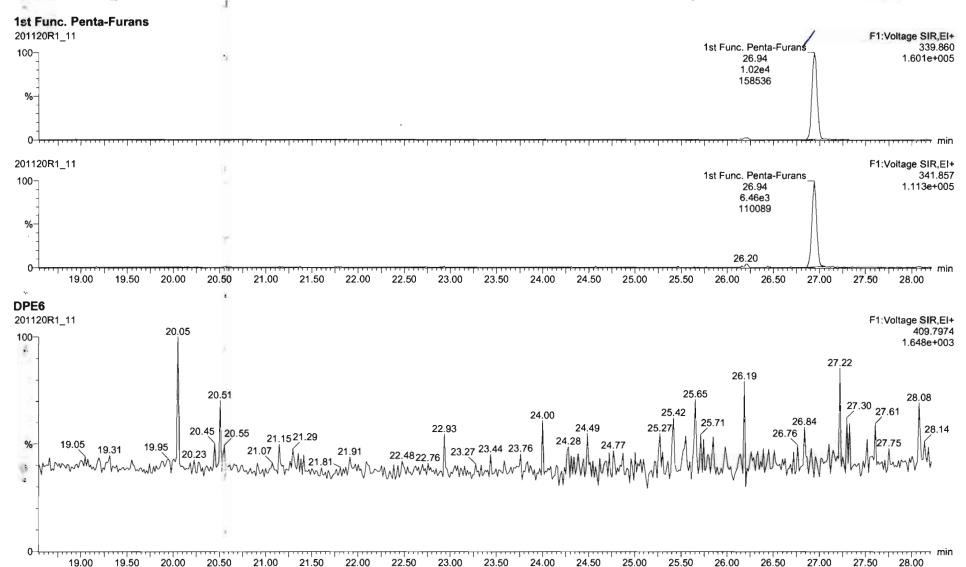

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

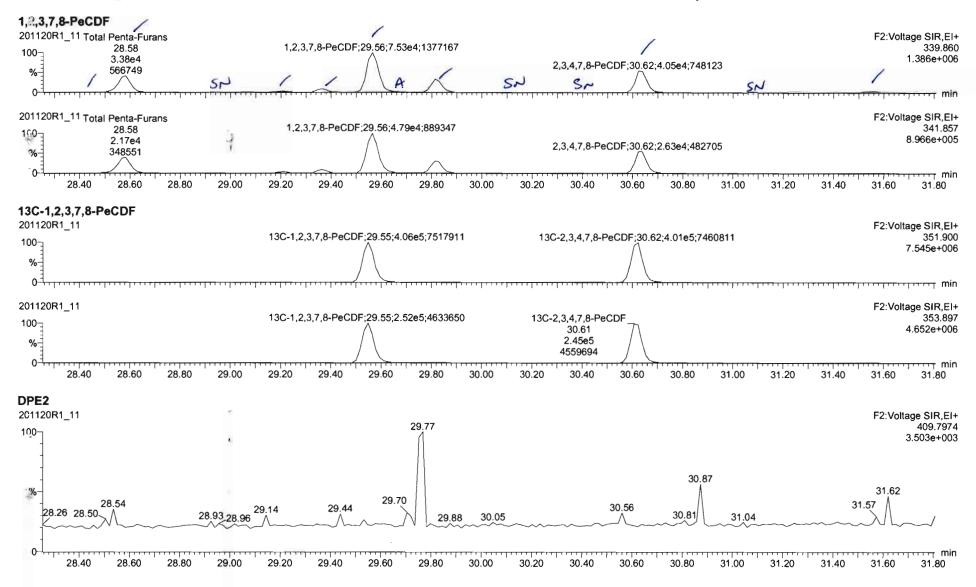


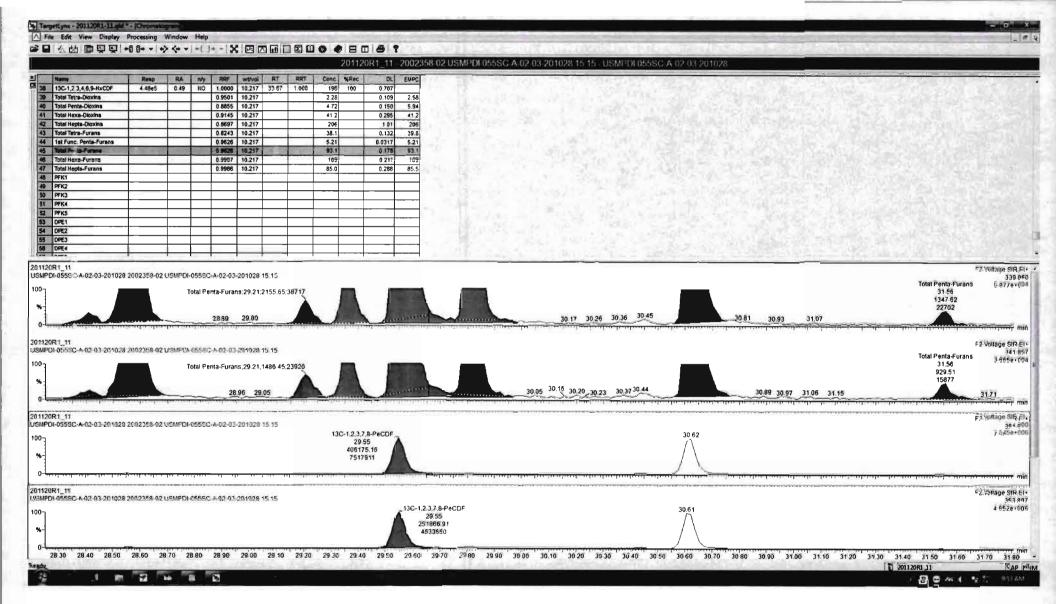

Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

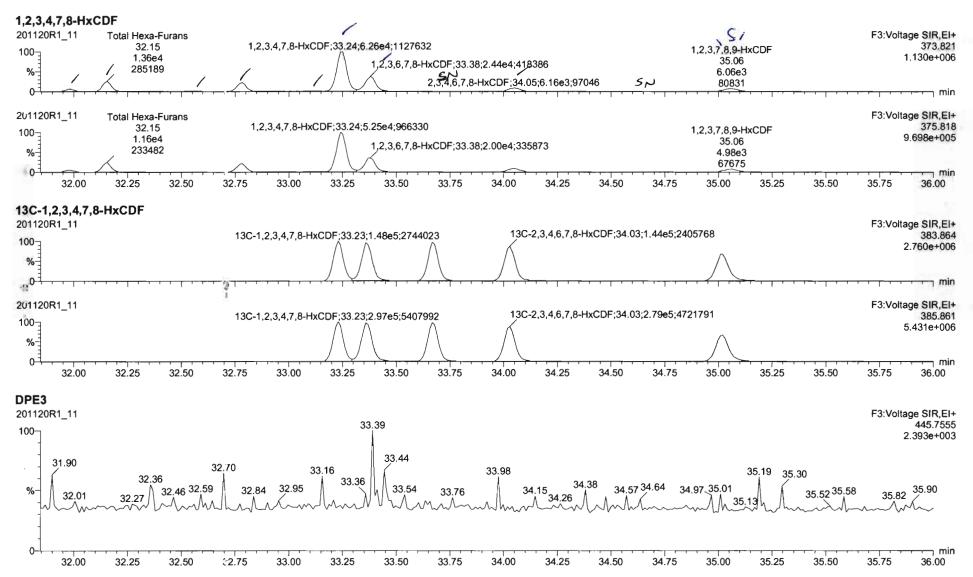


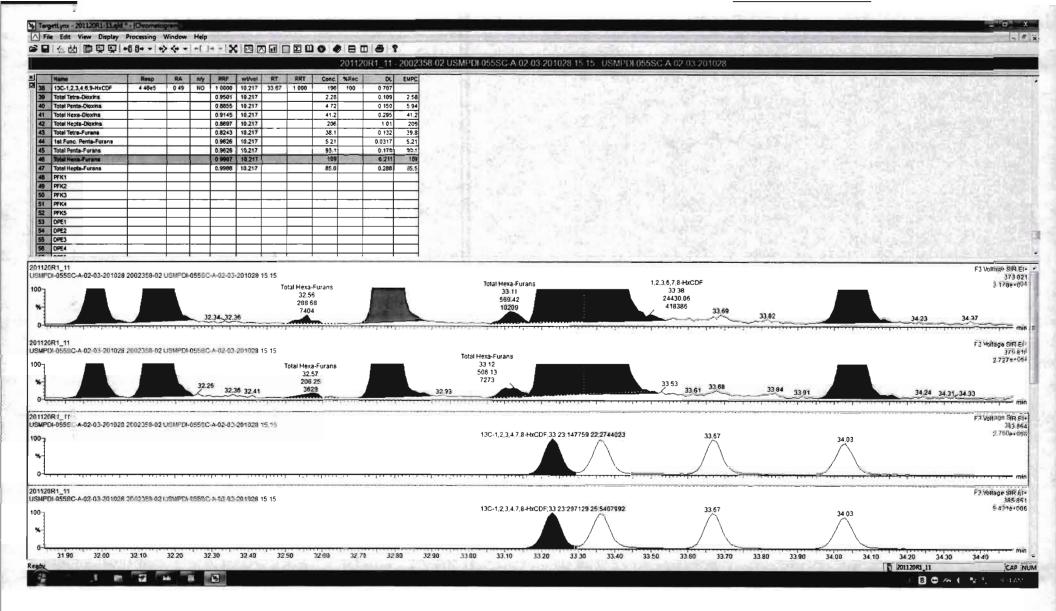

Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

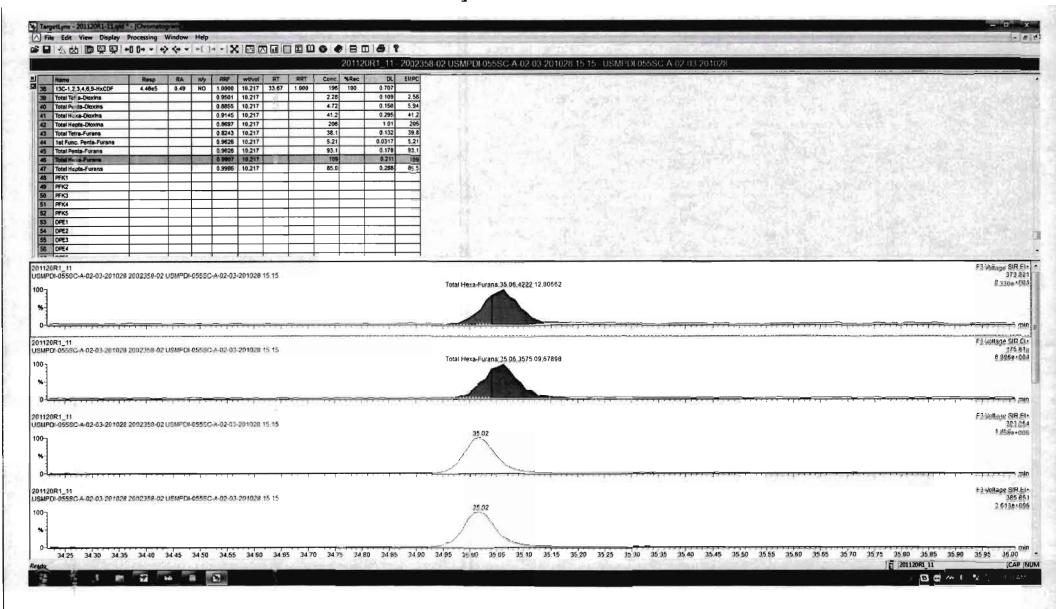
Untitled

Last Altered: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

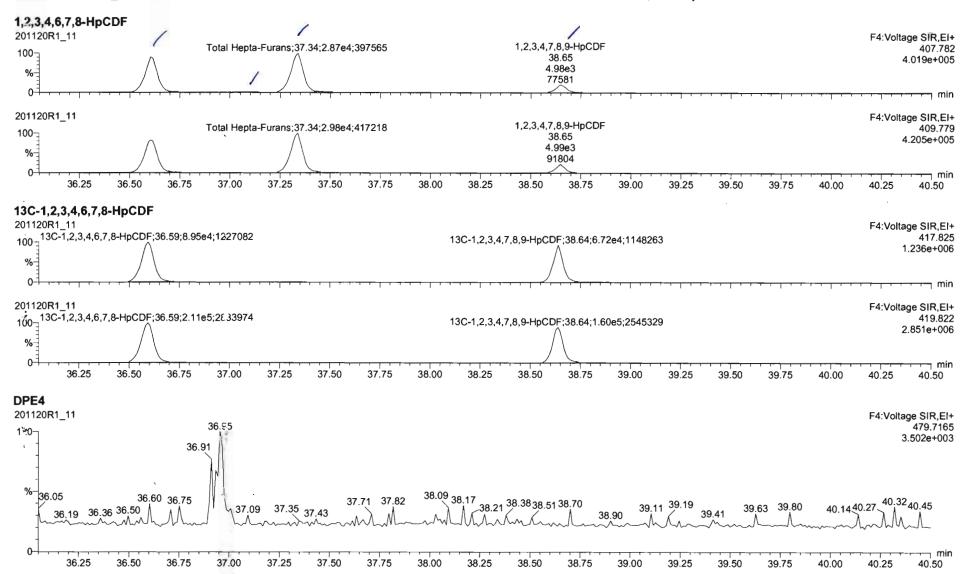


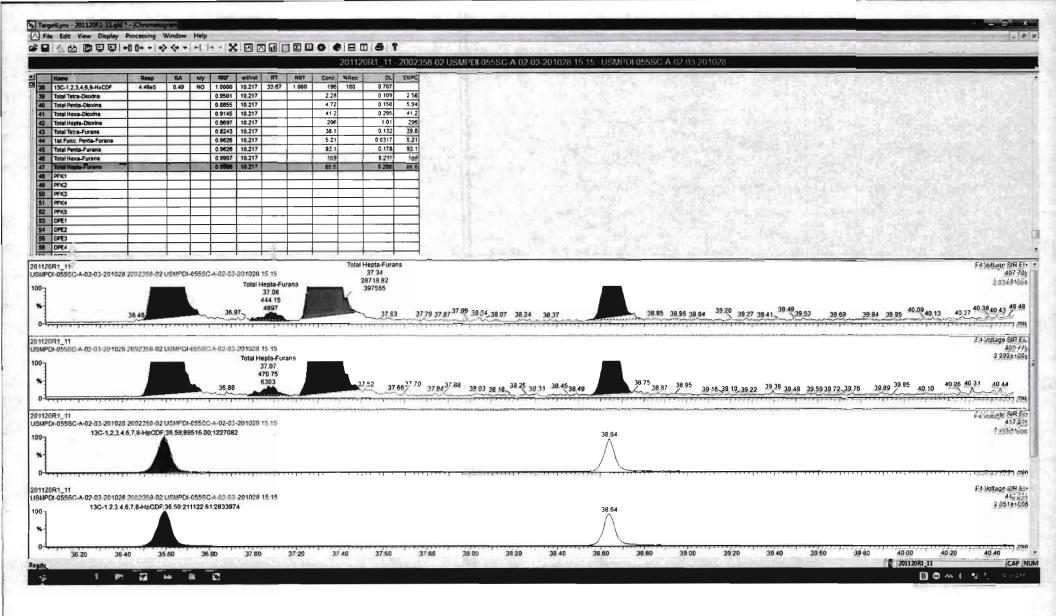


Untitled


Last Altered: Printed:

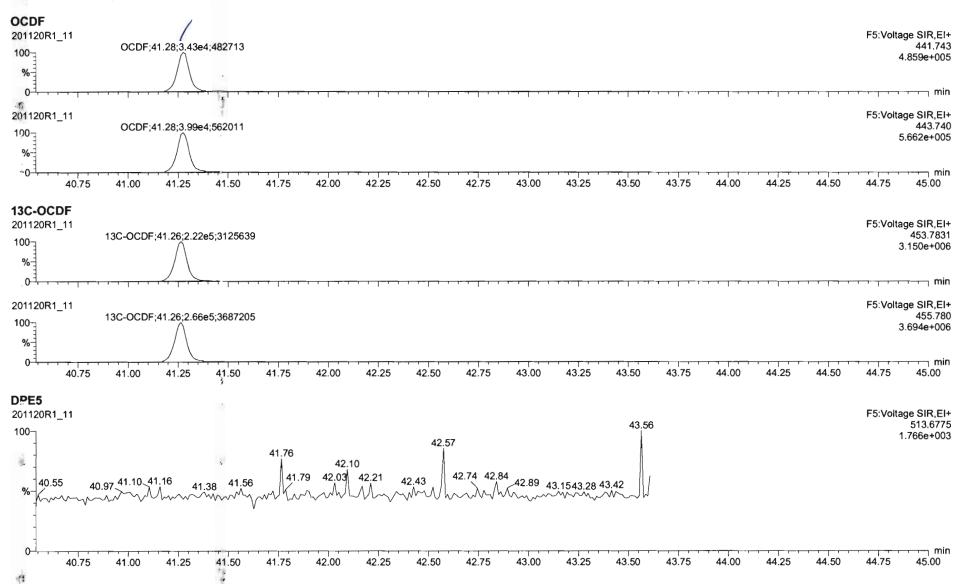
Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Work Order 2002358 Page 114 of 353

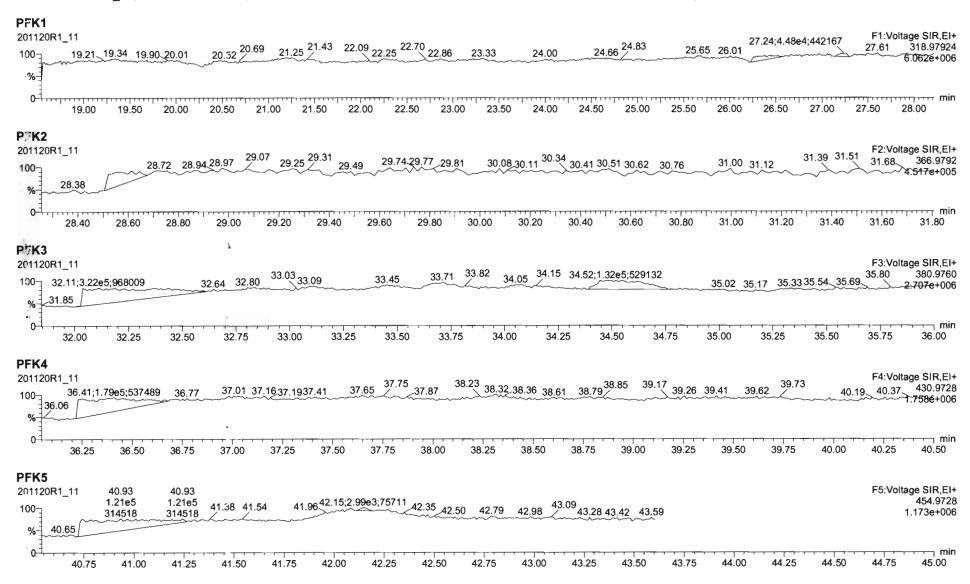


Untitled

Last Altered: Printed:


Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Page 1 of 2

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-12.qld

Last Altered:

Monday, November 23, 2020 10:32:42 AM Pacific Standard Time

Printed:

Monday, November 23, 2020 10:37:12 AM Pacific Standard Time

GRB 11/23/2020

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1 12, Date: 20-Nov-2020, Time: 16:07:54, ID: 2002358-03 USMPDI-055SC-A-03-04-201028 17.3, Description: USMPDI-055SC-A-03-04-201028

WE TO	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD	7.29e2	0.40	YES	0.950	10.334	26.097	26.08	1.001	1.001	0.28464		0.0689	0.168
2	2 1,2,3,7,8-PeCDD	4.34e2	0.93	YES	0.885	10.334	30.804	30.81	1.000	1.000	0.21652		0.124	0.183
3	3 1,2,3,4,7,8-HxCDD			NO	1.02	10.334	34.135		1.000		,		0.132	
4	4 1,2,3,6,7,8-HxCDD			NO	0.915	10.334	34.252		1.000				0.128	
5	5 1,2,3,7,8,9-HxCDD			NO	0.934	10.334	34.529		1.000				0.138	
6	6 1,2,3,4,6,7,8-HpCDD	3.21e3	1.02	NO	0.870	10.334	38.009	38.03	1.000	1.001	2.0854		0.189	2.09
7	7 OCDD	2.29e4	0.88	NO	0.872	10.334	40.966	40.98	1.000	1.000	21.035		0.214	21.0
8	8 2,3,7,8-TCDF	1.03e3	0.79	NO	0.824	10.334	25.396	25.42	1.000	1.001	0.30807		0.0816	0.308
9	9 1,2,3,7,8-PeCDF	2.51e2	1.12	YES	0.963	10.334	29.542	29.56	1.000	1.001	0.076106		0.0250	0.0662
10	10 2,3,4,7,8-PeCDF			NO	1.07	10.334	30.608		1.000				0.0426	
11	11 1,2,3,4,7,8-HxCDF	2.71e2	0.96	YES	0.953	10.334	33.220	33.23	1.000	1.000	0.11751		0.0300	0.104
12	12 1,2,3,6,7,8-HxCDF			NO	1.01	10.334	33.348		1.000		-		0.0543	
13	13 2,3,4,6,7,8-HxCDF			NO	0.991	10.334	34.011		1.000				0.0605	
14	14 1,2,3,7,8,9-HxCDF			NO	0.951	10.334	35.009		1.000				0.0859	ļ
15	15 1,2,3,4,6,7,8-HpCDF			NO	0.999	10.334	36.586		1.000				0.0766	
16	16 1,2,3,4,7,8.9-HpCDF			NO	1.12	10.334	38.626		1.000				0.0705	
17	17 OCDF			NO	0.868	10.334	41.262		1.000				0.127	
18	18 13C-2,3,7,8-TCDD	5.83e5	0.80	NO	1.11	10.334	26.058	26.07	1.030	1.030	215.53	111	0.295	
19	19 13C-1,2,3,7,8-PeCDD	4.39e5	0.67	NO	0.859	10.334	30.774	30.80	1.216	1.217	209.33	108	0.426	
20	20 13C-1,2,3,4,7,8-HxCDD	3.83e5	1.30	NO	0.700	10.334	34.125	34.13	1.014	1.014	223.43	115	0.786	l
21	21 13C-1,2,3,6,7,8-HxCDD	4.46e5	1.28	NO	0.833	10.334	34.263	34.24	1.018	1.017	218.86	113	0.661	
22	22 13C-1,2,3,7,8,9-HxCDD	4.28e5	1.25	NO	0.762	10.334	34.505	34.52	1.025	1.026	229.68	119	0.722	
23	23 13C-1,2,3,4,6,7,8-HpCDD	3.42e5	1.07	NO	0.650	10.334	37.989	38.01	1.129	1.129	215.41	111	0.974	
24	24 13C-OCDD	4.84e5	0.90	NO	0.539	10.334	40.954	40.97	1.217	1.217	366.85	94.8	0.712	
25	25 13C-2,3,7,8-TCDF	7.85e5	0.77	NO	0.981	10.334	25.380	25.39	1.003	1.004	215.19	111	0.323	
26	26 13C-1,2,3,7,8-PeCDF	6.63e5	1.57	NO	0.792	10.334	29.506	29.53	1.166	1.167	225.55	117	0.714	
27	27 13C-2,3,4,7,8-PeCDF	6.58e5	1.62	NO	0.778	10.334	30.564	30.61	1.208	1.210	227.74	118	0.726	
28	28 13C-1,2,3,4,7,8-HxCDF	4.69e5	0.50	NO	0.954	10.334	33.216	33.22	0.987	0.987	200.92	104	0.798	
29	29 13C-1,2,3,6,7,8-HxCDF	4.76e5	0.50	NO	1.01	10.334	33.347	33.35	0.991	0.991	193.30	99.9	0.757	
30	30 13C-2,3,4,6,7,8-HxCDF	4.45e5	0.50	NO	0.921	10.334	34.017	34.01	1.011	1.010	197.44	102	0.826	

Page 120 of 353 Work Order 2002358

U:\VG12.PRO\Results\201120R1\201120R1-12.qld

Last Altered:

Monday, November 23, 2020 10:32:42 AM Pacific Standard Time

Printed:

Monday, November 23, 2020 10:37:12 AM Pacific Standard Time

Name: 201120R1_12, Date: 20-Nov-2020, Time: 16:07:54, ID: 2002358-03 USMPDI-055SC-A-03-04-201028 17.3, Description: USMPDI-055SC-A-03-04-201028

100	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
31	31 13C-1,2,3,7,8,9-HxCDF	4.09e5	0.50	NO	0.803	10.334	35.013	35.01	1.040	1.040	208.22	108	0.947	
32	32 13C-1,2,3,4,6,7,8-HpCDF	3.23e5	0.42	NO	0.735	10.334	36.582	36.58	1.087	1.087	179.43	92.7	0.710	
33	33 13C-1,2,3,4,7,8,9-HpCDF	2.38e5	0.42	NO	0.568	10.334	38.618	38.63	1.147	1.148	171.41	88.6	0.920	
34	34 13C-OCDF	5.03 e 5	0.88	NO	0.629	10.334	41.237	41.25	1.225	1.226	326.96	84.5	0.502	
35	35 37CI-2,3,7,8-TCDD	2.33e5			1.09	10.334	26.058	26.10	1.030	1.032	87.873	114	0.106	ļ
36	36 13C-1,2,3,4-TCDD	4.72e5	0.80	NO	1.00	10.334	25.370	25.30	1.000	1.000	193.54	100	0.327	
37	37 13C-1,2,3,4-TCDF	7.19e5	0.78	NO	1.00	10.334	23.870	23.81	1.000	1.000	193.54	100	0.317	
38	38 13C-1,2,3,4,6,9-HxCDF	4.74e5	0.50	NO	1.00	10.334	33.710	33.66	1.000	1.000	193.54	100	0.761	
39	39 Total Tetra-Dioxins				0.950	10.334	24.620		0.000		0.87852		0.0669	1.22
40	40 Total Penta-Dioxins				0.885	10.334	29.960		0.000		0.35298		0.134	1.09
41	41 Total Hexa-Dioxins				0.915	10.334	33.635		0.000		2.6298		0.138	2.63
42	42 Total Hepta-Dioxins				0.870	10.334	37.640		0.000		5.6134		0.189	5.61
43	43 Total Tetra-Furans				0.824	10.334	23.610		0.000		0.51611		0.0816	0.792
44	44 1st Func. Penta-Furans				0.963	10.334	26.930		0.000				0.0160	
45	45 Total Penta-Furans				0.963	10.334	29.275		0.000		0.00000		0.0242	0.0662
46	46 Total Hexa-Furans				0.991	10.334	33.555		0.000		0.00000		0.0347	0.104
47	47 Total Hepta-Furans				0.999	10.334	37.835		0.000				0.0400	

Work Order 2002358 Page 121 of 353

Quantify Totals Report MassLynx 4.1 SCN815

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-12.qld

Last Altered: Printed:

Monday, November 23, 2020 10:32:42 AM Pacific Standard Time Monday, November 23, 2020 10:37:12 AM Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_12, Date: 20-Nov-2020, Time: 16:07:54, ID: 2002358-03 USMPDI-055SC-A-03-04-201028 17.3, Description: USMPDI-055SC-A-03-04-201028

Tetra-Dioxins

11/2/11	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Dioxins	22.30	1.921e3	1.890e3	1.630e2	1.437e2	1.13	YES	0.000e0	0.00000	0.088833	0.0669
2	Total Tetra-Dioxins	22.61	1.851e3	1.960e3	1.494e2	1.391e2	1.07	YES	0.000e0	0.00000	0.085950	0.0669
3	Total Tetra-Dioxins	23.19	2.247e3	2.384e3	1.792e2	2.076e2	0.86	NO	3.868e2	0.13506	0.13506	0.0669
4	Total Tetra-Dioxins	24.01	9.991e3	1.265e4	7.706e2	8.805e2	0.88	NO	1.651e3	0.57658	0.57658	0.0669
5	Total Tetra-Dioxins	25.39	2.765e3	3.916e3	2.234e2	2.545e2	0.88	NO	4.779e2	0.16688	0.16688	0.0669
6	2,3,7,8-TCDD	26.08	2.951e3	7.801e3	2.094e2	5.198e2	0.40	YES	7.292e2	0.00000	0.16811	0.0669

Penta-Dioxins

V.J.L.	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	28.57	4.101e3	3.412e3	2.507e2	2.631e2	0.95	YES	0.000e0	0.00000	0.21365	0.134
2	Total Penta-Dioxins	29.00	6.444e3	8.359e3	2.743e2	4.340e2	0.63	NO	7.084e2	0.35298	0.35298	0.134
3	Total Penta-Dioxins	30.05	2.755e3	7.520e3	1.820e2	3.581e2	0.51	YES	0.000e0	0.00000	0.23468	0.134
4	1,2,3,7,8-PeCDD	30.81	5.506e3	4.888e3	2.088e2	2.253e2	0.93	YES	4.341e2	0.00000	0.18298	0.134
5	Total Penta-Dioxins	31.18	3.847e3	1.986e3	1.113e2	1.355e2	0.82	YES	0.000e0	0.00000	0.11006	0.134

Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.51	3.469e4	2.813e4	1,768e3	1.479e3	1.20	NO	3.246e3	1.6402	1.6402	0.138
2	Total Hexa-Dioxins	33.38	1.354e4	1.084e4	1,141e3	8.179e2	1.39	NO	1.959e3	0.98965	0.98965	0.138

Hepta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	36.99	3.303e4	3.749e4	2.706e3	2.721e3	0.99	NO	5.428e3	3.5280	3.5280	0.189
2	1,2,3,4,6,7,8-HpCDD	38.03	2.616e4	2.597e4	1.619e3	1.590e3	1.02	NO	3.208e3	2.0854	2.0854	0.189

Page 2 of 2

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-12.qld

Last Altered: Printed:

Monday, November 23, 2020 10:32:42 AM Pacific Standard Time Monday, November 23, 2020 10:37:12 AM Pacific Standard Time

Name: 201120R1_12, Date: 20-Nov-2020, Time: 16:07:54, ID: 2002358-03 USMPDI-055SC-A-03-04-201028 17.3, Description: USMPDI-055SC-A-03-04-201028

Tetra-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1.	Total Tetra-Furans	21.38	5.140e3	6.832e3	4.672e2	5.214e2	0.90	YES	0.000e0	0.00000	0.27621	0.0816
2	Total Tetra-Furans	24.37	3.648e3	5.479e3	2.541e2	2.921e2	0.87	NO	5.462e2	0.16346	0.16346	0.0816
3	Total Tetra-Furans	25.28	1.203e3	1.353e3	6.727e1	8.169e1	0.82	NO	1.490e2	0.044582	0.044582	0.0816
4	2,3,7,8-TCDF	25.42	6.496e3	1.024e4	4.529e2	5.765e2	0.79	NO	1.029e3	0.30807	0.30807	0.0816

Penta-Furans function 1

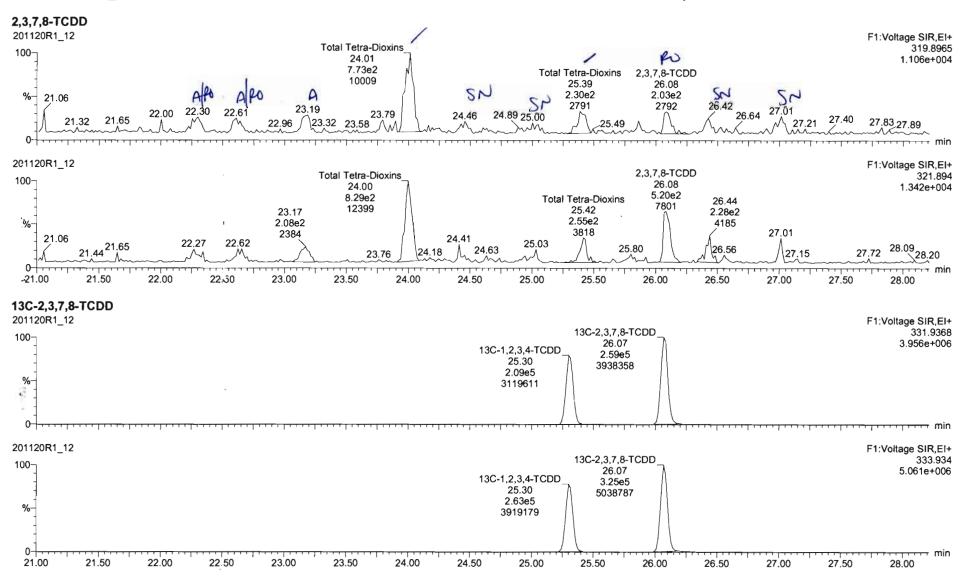
Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1.000000									

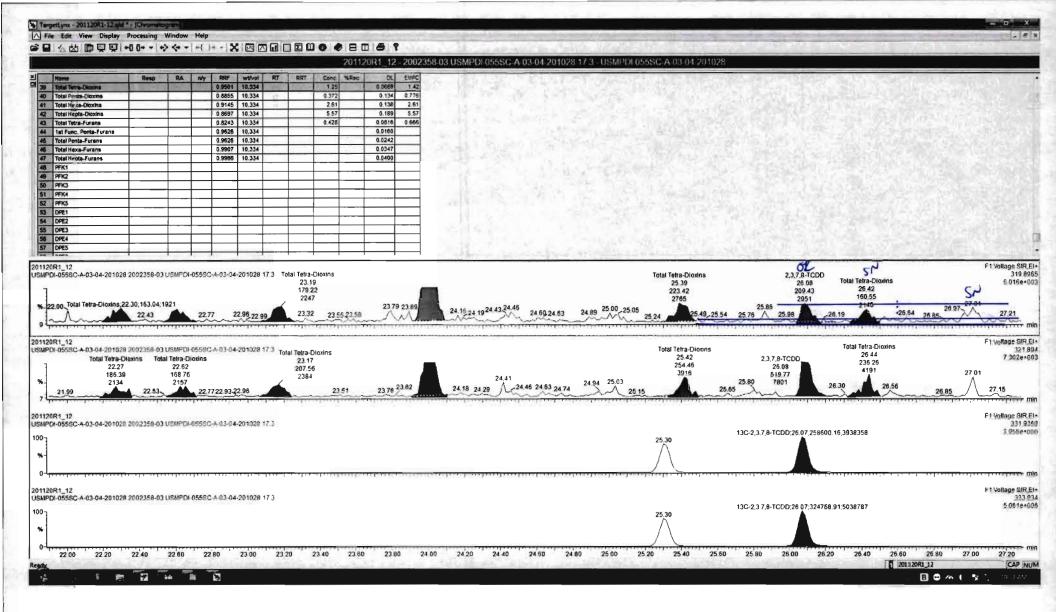
Penta-Furans

Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc. EMPC	DL
1 1,2,3,7,8-PeCDF	29.56	2.318e3 1.908e3	1.328e2 1.183e2	1.12 YES	2.511e2	0.00000 0.066229	0.0250

Hexa-Furans

334.37	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,7,8-HxCDF	33.23	2.449e3	2.502e3	1.329e2	1.385e2	0.96	YES	2.714e2	0.00000	0.10397	0.0300

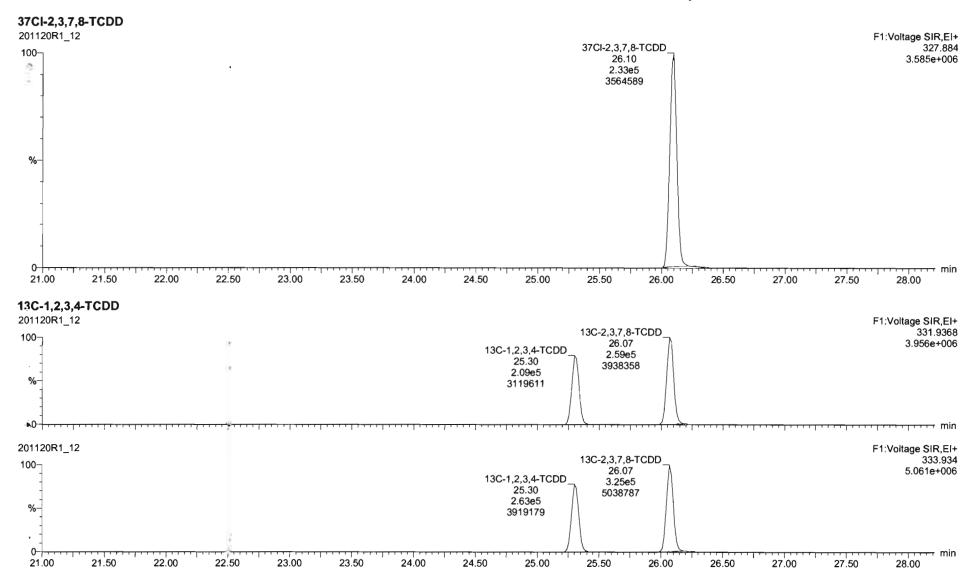

Hepta-Furans


Name	RT	m1 Height m2 Height	m1 Resp m2 Resp	RA n/y	Resp	Conc.	EMPC	DL
1								

Work Order 2002358 Page 123 of 353

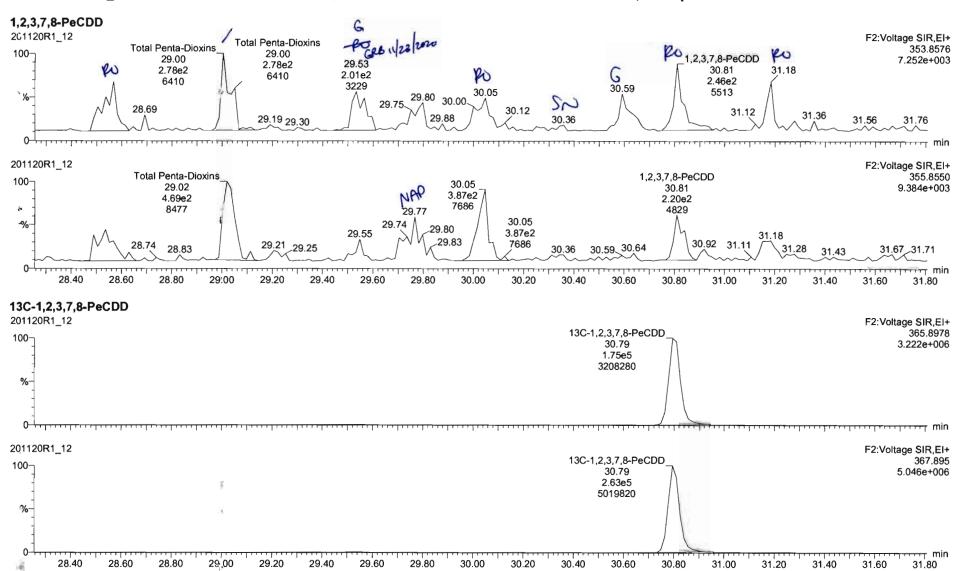
Untitled

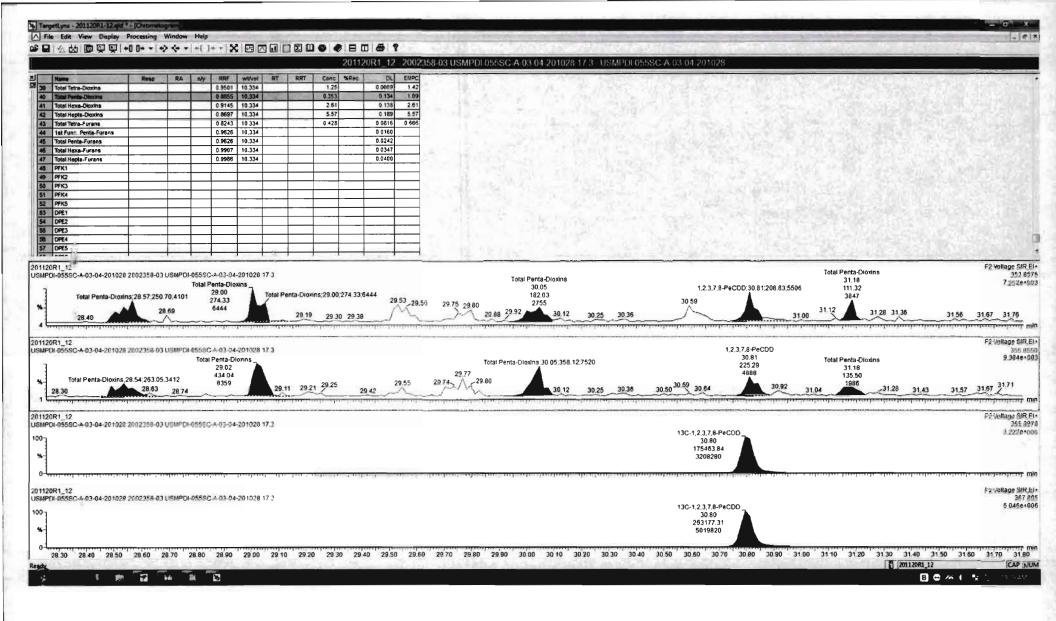
Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Untitled

Last Altered: Printed:

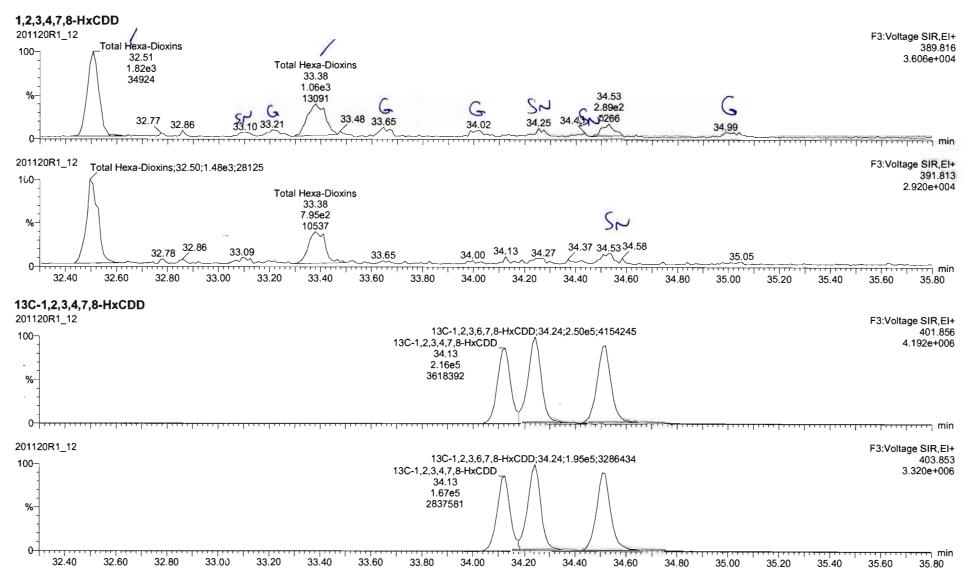

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

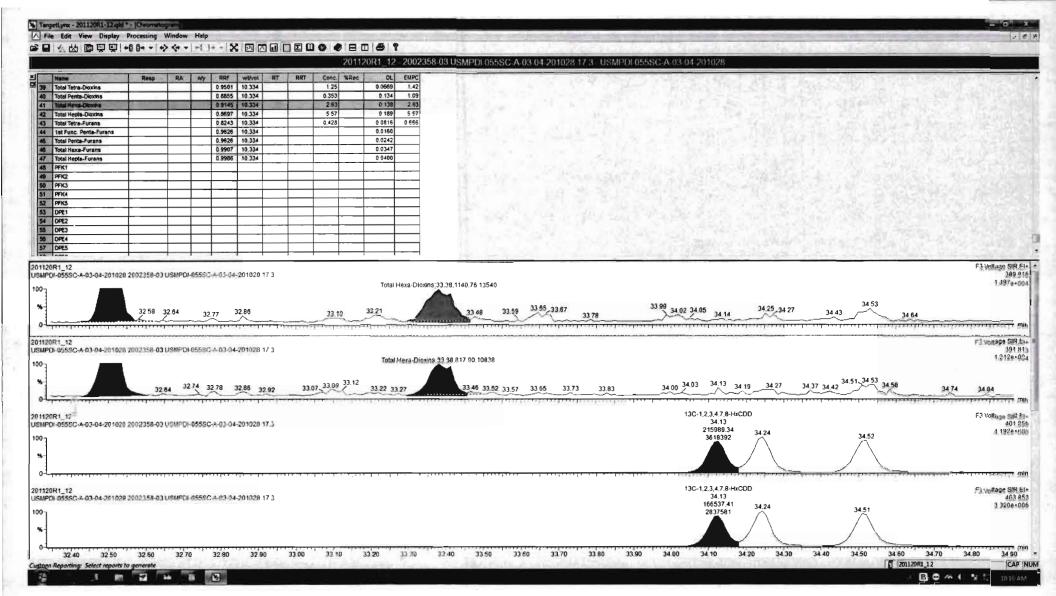


Untitled

Last Altered: Printed:

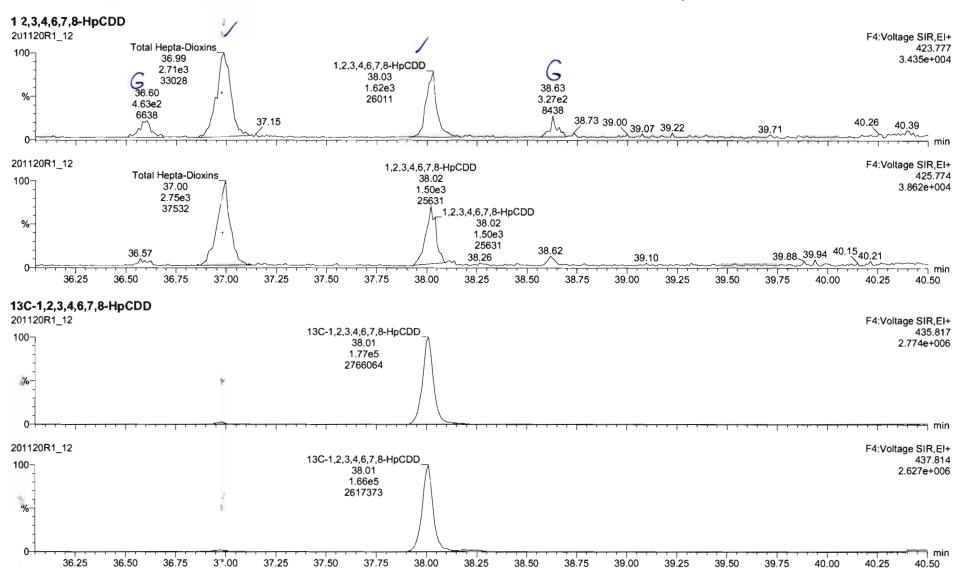
Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

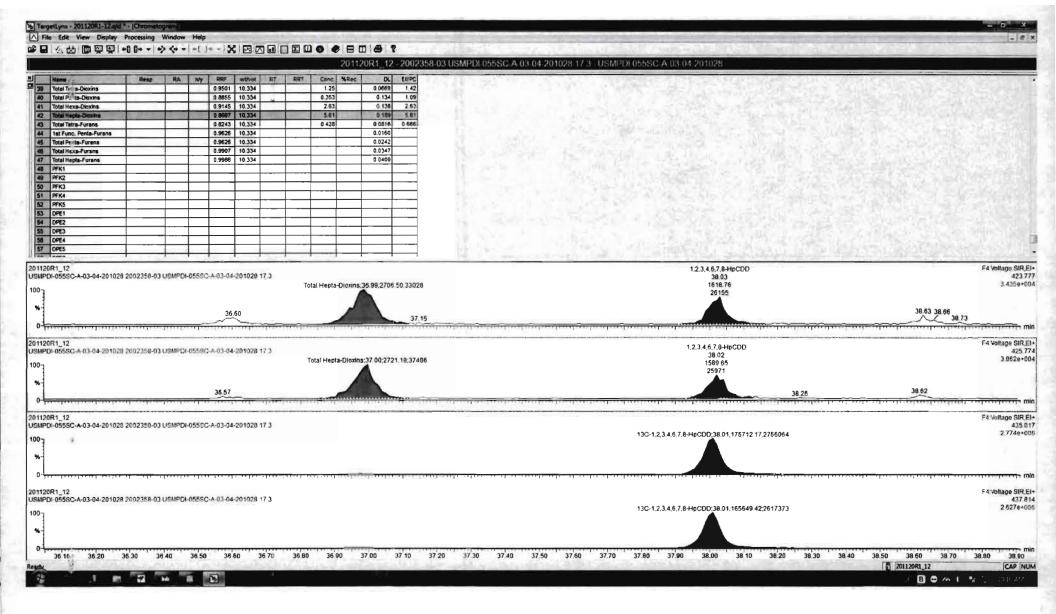




Untitled

Last Altered: Printed:

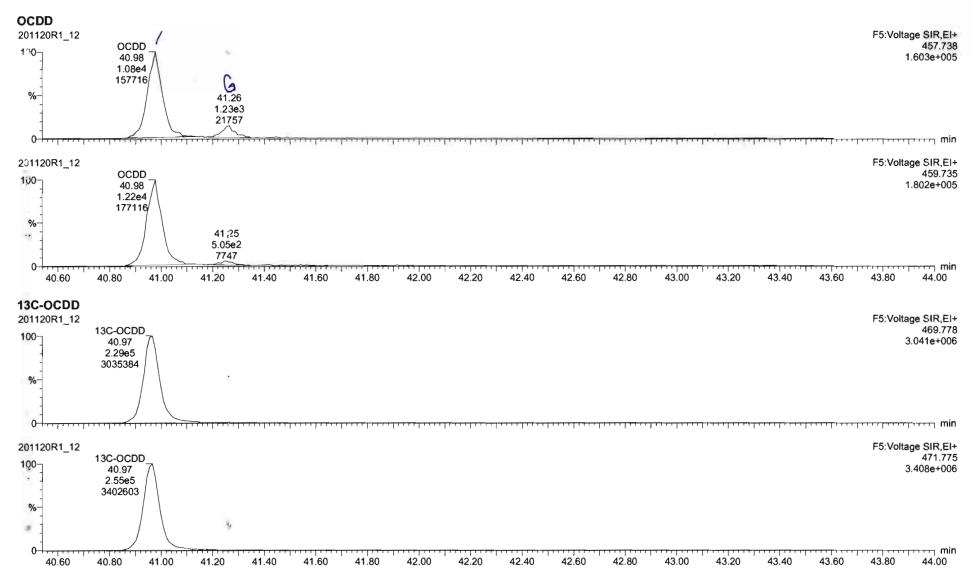

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Untitled

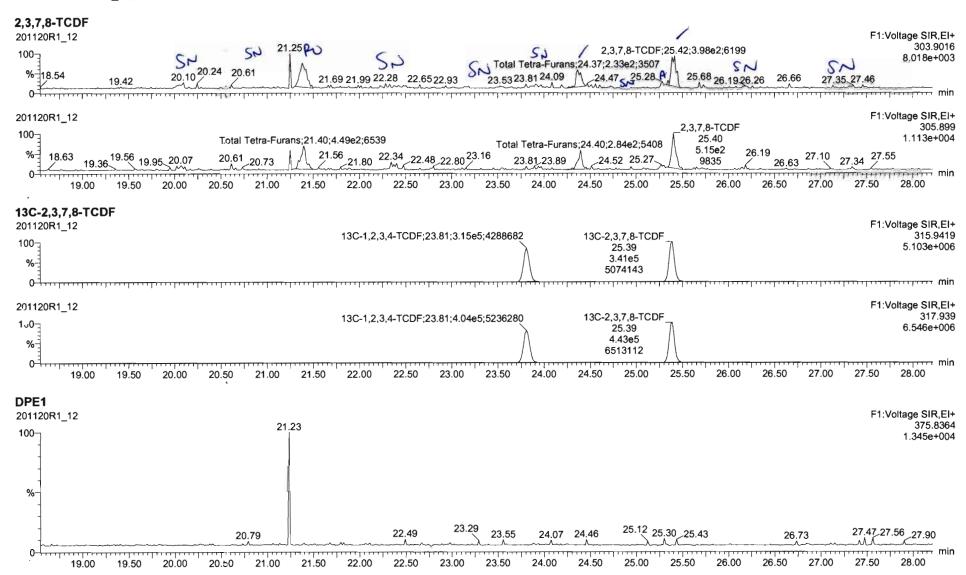
Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

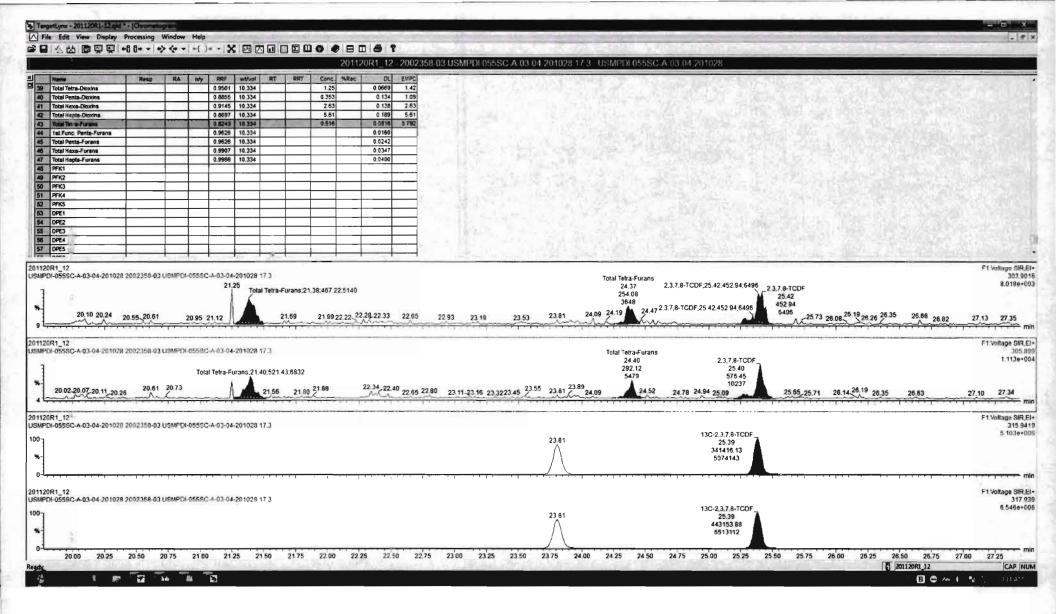
Work Order 2002358 Page 132 of 353


Page 97 of 169

Dataset:

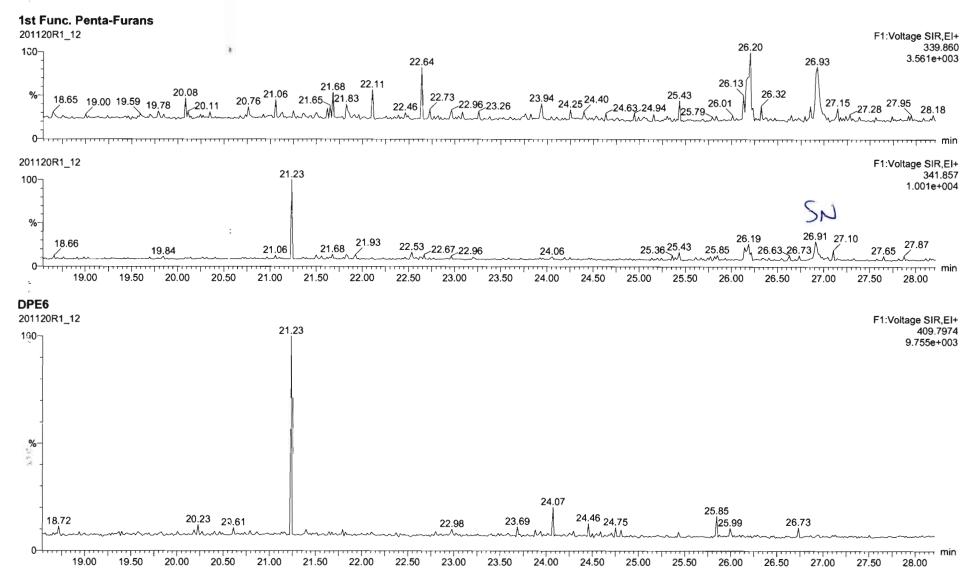
Untitled


Last Altered: Printed:

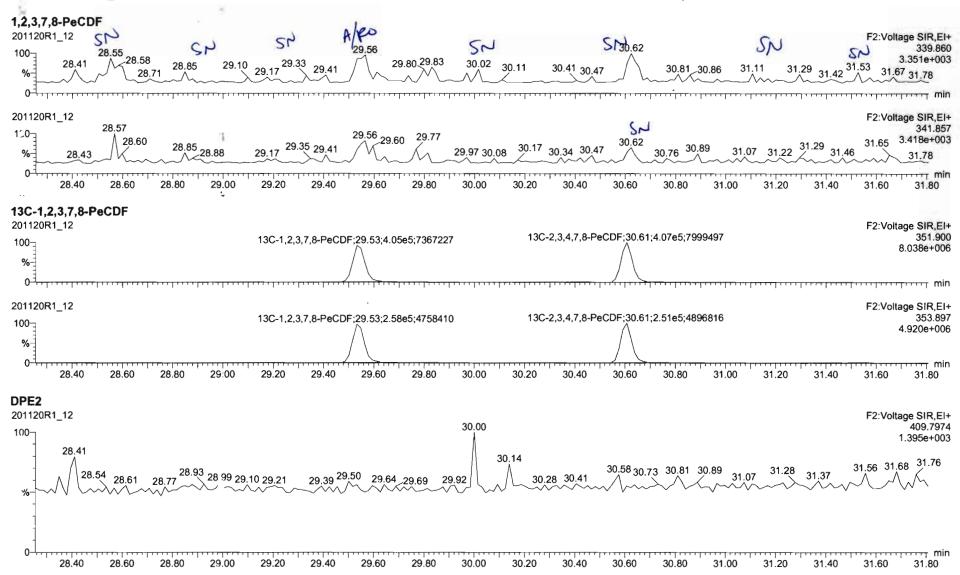

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

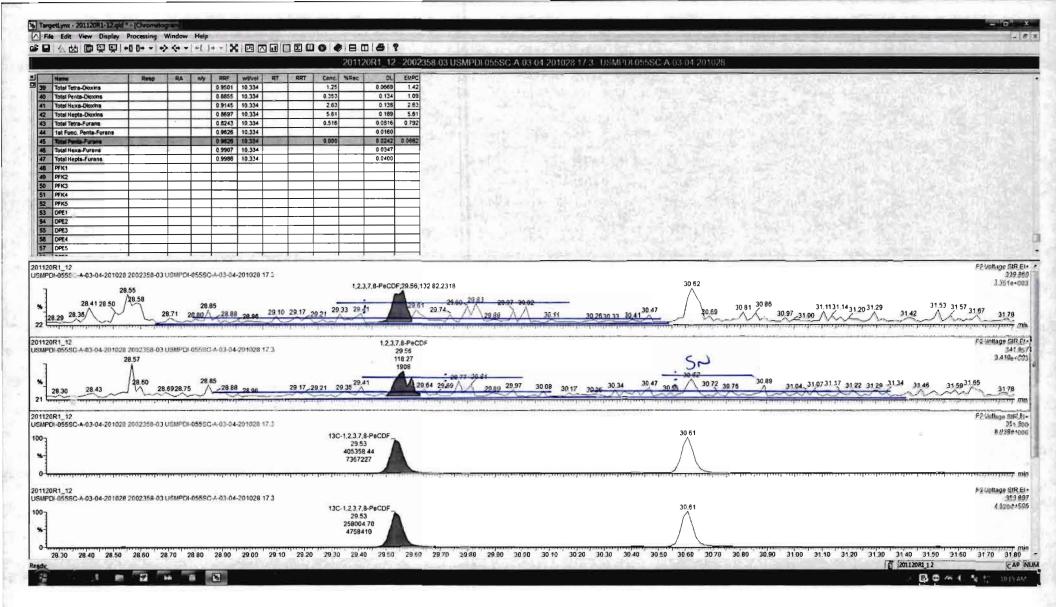
Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

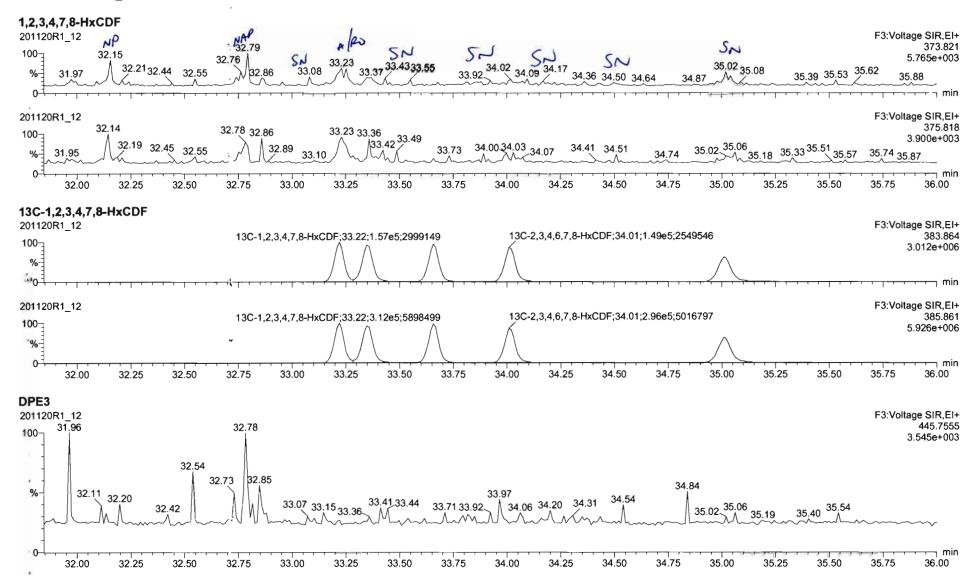


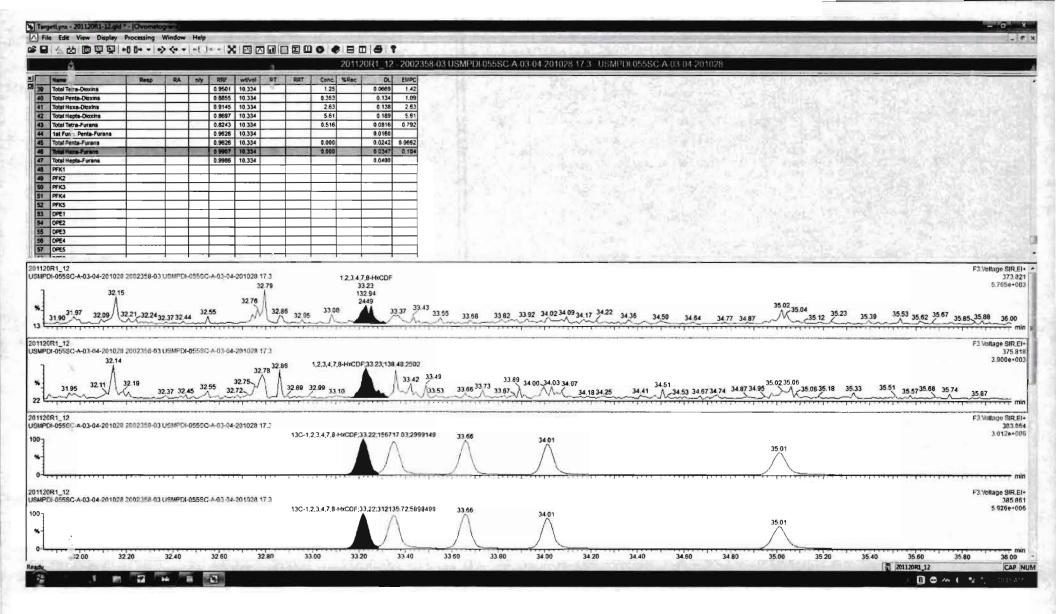
Untitled


Last Altered: Printed:


Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

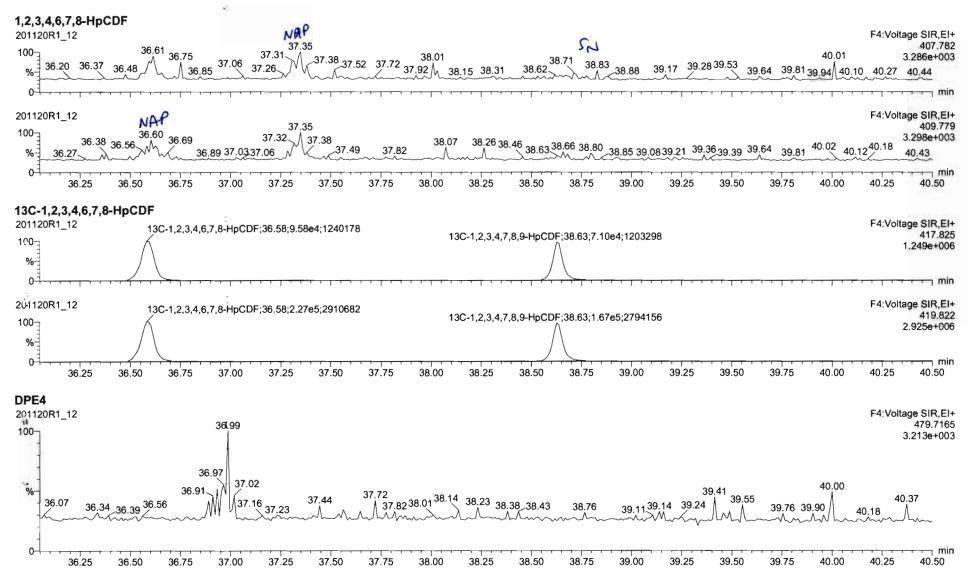
Untitled

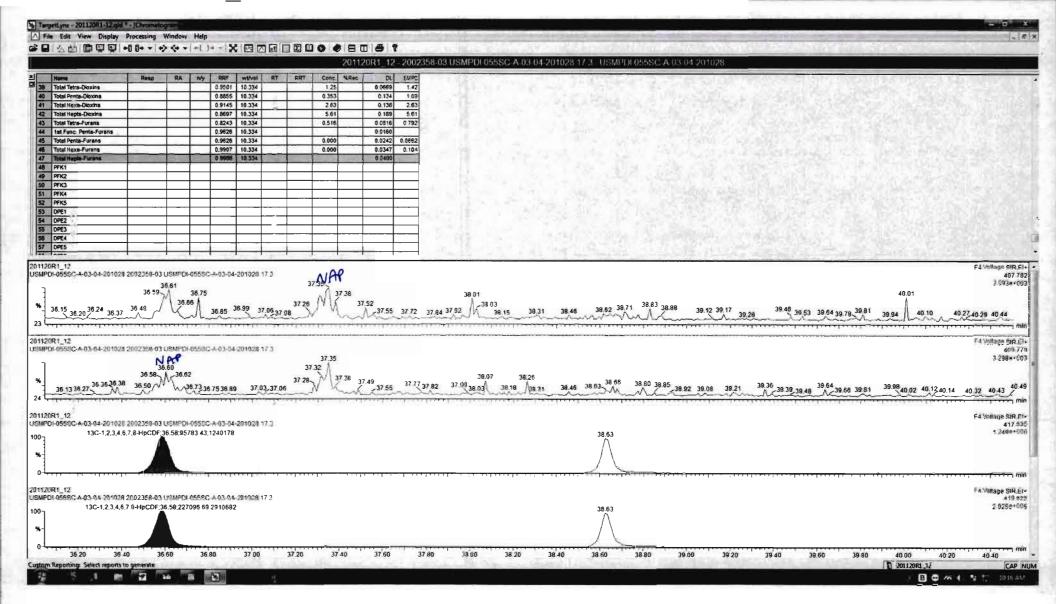

Last Altered: Printed: Saturday, November 2⁴, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

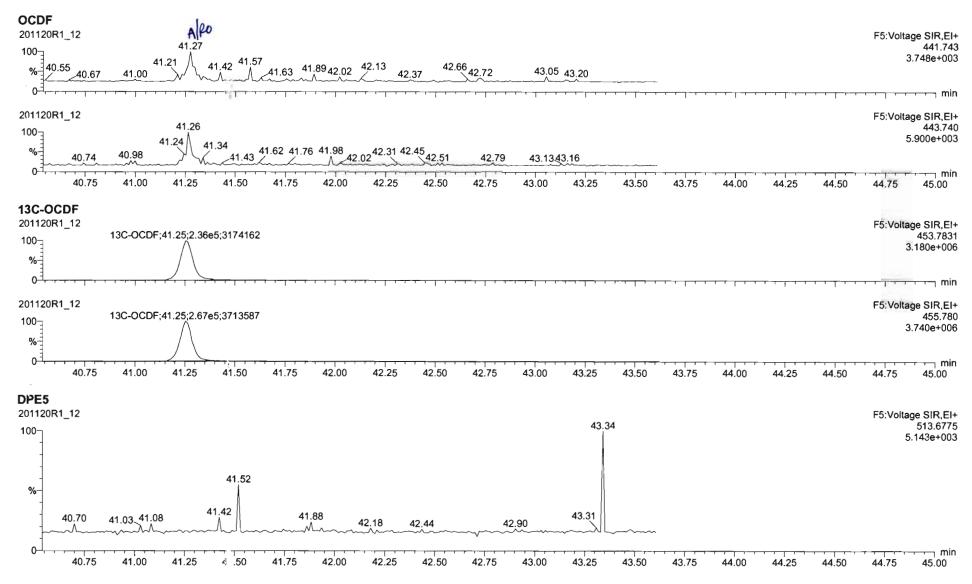


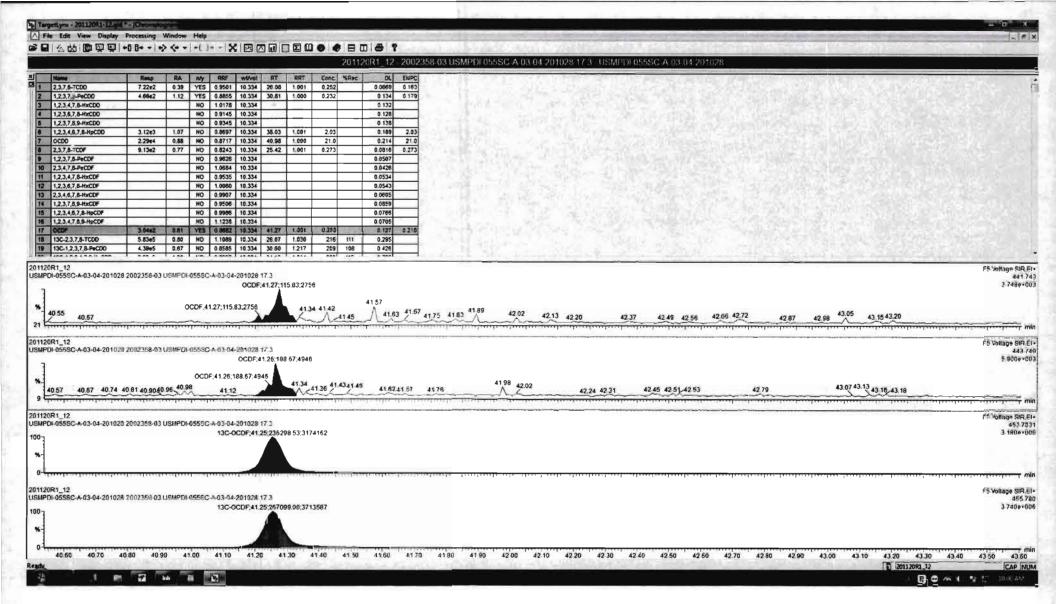


Work Order 2002358 Page 140 of 353

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

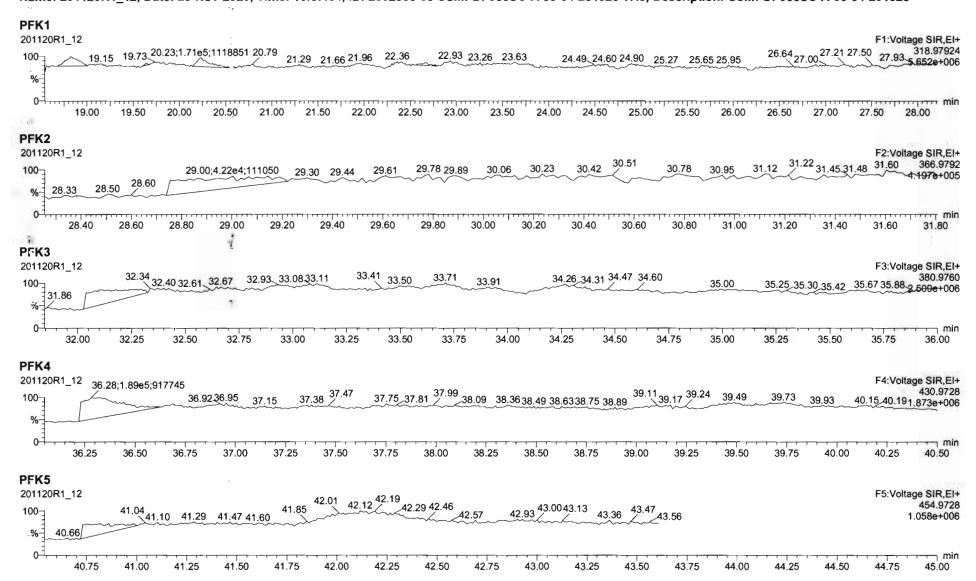




Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Work Order 2002358 Page 144 of 353

Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Page 1 of 2

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-13.qld

Last Altered: Printed:

Monday, November 23, 2020 10:51:40 AM Pacific Standard Time

Monday, November 23, 2020 10:59:20 AM Pacific Standard Time

GPB 11/23/2020

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_13, Date: 20-Nov-2020, Time: 16:52:45, ID: 2002358-04 USMPDI-055SC-A-04-05-201028 12:59, Description: USMPDI-055SC-A-04-05-201028

	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
1	1 2,3,7,8-TCDD			NO	0.950	10.052	26.112		1.001				0.0569	
2	2 1,2,3,7,8-PeCDD			NO	0.885	10.052	30.819		1.000				0.114	
3	3 1,2,3,4,7,8-HxCDD			NO	1.02	10.052	34.135		1.000				0.0922	
4	4 1,2,3,6,7,8-HxCDD			NO	0.915	10.052	34.263		1.000				0.0933	
5	5 1,2,3,7,8,9-HxCDD			NO	0.934	10.052	34.529		1.000				0.0966	
6	6 1,2,3,4,6,7,8-HpCDD	1.73e3	1.11	NO	0.870	10.052	38.020	38.03	1.000	1.000	1.2536		0.236	1.25
7	7 OCDD	1.12e4	0.93	NO	0.872	10.052	40.977	40.99	1.000	1.000	11.255		0.239	11.3
8	8 2,3,7,8-TCDF	2.80e2	0.86	NO	0.824	10.052	25.396	25.40	1.000	1.001	0.092312		0.0128	0.0923
9	9 1,2,3,7,8-PeCDF	6.34e2	1.33	NO	0.963	10.052	29.558	29.55	1.000	1.000	0.21197		0.0505	0.212
10	10 2,3,4,7,8-PeCDF	2.59e2	1.23	YES	1.07	10.052	30.608	30.64	1.000	1.001	0.078973		0.03498	0.0717
11	11 1,2,3,4,7,8-HxCDF	1.11e3	1.13	NO	0.953	10.052	33.231	33.24	1.000	1.000	0.54536		0.0503	0.545
12	12 1,2.3,6,7,8-HxCDF	5.46e2	1.17	NO	1.01	10.052	33.359	33.37	1.000	1.000	0.24888		0.0478	0.249
13	13 2,3,4,6,7,8-HxCDF			NO	0.991	10.052	34.022		1.000				0.0515	
14	14 1,2,3,7,8,9-HxCDF			NO	0.951	10.052	35.020		1.000				0.0728	
15	15 1,2,3,4,6,7,8-HpCDF	1.12e3	0.88	NO	0.999	10.052	36.597	36.61	1.000	1.001	0.75001		0.157	0.750
16	16 1,2,3,4,7,8,9-HpCDF	3.48e2	1.00	NO	1.12	10.052	38.648	38.66	1.000	1.000	0.27012		0.161	0.270
17	17 OCDF	8.91e2	0.94	NO	0.868	10.052	41.273	41.26	1.000	1.000	0.84560		0.149	0.846
18	18 13C-2,3,7,8-TCDD	5.43e5	0.78	NO	1.11	10.052	26.073	26.08	1.030	1.030	213.97	108	0.266	
19	19 13C-1,2,3,7,8-PeCDD	4.10e5	0.66	NO	0.859	10.052	30.792	30.81	1.216	1.217	208.54	105	0.602	
20	20 13C-1,2,3,4,7,8-HxCDD	3.56e5	1.29	NO	0.700	10.052	34.135	34.13	1.014	1.014	227.52	114	0.732	
21	21 13C-1,2,3,6,7,8-HxCDD	4.08e5	1.28	NO	0.833	10.052	34.273	34.25	1.018	1.017	218.91	110	0.615	
22	22 13C-1,2,3,7,8,9-HxCDD	3.91e5	1.25	NO	0.762	10.052	34.515	34.52	1.025	1.025	229.65	115	0.673	
23	23 13C-1,2,3,4,6,7,8-HpCDD	3.15e5	1.04	NO	0.650	10.052	38.000	38.02	1.129	1.129	216.98	109	0.918	
24	24 13C-OCDD	4.53e5	0.90	NO	0.539	10.052	40.966	40.98	1.217	1.217	375.76	94.4	0.786	
25	25 13C-2,3,7,8-TCDF	7.31e5	0.77	NO	0.981	10.052	25.395	25.39	1.003	1.003	209.76	105	0.351	
26	26 13C-1,2,3,7,8-PeCDF	6.18e5	1.61	NO	0.792	10.052	29.524	29.55	1.166	1.167	219.80	110	0.618	
27	27 13C-2,3,4,7,8-PeCDF	6.11e5	1.64	NO	0.778	10.052	30.582	30.61	1.208	1.209	220.95	111	0.629	
28	28 13C-1,2,3,4,7,8-HxCDF	4.26e5	0.51	NO	0.954	10.052	33.226	33.23	0.987	0.987	199.62	100	0.718	
29	29 13C-1,2,3,6,7,8-HxCDF	4.33e5	0.49	NO	1.01	10.052	33.357	33.36	0.991	0.991	192.27	96.6	0.681	
30	30 13C-2,3,4,6,7,8-HxCDF	4.09e5	0.50	NO	0.921	10.052	34.027	34.02	1.011	1.010	198.50	99.8	0.743	

Page 146 of 353 Work Order 2002358

U:\VG12.PRO\Results\201120R1\201120R1-13.qld

Last Altered: Printed:

Monday, November 23, 2020 10:51:40 AM Pacific Standard Time

Monday, November 23, 2020 10:59:20 AM Pacific Standard Time

Name: 201120R1_13, Date: 20-Nov-2020, Time: 16:52:45, ID: 2002358-04 USMPDI-055SC-A-04-05-201028 12.59, Description: USMPDI-055SC-A-04-05-201028

15 300	# Name	Resp	RA	n/y	RRF	wt/vol	Pred.RT	RT	Pred.RRT	RRT	Conc.	%Rec	DL	EMPC
31	31 13C-1,2,3,7,8,9-HxCDF	3.72e5	0.50	NO	0.803	10.052	35.024	35.02	1.040	1.040	207.26	104	0.852	
32	32 13C-1,2,3,4,6,7,8-HpCDF	2.99e5	0.42	NO	0.735	10.052	36.593	36.59	1.087	1.087	181.57	91.3	0.730	
33	33 13C-1,2,3,4,7,8,9-HpCDF	2.28e5	0.41	NO	0.568	10.052	38.630	38.65	1.147	1.148	179.75	90.3	0.946	1
34	34 13C-OCDF	4.83e5	0.89	NO	0.629	10.052	41.249	41.26	1.225	1.226	343.03	86.2	0.628	
35	35 37CI-2,3,7,8-TCDD	2.25e5			1.09	10.052	26.073	26.10	1.030	1.031	90.243	113	0.117	
36	36 13C-1,2,3,4-TCDD	4.56e5	0.80	NO	1.00	10.052	25.370	25.31	1.000	1.000	198.96	100	0.295	
37	37 13C-1,2,3,4-TCDF	7.07e5	0.79	NO	1.00	10.052	23.870	23.82	1.000	1.000	198.96	100	0.344	
38	38 13C-1,2,3,4,6,9-HxCDF	4.45e5	0.51	NO	1.00	10.052	33.710	33.67	1.000	1.000	198.96	100	0.685	
39	39 Total Tetra-Dioxins				0.950	10.052	24.620		0.000		0.22736		0.0319	0.227
40	40 Total Penta-Dioxins				0.885	10.052	29.960		0.000		0.15113	•	0.0531	0.241
41	41 Total Hexa-Dioxins				0.915	10.052	33.635		0.000		1.2081		0.0980	1.21
42	42 Total Hepta-Dioxins				0.870	10.052	37.640		0.000		3.1427		0.236	3.14
43	43 Total Tetra-Furans				0.824	10.052	23.610		0.000		0.092312		0.0128	0.226
44	44 1st Func. Penta-Furans				0.963	10.052	26.930		0.000				0.00831	
45	45 Total Penta-Furans				0.963	10.052	29.275		0.000		0.32487		0.0474	0.397
46	46 Total Hexa-Furans				0.991	10.052	33.555		0.000		0.96902		0.0541	1.04
47	47 Total Hepta-Furans				0.999	10.052	37.835		0.000		1.5413		0.168	1.54

Work Order 2002358 Page 147 of 353

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-13.qld

Last Altered: Printed:

Monday, November 23, 2020 10:51:40 AM Pacific Standard Time Monday, November 23, 2020 10:59:20 AM Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39

Calibration: U:\VG12.PR0\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_13, Date: 20-Nov-2020, Time: 16:52:45, ID: 2002358-04 USMPDI-055SC-A-04-05-201028 12.59, Description: USMPDI-055SC-A-04-05-201028

Tetra-Dioxins

Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1 Total Tetra-Dioxins	24.00	2.930e3	5.650e3	2.458e2	3.443e2	0.71	NO	5.901e2	0.22736	0.22736	0.0319

Penta-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Dioxins	29.00	2.076e3	4.327e3	1.080e2	1.678e2	0.64	NO	2.758e2	0.15113	0.15113	0.0531
2	Total Penta-Dioxins	29.52	3.046e3	2.129e3	1.704e2	1.011e2	1.69	YES	0.000e0	0.00000	0.090281	0.0531

Hexa-Dioxins

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Dioxins	32.52	1.242e4	1.179e4	6.630e2	5.864e2	1.13	NO	1.249e3	0.70584	0.70584	0.0980
2	Total Hexa-Dioxins	33.39	6.760e3	6.550e3	5.029e2	3.861e2	1.30	NO	8.890e2	0.50223	0.50223	0.0980

Hepta-Dioxins

30.50	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hepta-Dioxins	37.00	1.721e4	1.671e4	1.265e3	1.339e3	0.94	NO	2.604e3	1.8891	1.8891	0.236
2	1,2,3,4,6,7,8-HpCDD	38.03	1.423e4	1.214e4	9.074e2	8.204e2	1.11	NO	1.728e3	1.2536	1.2536	0.236

Tetra-Furans

1000	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Tetra-Furans	21.43	7.72 0e 2	1.718e3	9.142e1	1.841e2	0.50	YES	0.000e0	0.00000	0.069349	0.0128
2	Total Tetra-Furans	24.40	4.013e3	1.913e3	1.379e2	1.097e2	1.26	YES	0.000e0	0.00000	0.064076	0.0128
3	2,3,7,8-TCDF	25.40	3.08 7 e3	2.291e3	1.290e2	1.507e2	0.86	NO	2.797e2	0.092312	0.092312	0.0128

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-13.qld

Last Altered: Printed:

Monday, November 23, 2020 10:51:40 AM Pacific Standard Time Monday, November 23, 2020 10:59:20 AM Pacific Standard Time

Name: 201120R1_13, Date: 20-Nov-2020, Time: 16:52:45, ID: 2002358-04 USMPDI-055SC-A-04-05-201028 12.59, Description: USMPDI-055SC-A-04-05-201028

Penta-Furans function 1

Name	RT	m1 Height m2 Height	m1 Resp m2 Res	RA	n/y	Resp	Conc.	EMPC	DL
1									

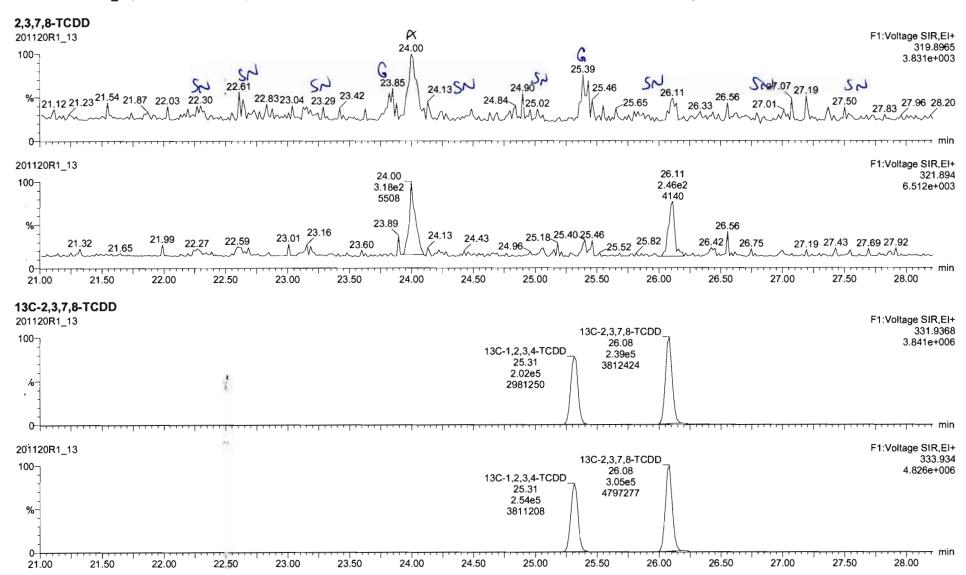
Penta-Furans

88E4	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Penta-Furans	28.57	3.289e3	2.286e3	2.061e2	1.295e2	1.59	NO	3.356e2	0.11290	0.11290	0.0474
2	1,2,3,7,8-PeCDF	29.55	8.363e3	4.915e3	3.617e2	2.723e2	1.33	NO	6.340e2	0.21197	0.21197	0.0505
3	2,3,4,7,8-PeCDF	30.64	2.885e3	2.141e3	1.429e2	1.160e2	1.23	YES	2.589e2	0.00000	0.071720	0.0398

Hexa-Furans

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	Total Hexa-Furans	32.14	3.43 5e 3	3.508e3	1.971e2	1.597e2	1.23	NO	3.568e2	0.17478	0.17478	0.0541
2	Total Hexa-Furans	32.78	2.458e3	1.653e3	1.055e2	6.213e1	1.70	YES	0.000e0	0.00000	0.068174	0.0541
3	1,2,3,4,7,8-HxCDF	33.24	1.363e4	8.667e3	5.904e2	5.227e2	1.13	NO	1.113e3	0.54536	0.54536	0.0503
4	1,2,3,6,7,8-HxCDF	33.37	5.097e3	4.647e3	2.945e2	2.510e2	1.17	NO	5.456e2	0.24888	0.24888	0.0478

Hepta-Furans

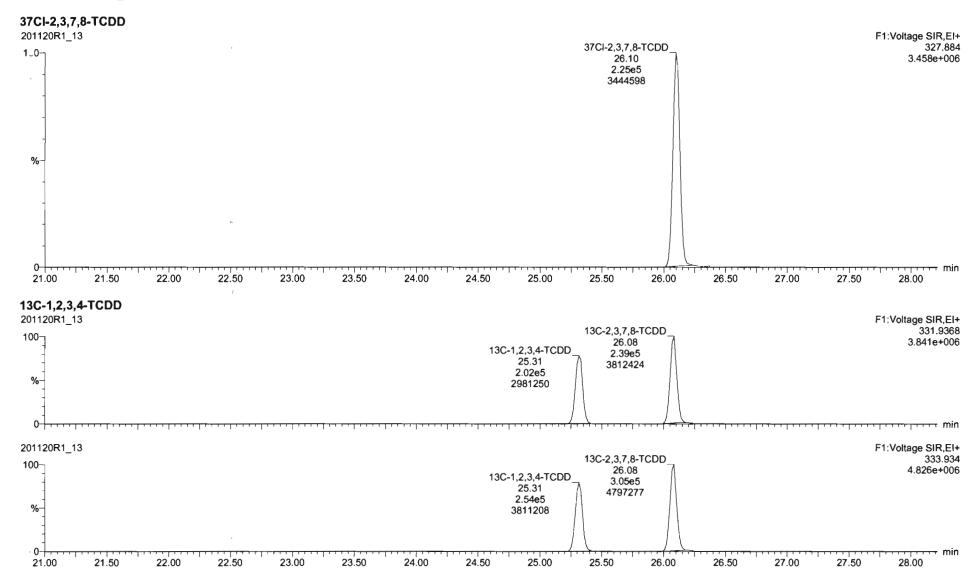

	Name	RT	m1 Height	m2 Height	m1 Resp	m2 Resp	RA	n/y	Resp	Conc.	EMPC	DL
1	1,2,3,4,6,7,8-HpCDF	36.61	7.19 5e 3	7.335e3	5.277e2	5.968e2	0.88	NO	1.125e3	0.75001	0.75001	0.157
2	Total Hepta-Furans	37.35	3.92 9e 3	7.176e3	3.238e2	3.655e2	0.89	NO	6.893e2	0.52121	0.52121	0.168
3	1,2,3,4,7,8,9-HpCDF	38.66	3.32 6e 3	3.648e3	1.740e2	1.743e2	1.00	NO	3.483e2	0.27012	0.27012	0.161

Work Order 2002358 Page 149 of 353

D⊣taset:

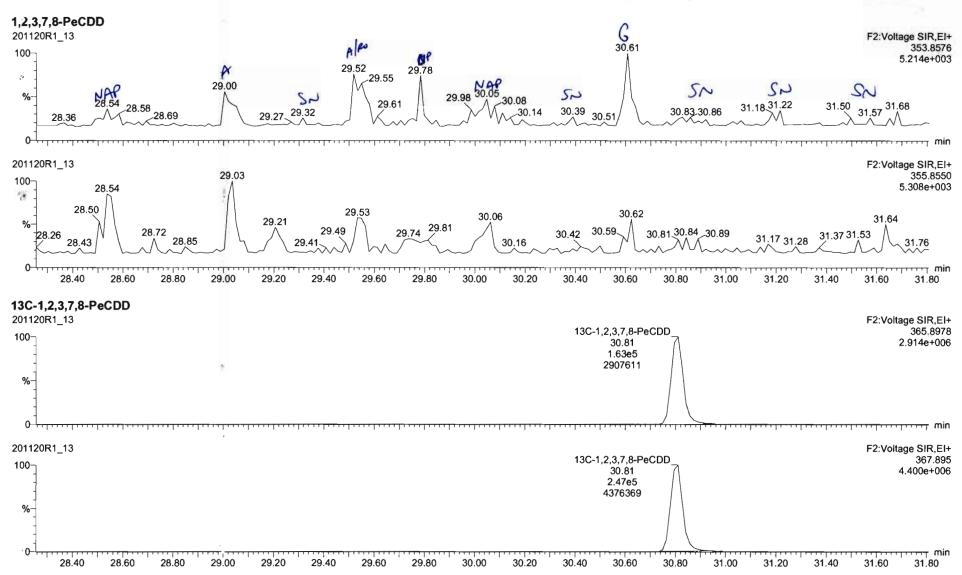
Untitled

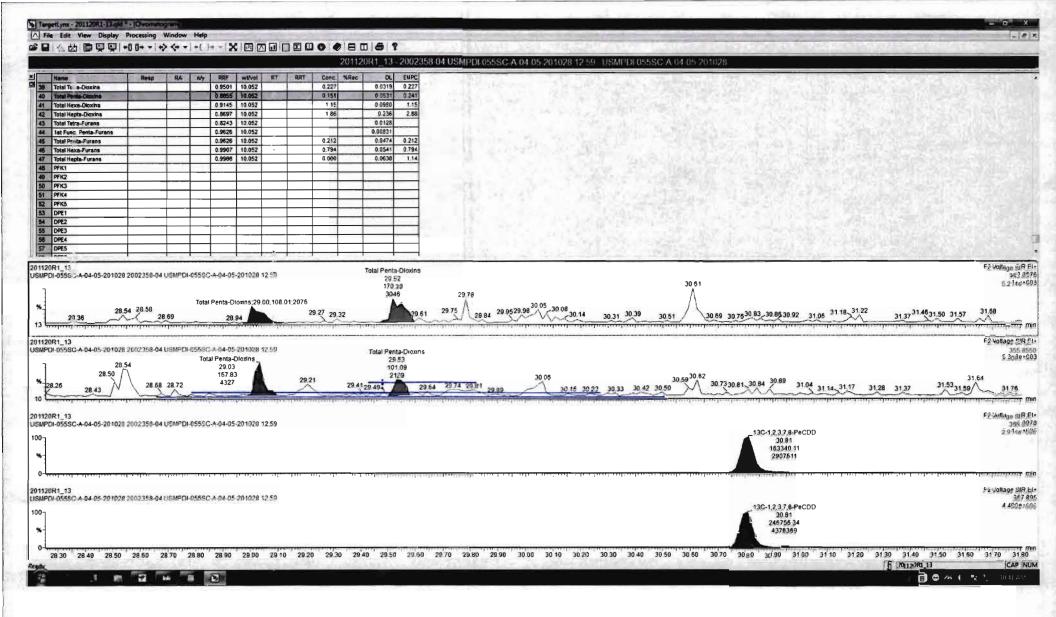
Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Untitled

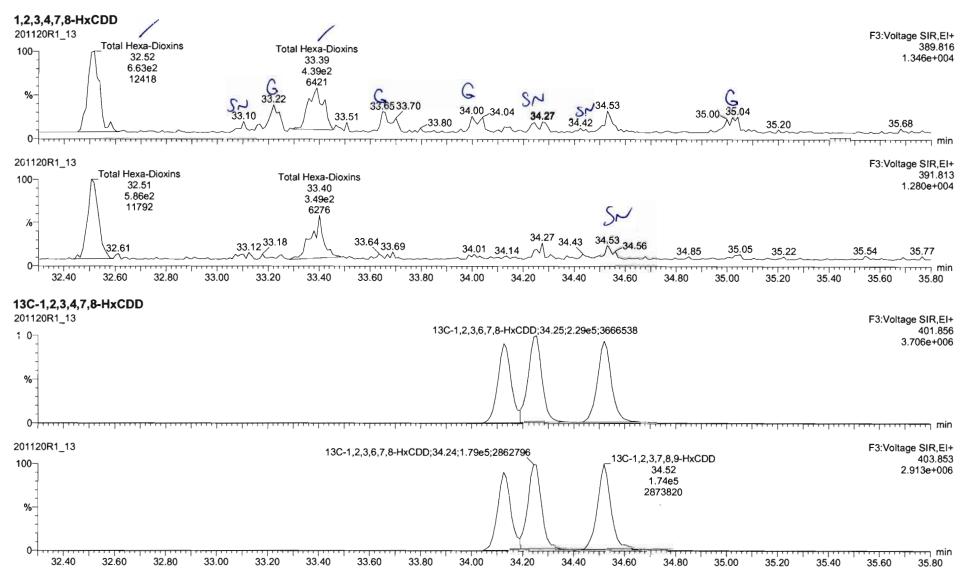
Lr st Altered: Printed:

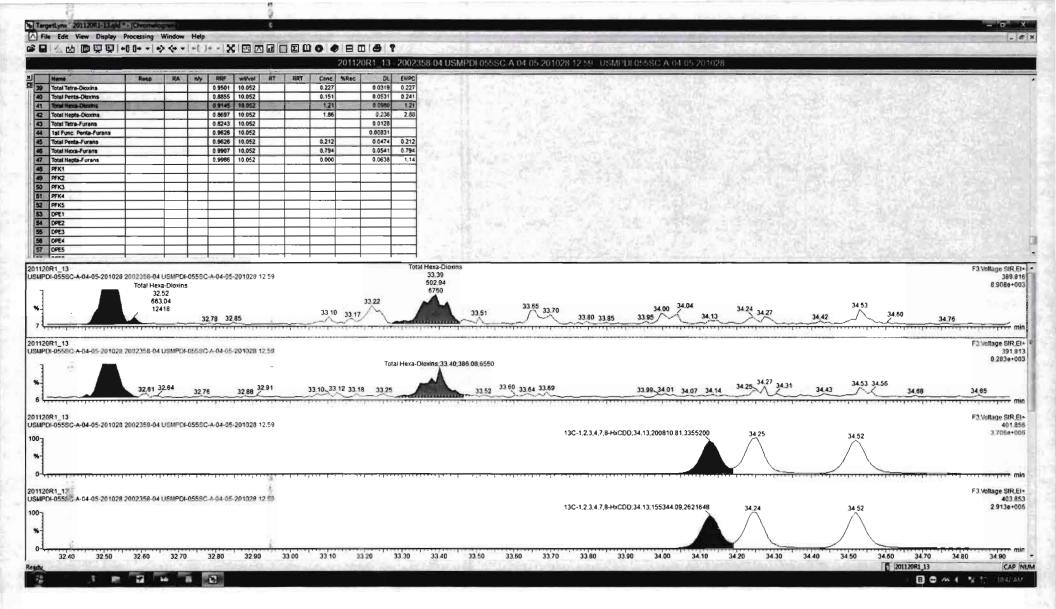

Saturday, November 2⁻, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



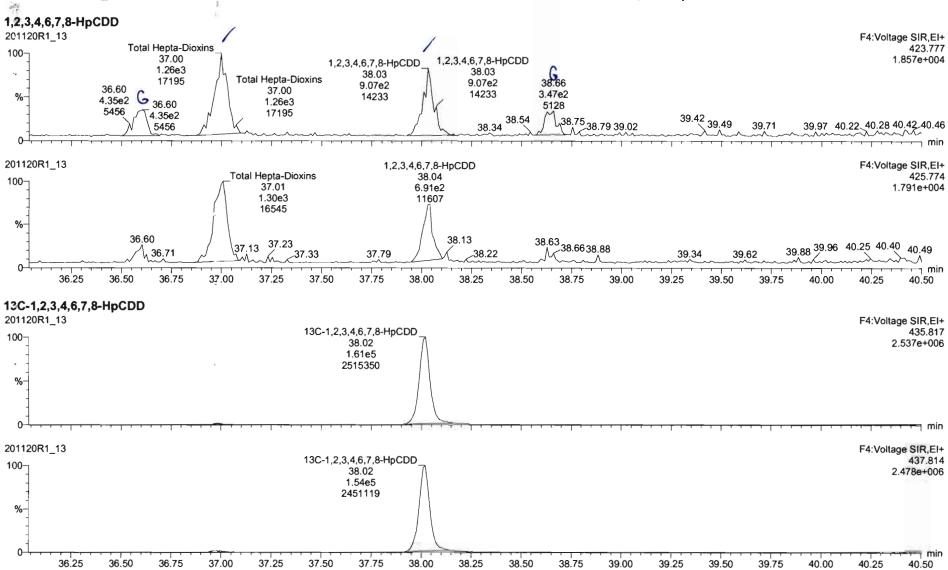
Untitled

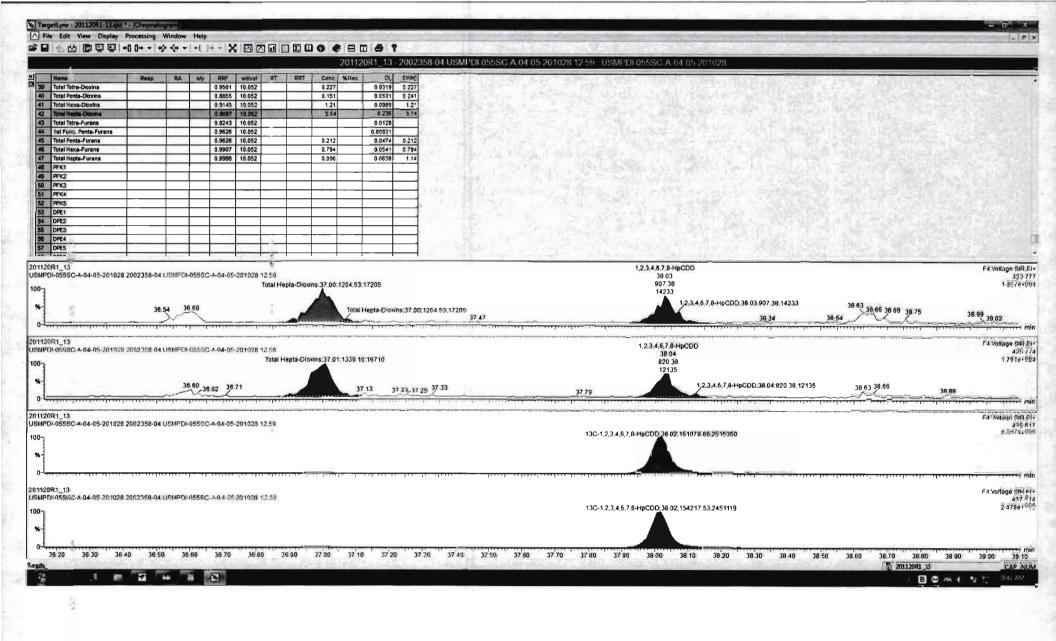
Last Altered: Printed:


Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

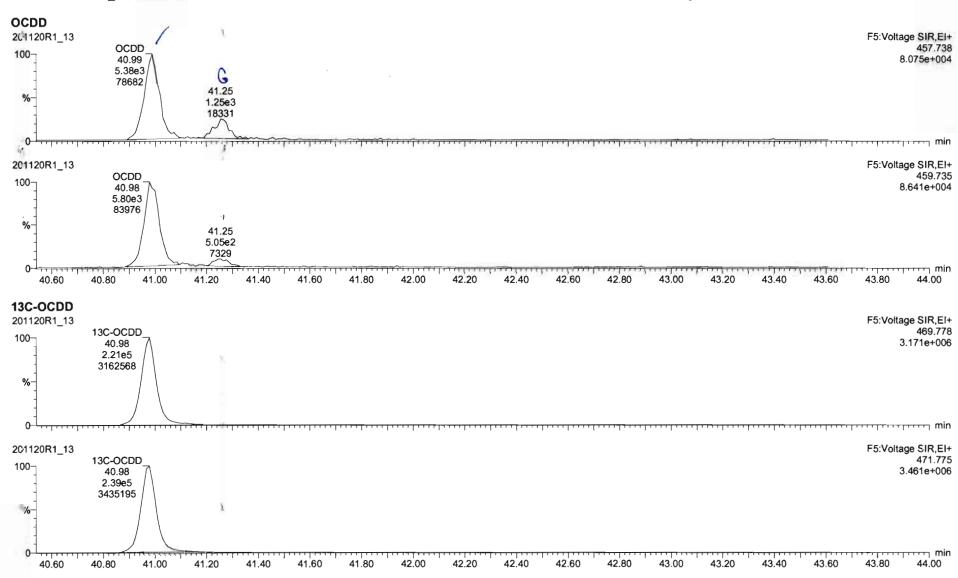


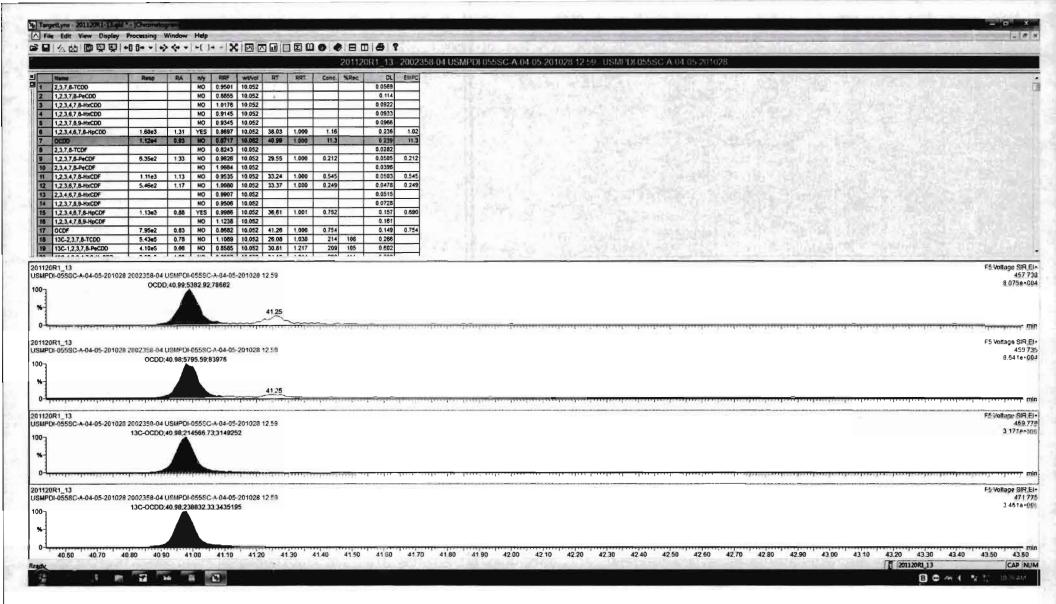
Untitled


Last Altered: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



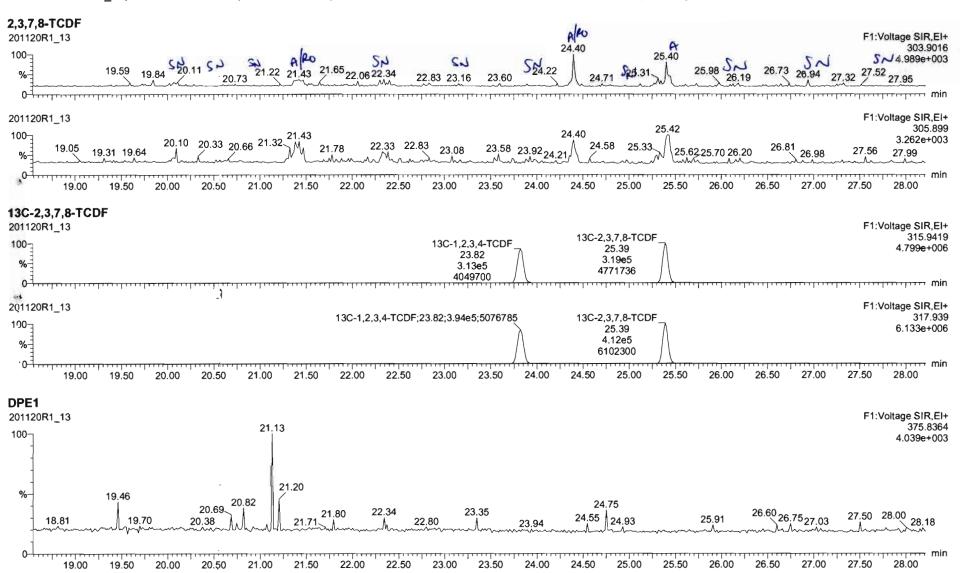
Untitled

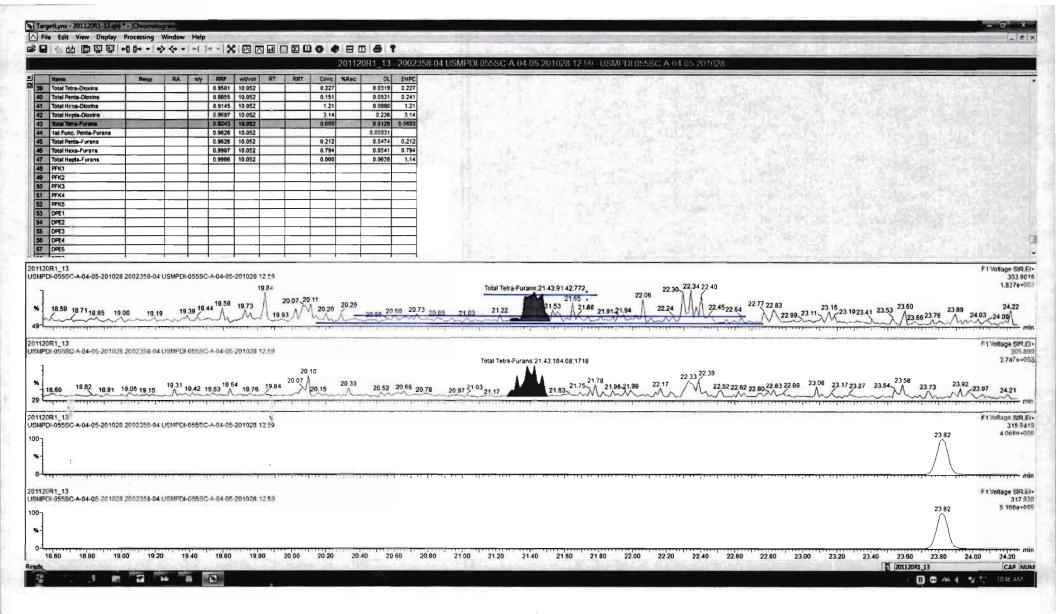

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



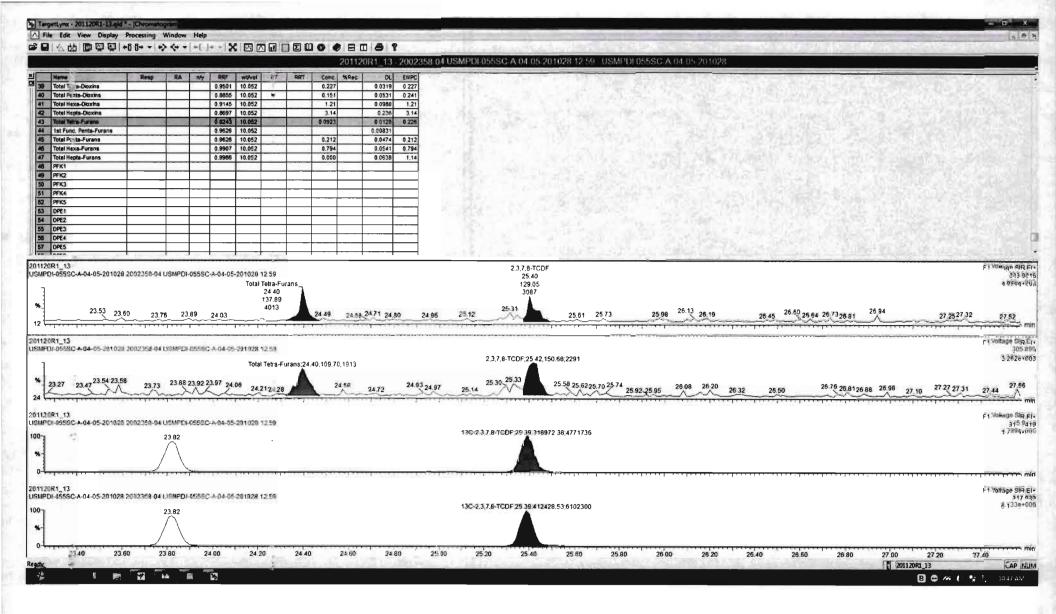
Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

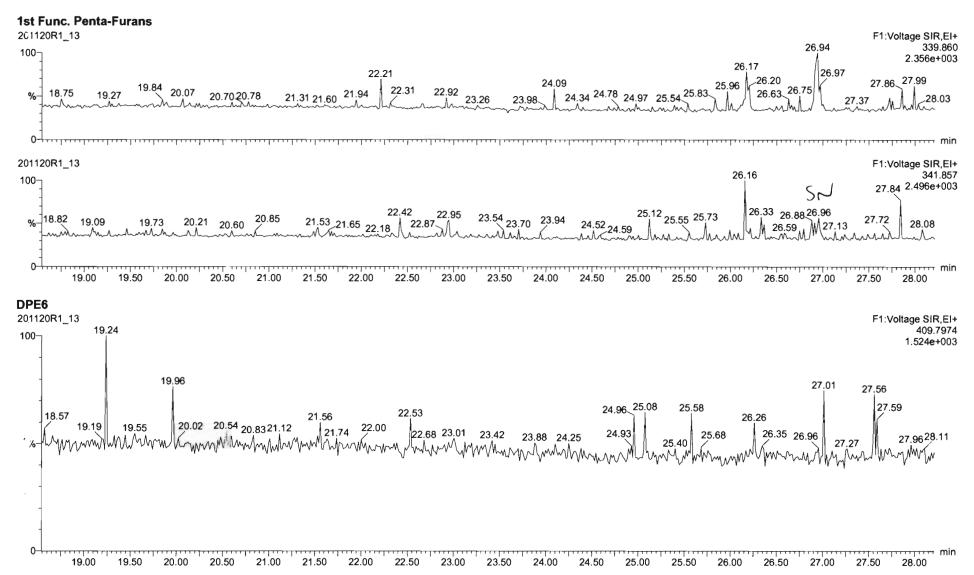




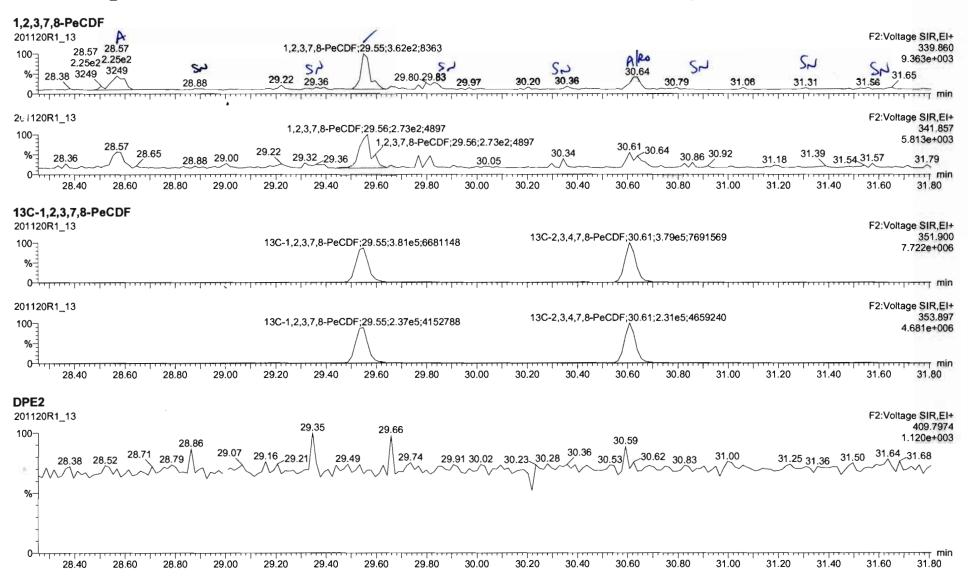
Work Order 2002358 Page 160 of 353

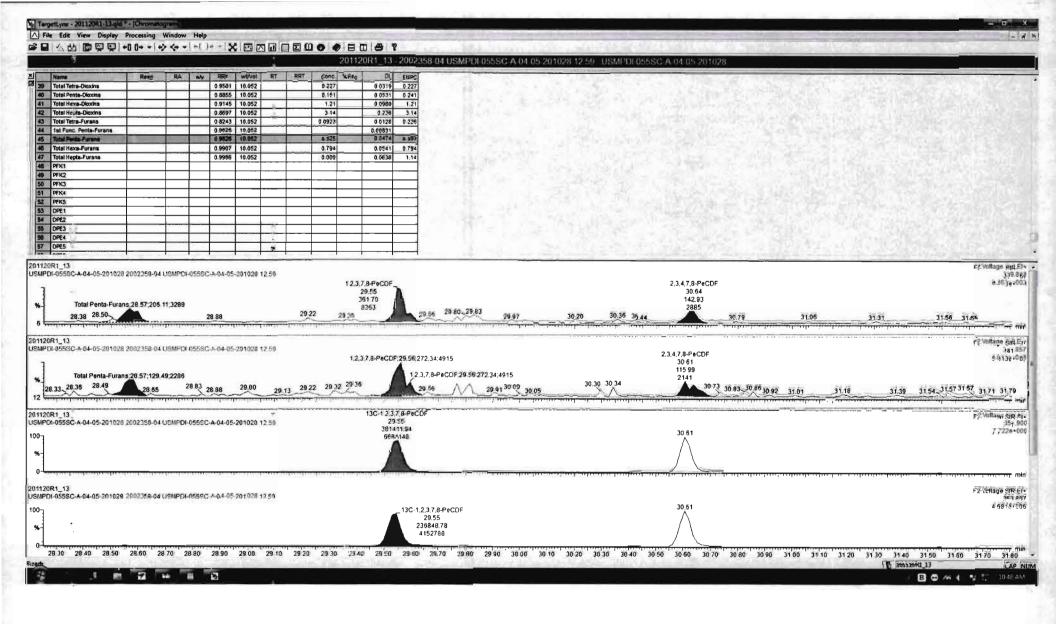

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Work Order 2002358 Page 162 of 353

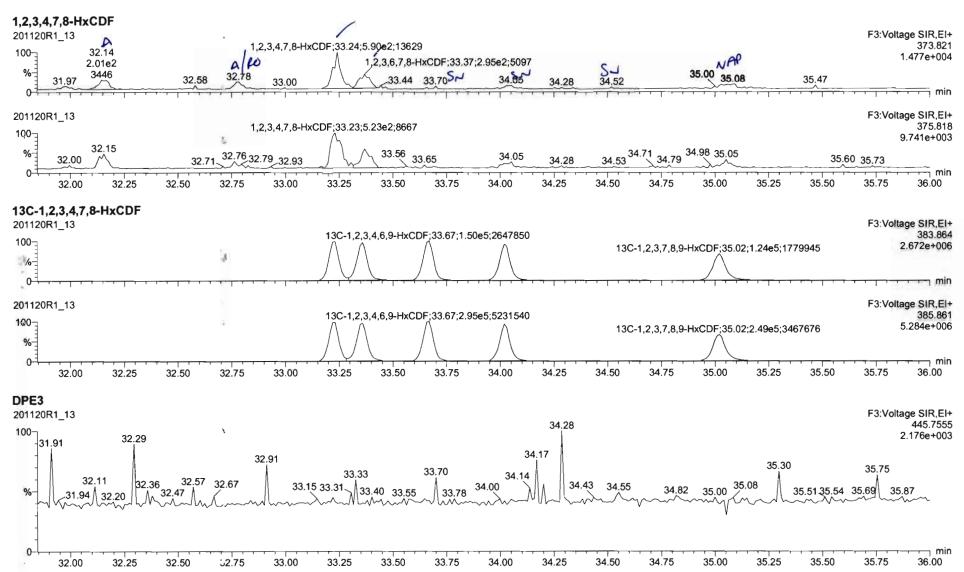
Work Order 2002358 Page 163 of 353

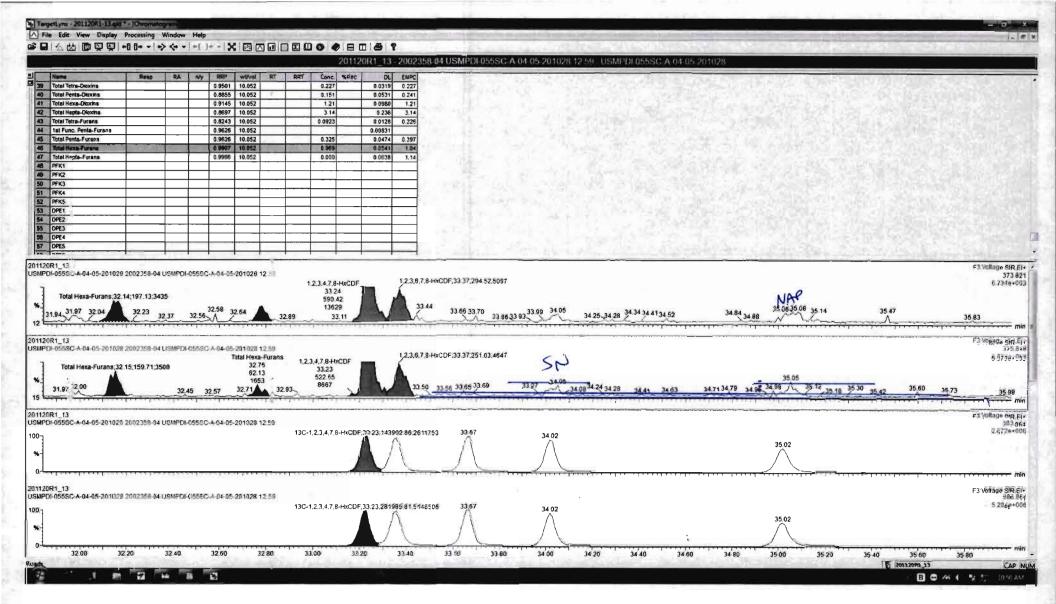

Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

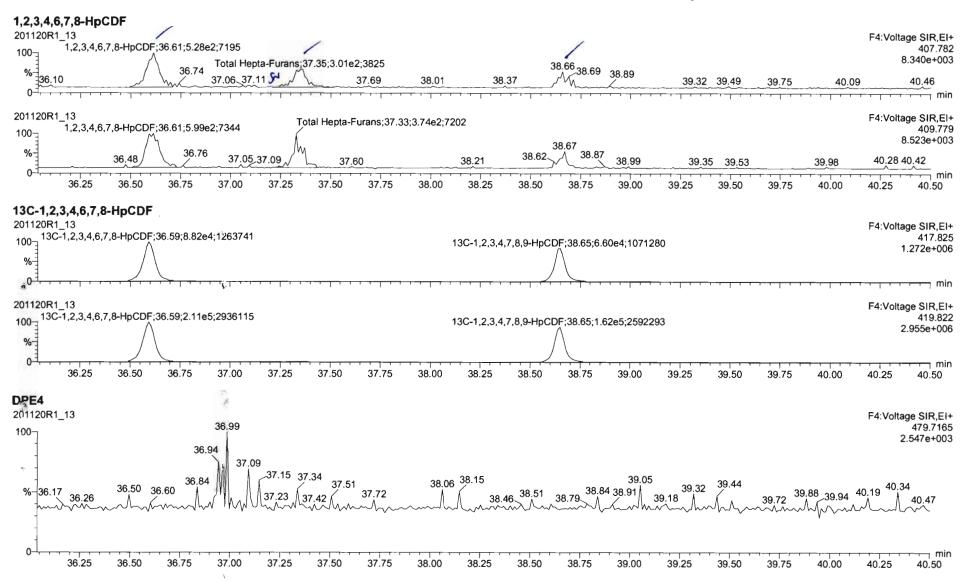


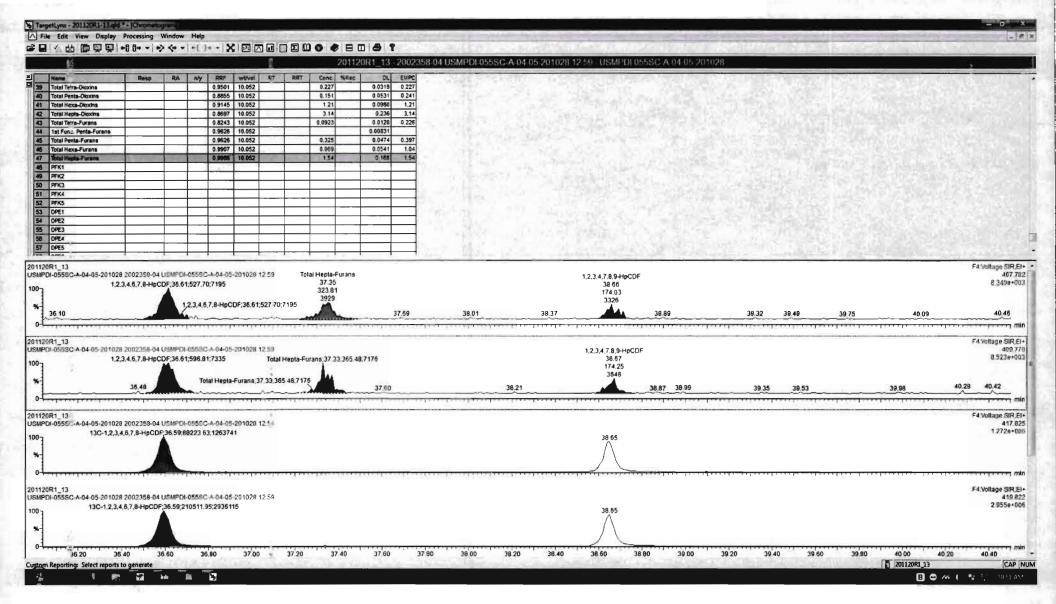


Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

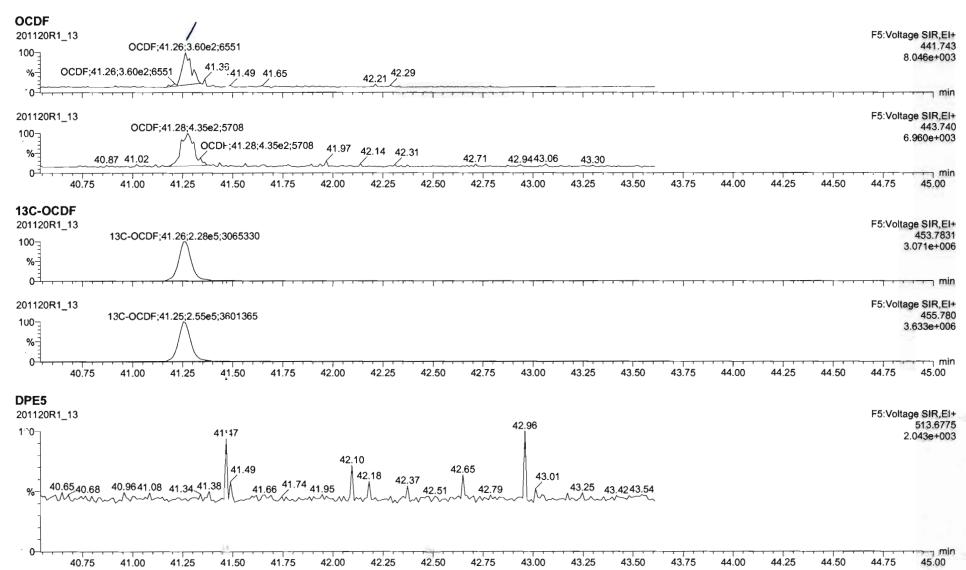


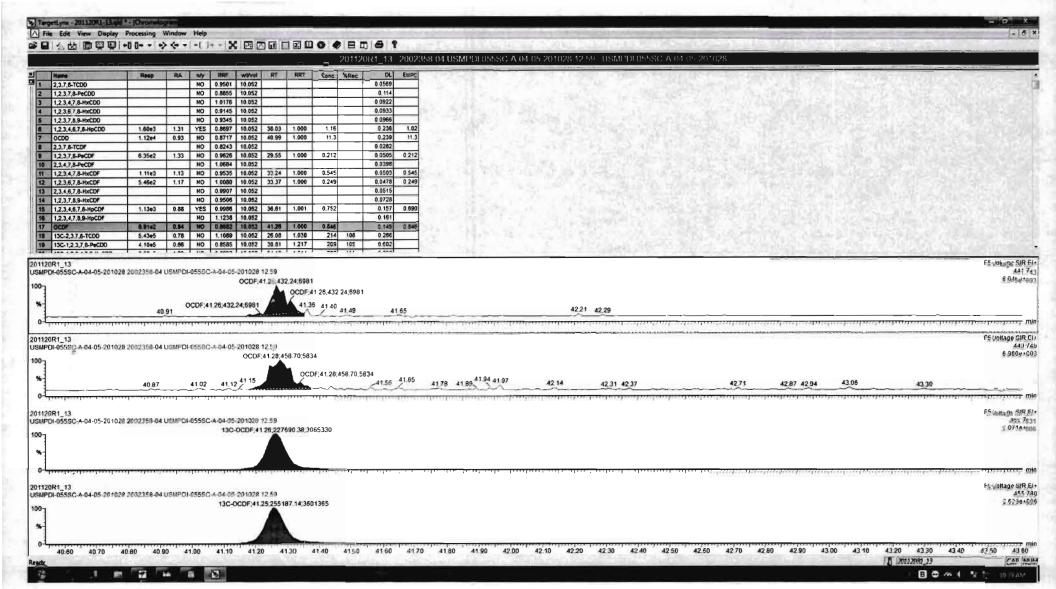

Work Order 2002358 Page 168 of 353

Untitled

List Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

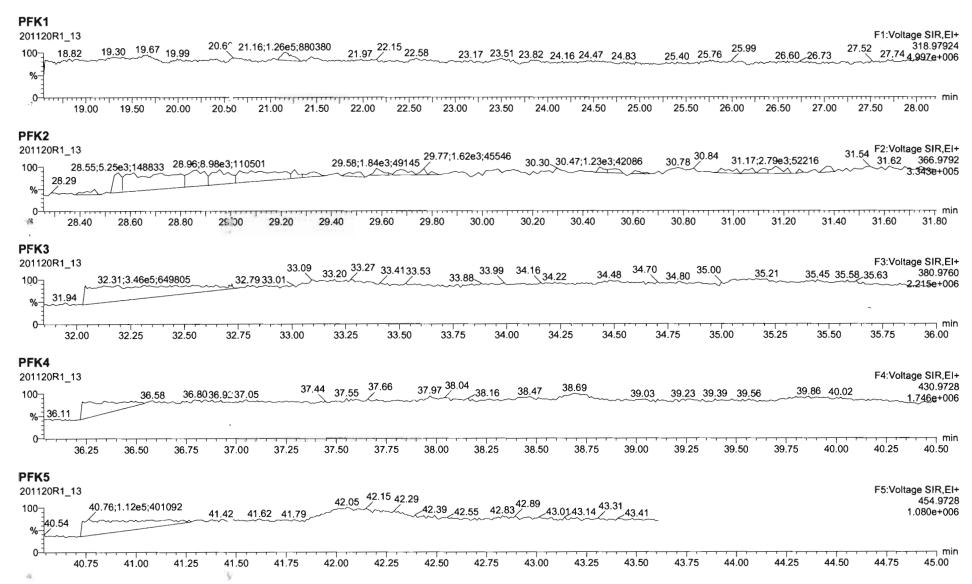



Work Order 2002358 Page 170 of 353

Untitled

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Work Order 2002358 Page 172 of 353

Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

CONTINUING CALIBRATION

Work Order 2002358 Page 174 of 353

TIRMS CALIBRATION STANDARDS REVIEW CHECKLIST

Beg. Calbration ID: ST20112021-2			Reviewed By: Hz 11-23-210		A-
			Initiais & Date		
End Calibration ID: ST20112022-1			 ⋅		B
*	Beg.	End		Beg.	End
Ion abundance within QC limits?	7		Mass resolution ≥		
Concentrations within criteria?			□ 5k □ 6-8K □ 8K ☑ 10K 1614 1699 429 1613/1668/8280		
TCDD/TCDF Valleys <25%		7	intergrated peaks display correctly?		
First and last eluters present?			GC Break <20%		
Retention Times within criteria?		7	8280 CS1 End Standard:		
Verification Std. named correctly?		7	- Ratios within limits, S/N <2.5%, CS1 within 12 hours		NA
(ST-Year-Month-Day-VG ID)					-
Forms signed and dated?			Comments: (R) END RES CHECK FOR STZO1120R1 DIO		νг,
Correct ICAL referenced?	GRB	GRB	PRINTED MANUALLY THE NEXT DAY W CHANGES MADE TO TUNING.	M NO	
Run Log:			* End res check had 1 m 455 under	ر ۱۵۱۷	
- Correct instrument listed?					*
- Samples within 12 hour clock?	$\widehat{\mathbf{Y}}$	N			
- Bottle position verfied?	Ger	3			

ID: LR - HCSRC

Rev. No.: 0 Rev. Date: 06/06/2017

Page: 1 of 1

Page 1 of 2

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-2.qld

Last Altered:

Sunday, November 22, 2020 10:13:23 Pacific Standard Time

Printed:

Sunday, November 22, 2020 10:13:36 Pacific Standard Time

GPB 11/22/2020 172 11.23.20

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39 Calibration: U:\VG12.PRO\CurveDB\dbDlOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1 2, Date: 20-Nov-2020, Time: 08:37:44, ID: ST201120R1_2 1613 CS3 20F1105, Description: 1613 CS3 20F1105

Taylor.	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
1	1 2,3,7,8-TCDD	5.82e4	5.89e5	0.76	NO	0.950	26.11	26.10	NO	1.001	1.001	10.408	104	NO
2	2 1,2,3,7,8-PeCDD	2.09e5	4.14e5	0.62	NO	0.885	30.80	30.81	NO	1.000	1.000	56.988	114	NO
3	3 1,2,3,4,7,8-HxCDD	1.74e5	3.43e5	1.24	NO	1.02	34.14	34.14	NO	1.000	1.000	49.830	99.7	NO
4	4 1,2,3,6,7,8-HxCDD	1.85e5	4.00e5	1.20	NO	0.915	34.25	34.25	NO	1.000	1.000	50.668	101	NO
5	5 1,2,3,7,8.9-HxCDD	1.78e5	3.81e5	1.20	NO	0.934	34.53	34.53	NO	1.000	1.000	49.996	100	NO
6	6 1,2,3,4,6,7,8-HpCDD	1.29e5	3.09e5	1.00	NO	0.870	38.02	38.03	NO	1.000	1.000	47.922	95.8	NO
7	7 OCDD	2.17e5	4.93e5	0.86	NO	0.872	40.97	40.98	NO	1.000	1.000	101.18	101	NO
8	8 2,3,7.8-TCDF	5.94e4	7.99e5	0.75	NO	0.824	25.40	25.40	NO	1.000	1.001	9.0118	90.1	NO
9	9 1,2,3,7,8-PeCDF	3.21e5	6.42e5	1.55	NO	0.963	29.54	29.55	NO	1.000	1.001	51.941	104	NO
10	10 2,3,4,7,8-PeCDF	3.32e5	6.13e5	1.54	NO	1.07	30.61	30.62	NO	1.000	1.000	50.682	101	NO
11	11 1,2,3,4,7,8-HxCDF	1.85e5	4.19e5	1.19	NO	0.953	33.22	33.24	NO	1.000	1.001	46.231	92.5	NO
12	12 1,2,3,6,7,8-HxCDF	2.04e5	4.37e5	1.18	NO	1.01	33.35	33.36	NO	1.000	1.000	46.252	92.5	NO
13	13 2,3,4,6,7,8-HxCDF	1.84e5	4.05e5	1.20	NO	0.991	34.02	34.03	NO	1.000	1.000	45.895	91.8	NO
14	14 1,2,3,7,8,9-HxCDF	1.57e5	3.61e5	1.24	NO	0.951	35.01	35.03	NO	1.000	1.001	45.599	91.2	NO
15	15 1,2,3,4,6,7,8-HpCDF	1.40e5	3.03e5	0.99	NO	0.999	36.60	36.61	NO	1.000	1.001	46.393	92.8	NO
16	16 1,2,3,4,7,8,9-HpCDF	1.14e5	2.21e5	0.97	NO	1.12	38.64	38.65	NO	1.000	1.000	46.015	92.0	NO
17	17 OCDF	2.10e5	5.10e5	0.87	NO	0.868	41.26	41.26	NO	1.000	1.000	94.978	95.0	NO
18	18 13C-2,3,7,8-TCDD	5.89e5	5.13e5	0.80	NO	1.11	26.07	26.08	NO	1.030	1.030	103.49	103	NO
19	19 13C-1,2,3,7,8-PeCDD	4.14e5	5.13e5	0.65	NO	0.859	30.79	30.80	NO	1.216	1.217	93.995	94.0	NO
20	20 13C-1,2,3,4,7,8-HxCDD	3.43e5	4.40e5	1.28	NO	0.700	34.12	34.13	NO	1.014	1.014	111.48	111	NO
21	21 13C-1,2,3,6,7,8-HxCDD	4.00e5	4.40e5	1.28	NO	0.833	34.26	34.24	NO	1.018	1.017	109.17	109	NO
22	22 13C-1.2,3,7,8,9-HxCDD	3.81e5	4.40e5	1.23	NO	0.762	34.51	34.52	NO	1.025	1.026	113.85	114	NO
23	23 13C-1,2,3,4,6,7,8-HpCDD	3.09e5	4.40e5	1.07	NO	0.650	37.99	38.02	NO	1.129	1.130	108.09	108	NO
24	24 13C-OCDD	4.93e5	4.40e5	0.91	NO	0.539	40.95	40.97	NO	1.217	1.217	208.01	104	NO
25	25 13C-2,3,7,8-TCDF	7.99e5	7.76e5	0.77	NO	0.981	25.40	25.39	NO	1.003	1.003	104.93	105	NO
26	26 13C-1,2,3,7,8-PeCDF	6.42e5	7.76e5	1.59	NO	0.792	29.52	29.53	NO	1.166	1.167	104.46	104	NO
27	27 13C-2.3.4,7,8-PeCDF	6.13e5	7.76e5	1.56	NO	0.778	30.58	30.61	NO	1.208	1.209	101.50	101	NO
28	28 13C-1,2,3,4,7,8-HxCDF	4.19e5	4.40e5	0.50	NO	0.954	33.22	33.22	NO	0.987	0.987	99.857	99.9	NO
29	29 13C-1,2,3,6,7,8-HxCDF	4.37e5	4.40e5	0.49	NO	1.01	33.35	33.35	NO	0.991	0.991	98.877	98.9	NO
30	30 13C-2,3,4,6,7,8-HxCDF	4.05e5	4.40e5	0.50	NO	0.921	34.02	34.02	NO	1.011	1.011	100.01	100	NO

Page 176 of 353 Work Order 2002358

Page 2 of 2

Dataset:

U:\VG12.PRO\Results\201120R1\201120R1-2.qld

Last Altered: Printed: Sunday, November 22, 2020 10:13:23 Pacific Standard Time Sunday, November 22, 2020 10:13:36 Pacific Standard Time

Name: 201120R1_2, Date: 20-Nov-2020, Time: 08:37:44, ID: ST201120R1_2 1613 CS3 20F1105, Description: 1613 CS3 20F1105

	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
31	31 13C-1,2,3,7,8,9-HxCDF	3.61e5	4.40e5	0.49	NO	0.803	35.01	35.01	NO	1.040	1.040	102.33	102	NO
32	32 13C-1,2,3,4,6,7,8-HpCDF	3.03e5	4.40e5	0.43	NO	0.735	36.58	36.59	NO	1.087	1.087	93.685	93.7	NO
33	33 13C-1,2,3,4,7,8,9-HpCDF	2.21e5	4.40e5	0.41	NO	0.568	38.62	38.64	NO	1.147	1.148	88.627	88.6	NO
34	34 13C-OCDF	5.10e5	4.40e5	0.88	NO	0.629	41.24	41.25	NO	1.225	1.226	184.50	92.2	NO
35	35 37CI-2,3,7,8-TCDD	6.04e4	5.13e5			1.09	26.07	26.10	NO	1.030	1.031	10.829	108	NO
36	36 13C-1,2,3,4-TCDD	5.13e5	5.13e5	0.79	NO	1.00	25.37	25.31	NO	1.000	1.000	100.00	100	NO
37	37 13C-1,2,3,4-TCDF	7.76e5	7.76e5	0.78	NO	1.00	23.87	23.81	NO	1.000	1.000	100.00	100	NO
38	38 13C-1,2,3,4,6,9-HxCDF	4.40e5	4.40e5	0.51	NO	1.00	33.71	33.66	NO	1.000	1.000	100.00	100	YESOK

Work Order 2002358 Page 177 of 353

Printed:

Untitled

Last Altered:

Sunday, November 22, 2020 09:24:47 Pacific Standard Time Sunday, November 22, 2020 09:26:01 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Compound name: 2,3,7,8-TCDD

	Name	ID	Acq.Date	Acq.Time
1	201120R1_	ST201120R1_1 1613 CS3 20F1105	20-Nov-20	07:42:40
2	201120R1_2	ST201120R1_2 1613 CS3 20F1105	20-Nov-20	08:37:44
3	201120R1_3	TCDF CPSM	20-Nov-20	09:23:10
4	201120R1_4	B0K0115-BS1 OPR 10	20-Nov-20	10:08:05
5	201120R1_5(A)			
6	201120R1_6	SOLVENT BLANK	20-Nov-20	11:38:27
7	201120R1_7	B0K0115-BLK1 Method Blank 10	20-Nov-20	12:23:20
8	201120R1_8	2002357-01 NCPDI-007SC-02-03-201027 6.77	20-Nov-20	13:08:16
9	201120R1_9	2002357-02 NCPDI-007SC-03-04-201027 5.93	20-Nov-20	13:53:09
10	201120R1_10	2002358-01 USMPDI-055SC-A-01-02-201028	20-Nov-20	14:38:03
11	201120R1_11	2002358-02 USMPDI-055SC-A-02-03-201028	20-Nov-20	15:22:58
12	201120R1_12	2002358-03 USMPDI-055SC-A-03-04-201028	20-Nov-20	16:07:54
13	201120R1_13	2002358-04 USMPDI-055SC-A-04-05-201028	20-Nov-20	16:52:45
14	201120R1_14	2002409-01 110320 S1-2 16.97	20-Nov-20	17:37:36
15	201120R1_15	2002376-01 DCWWTP Sludge 33.9	20-Nov-20	18:22:27
16	201120R1_16	2002376-05 PGWWTP Sludge 24.77	20-Nov-20	19:07:18
17	201120R2_1	SOLVENT BLANK	20-Nov-20	20:01:12
18	201120R2_2	ST201120R2_1 1613 CS3 20F1105	20-Nov-20	20:46:05
19	201120R2_3	TCDF CPSM	20-Nov-20	21:30:59

@INST. PAUSED, SOLVENT BLANK PZ IMMEDIATELY AFTER.

GRB 11/22/2020

GRB 11/22/2020

Work Order 2002358 Page 178 of 353

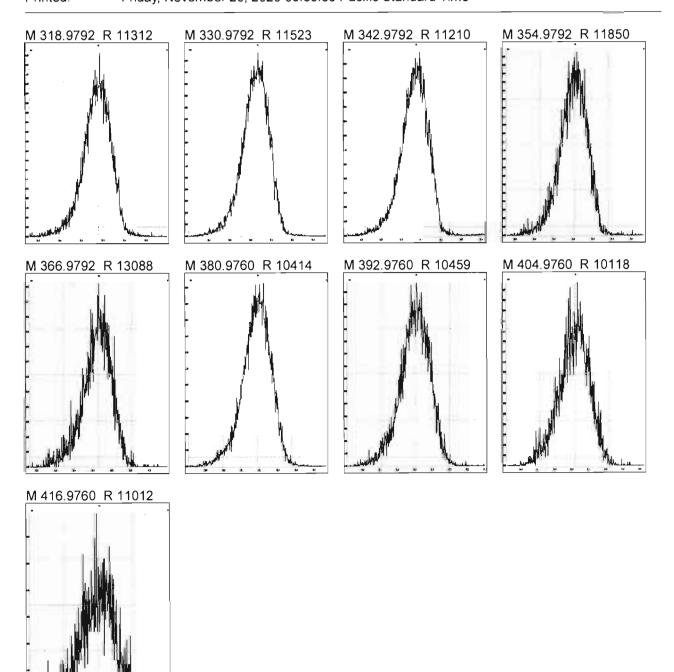
File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:

Friday, November 20, 2020 08:34:44 Pacific Standard Time

Work Order 2002358 Page 179 of 353


Page 1 of 1

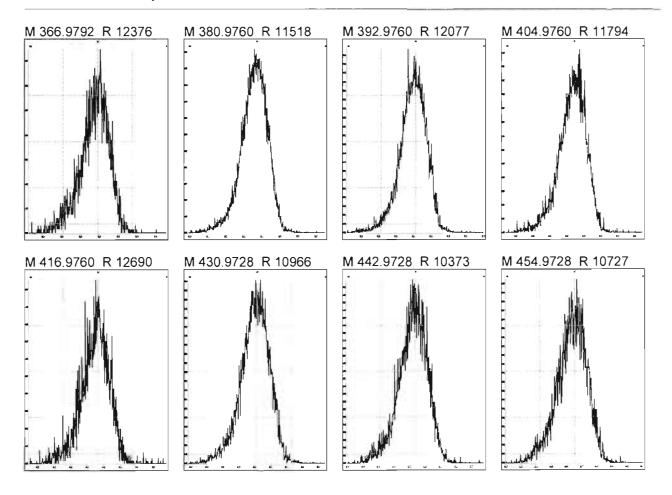
File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:

Friday, November 20, 2020 08:35:38 Pacific Standard Time

Work Order 2002358 Page 180 of 353

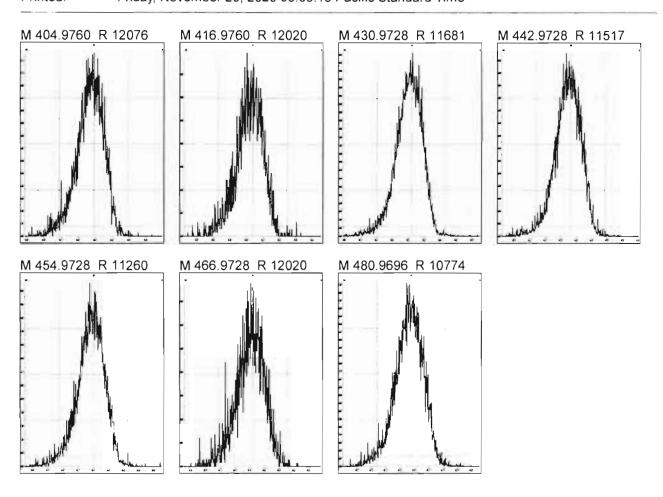

Page 1 of 1

File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

Friday, November 20, 2020 08:36:01 Pacific Standard Time



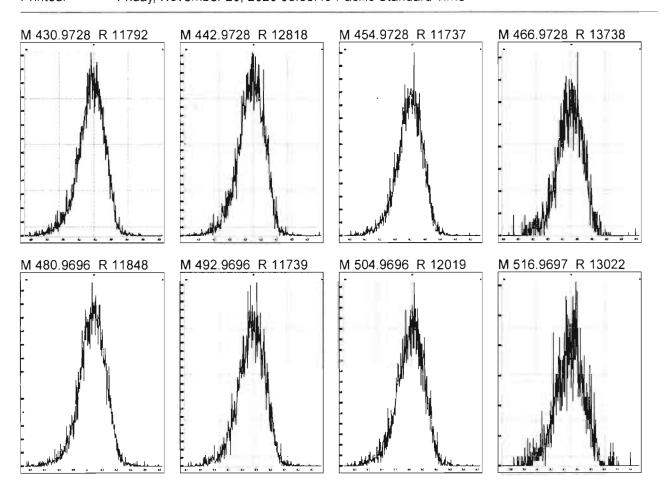
Work Order 2002358 Page 181 of 353

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

Friday, November 20, 2020 08:36:18 Pacific Standard Time

Work Order 2002358 Page 182 of 353


Page 1 of 1

File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:

Friday, November 20, 2020 08:36:40 Pacific Standard Time

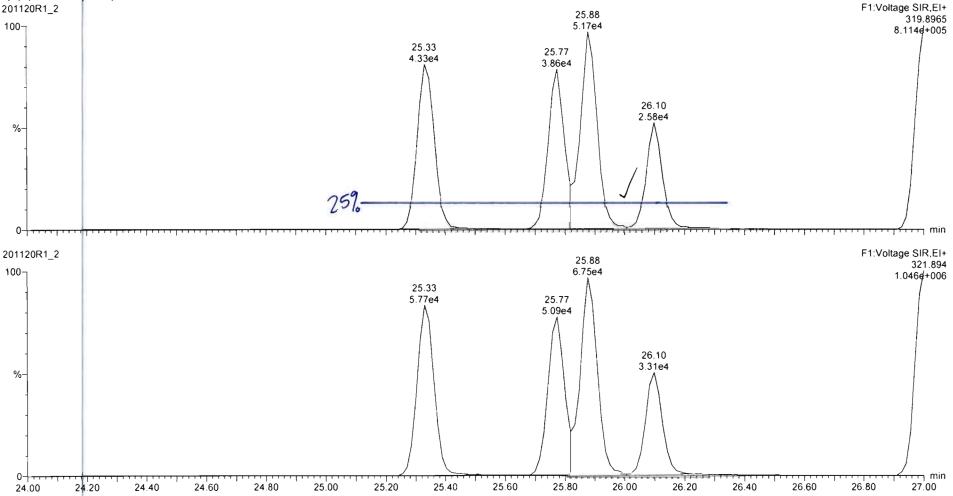
Work Order 2002358 Page 183 of 353

Untitled

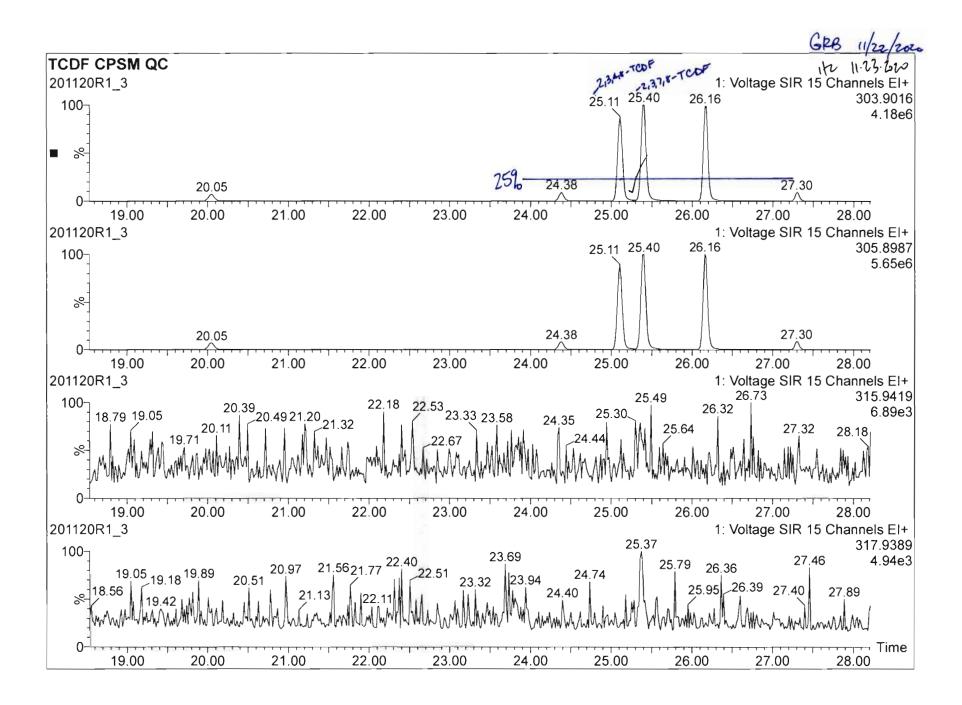
Last Altered: Printed:

Sunday, November 22, 2020 10:11:03 Pacific Standard Time Sunday, November 22, 2020 10:11:25 Pacific Standard Time

Method: U:\VG12.PRO\MethDB\CPSM.mdb 10 Nov 2020 10:04:22


Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

Name: 201120R1_2, Date: 20-Nov-2020, Time: 08:37:44, ID: ST201120R1_2 1613 CS3 20F1105, Description: 1613 CS3 20F1105


Seal In	# Name	RT
1	1 1,3,6,8-TCDD (First)	22.27
2	2 1,2,8,9-TCDD (Last)	27.00
3	3 1,2,4,7,9-PeCDD (First)	28.55
4	4 1,2,3.8,9-PeCDD (Last)	31.17
5	5 1.2,4,6,7,9-HxCDD (First)	32.51
6	6 1,2,3,7,8,9-HxCDD (Last)	34.53
7	7 1,2,3,4,6,7,9-HpCDD (First)	36.99
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.03
9	9 1,3,6,8-TCDF (First)	20.05
10	10 1,2,8,9-TCDF (Last)	27.31
11	11 1,3,4,6,8-PeCDF (First)	26.88
12	12 1,2,3,8,9-PeCDF (Last)	31.54
13	13 1,2,3,4,6,8-HxCDF (First)	31.96
14	14 1,2,3,7,8,9-HxCDF (Last)	35.03
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.61
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.65

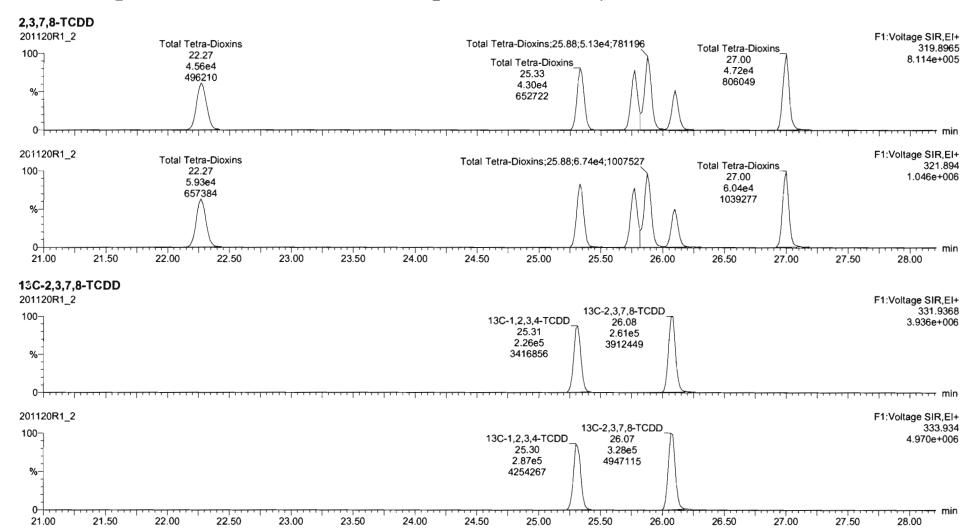
Work Order 2002358 Page 184 of 353

Quantify Sample Report MassLynx 4.1 SCN815 Vista Analytical Laboratory VG-11 Dataset: Untitled Last Altered: Sunday, November 22, 2020 10:11:03 Pacific Standard Time GRB 11/22/2020 HZ 11.23.20W Sunday, November 22, 2020 10:11:25 Pacific Standard Time Printed: Method: U:\VG12.PRO\MethDB\CPSM.mdb 10 Nov 2020 10:04:22 Calibration: U:\VG12.PRO\CurveDB\dbDlOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10 Name: 201120R1_2, Date: 20-Nov-2020, Time: 08:37:44, ID: ST201120R1_2 1613 CS3 20F1105, Description: 1613 CS3 20F1105 1,3,6,8-TCDD (First) 201120R1_2 25.88 100-5.17e4 25.33 25.77 4.33e4 3.86e4

Page 1 of 1

Work Order 2002358 Page 186 of 353

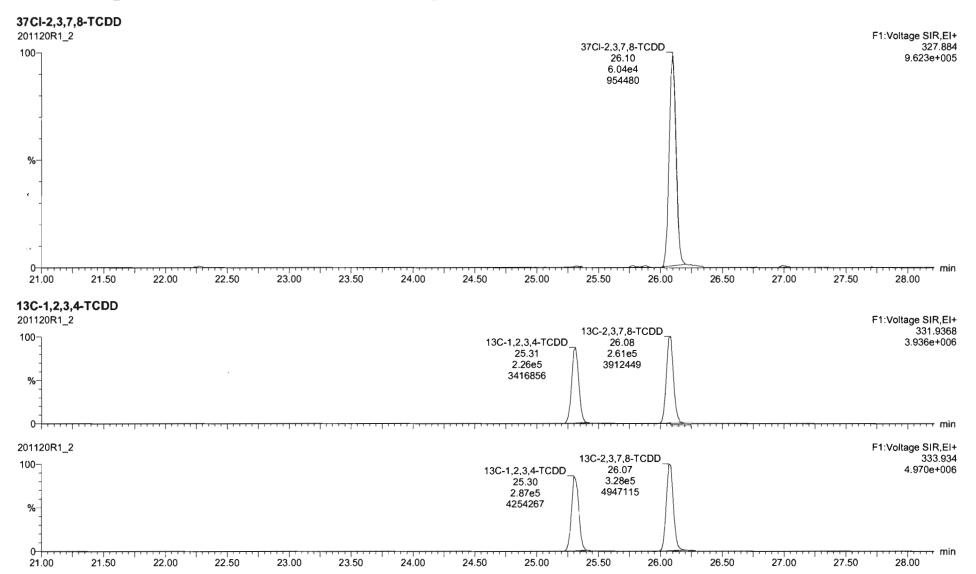
Printed:


Untitled

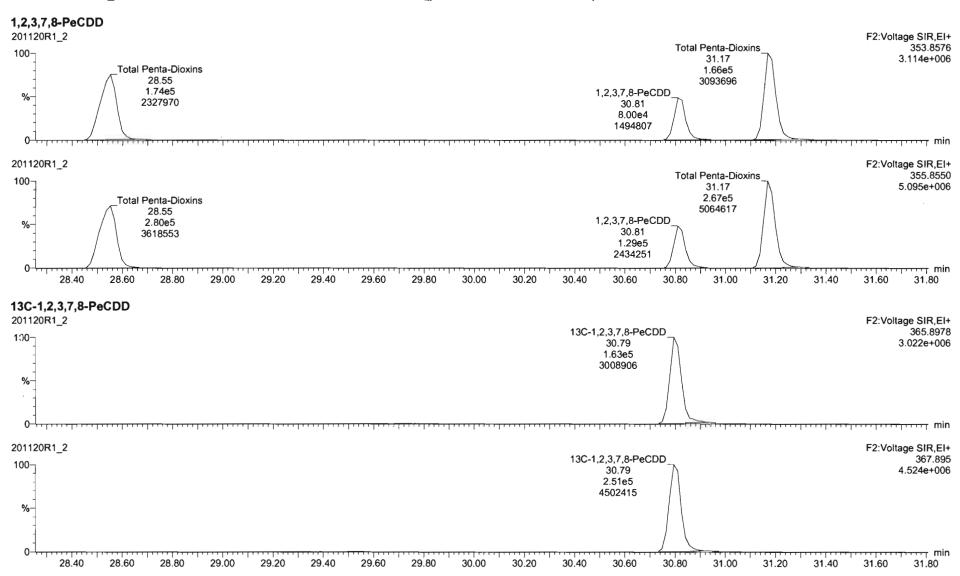
Last Altered:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Method: U:\VG12.PRO\MethDB\1613rrt-11-11-20.mdb 12 Nov 2020 07:51:39


Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 13:36:10

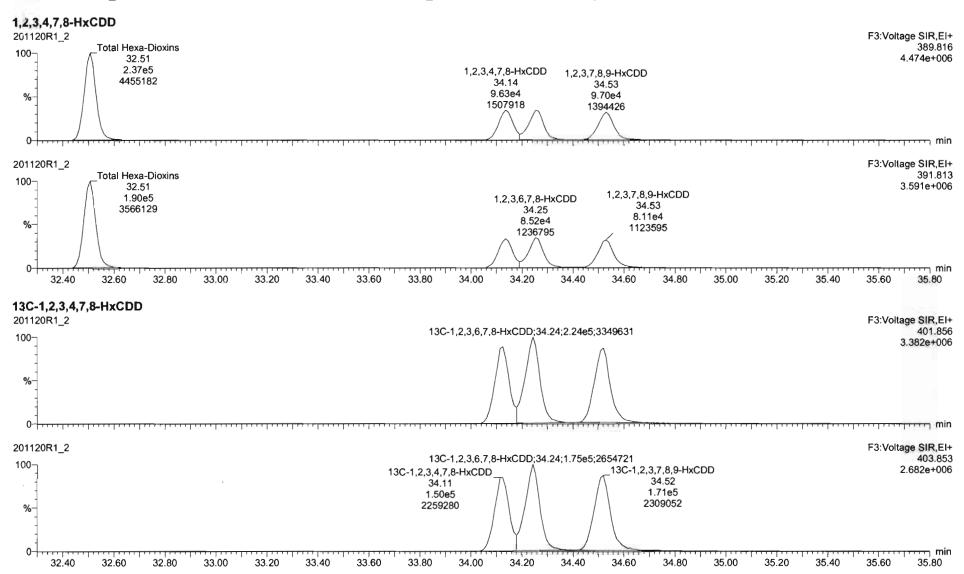
Untitled

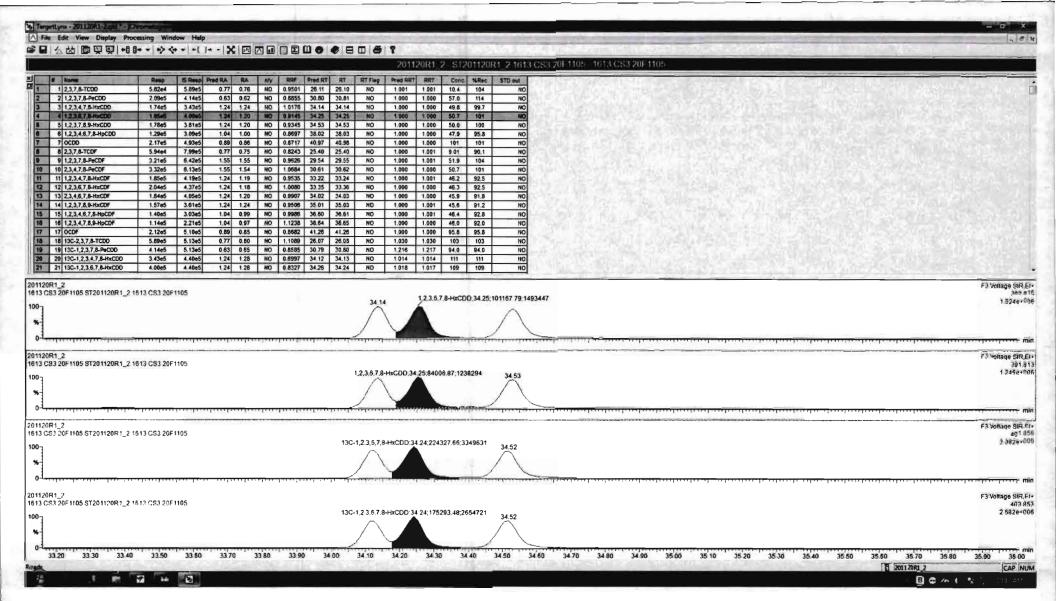

Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

Last Altered: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Printed: Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

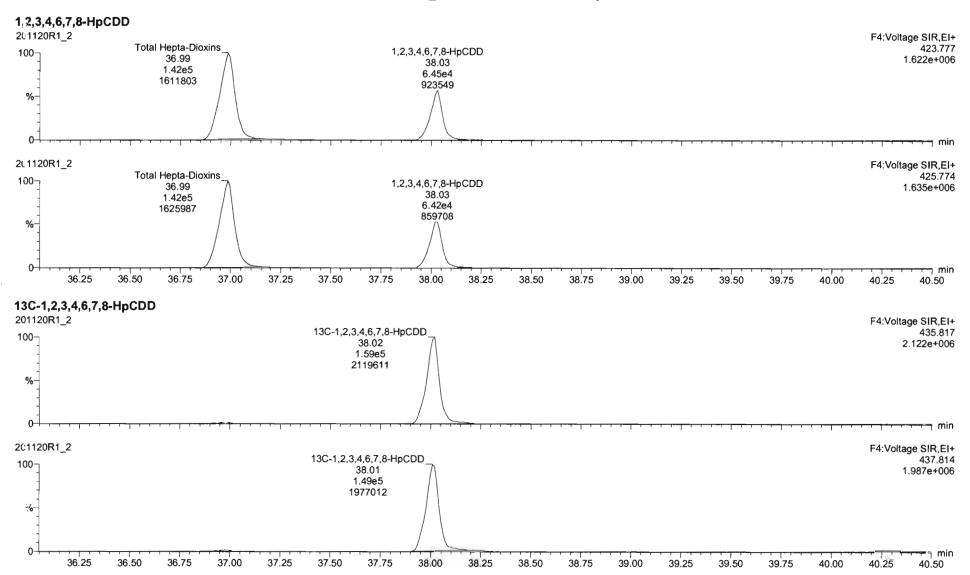



Untitled

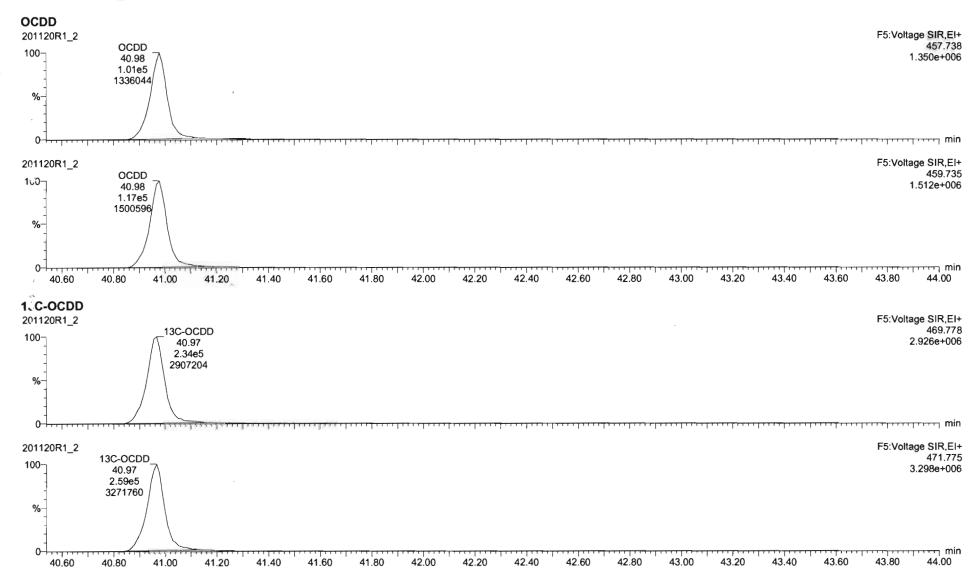
_ -----

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time

Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

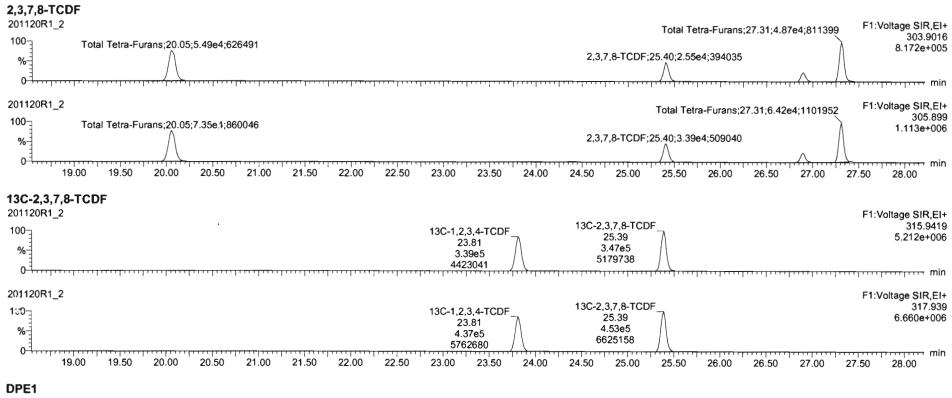


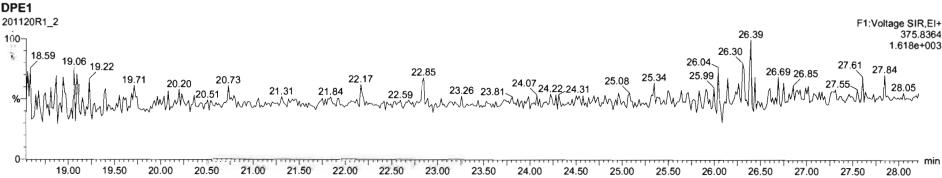
Work Order 2002358 Page 191 of 353


Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled

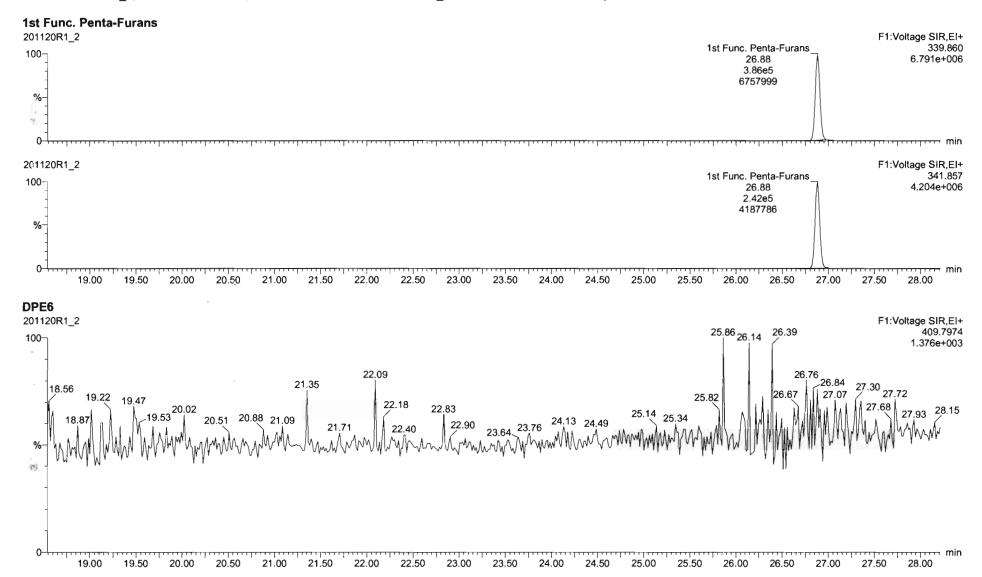

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Untitled

Last Altered: Printed:

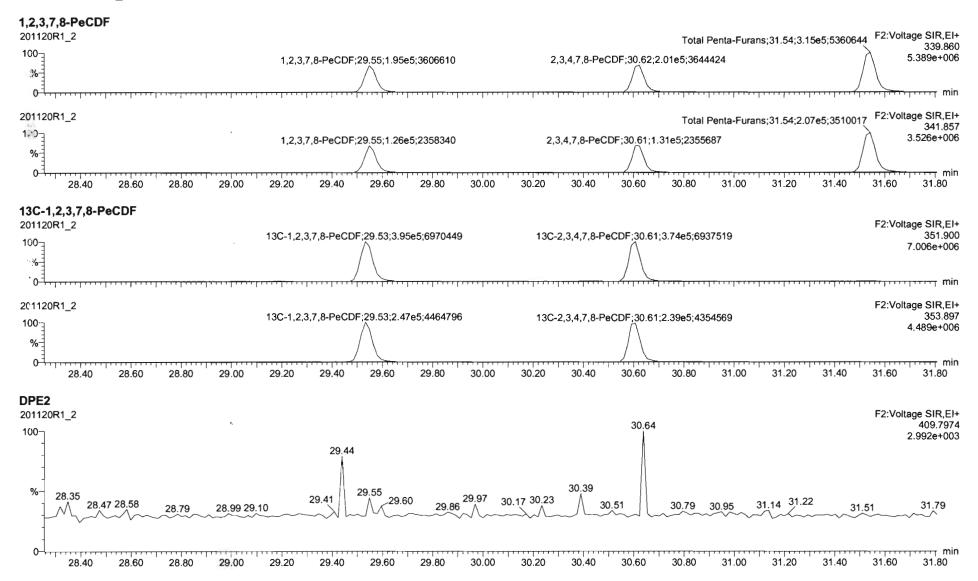
Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Untitled

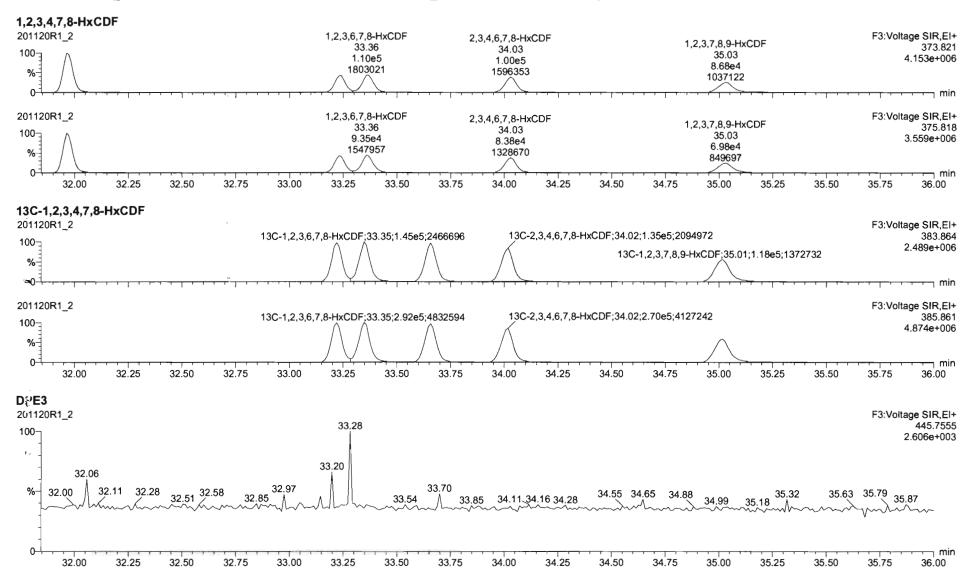
Last Altered: Printed:

Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time


Quantify Sample Report Vista Analytical Laboratory

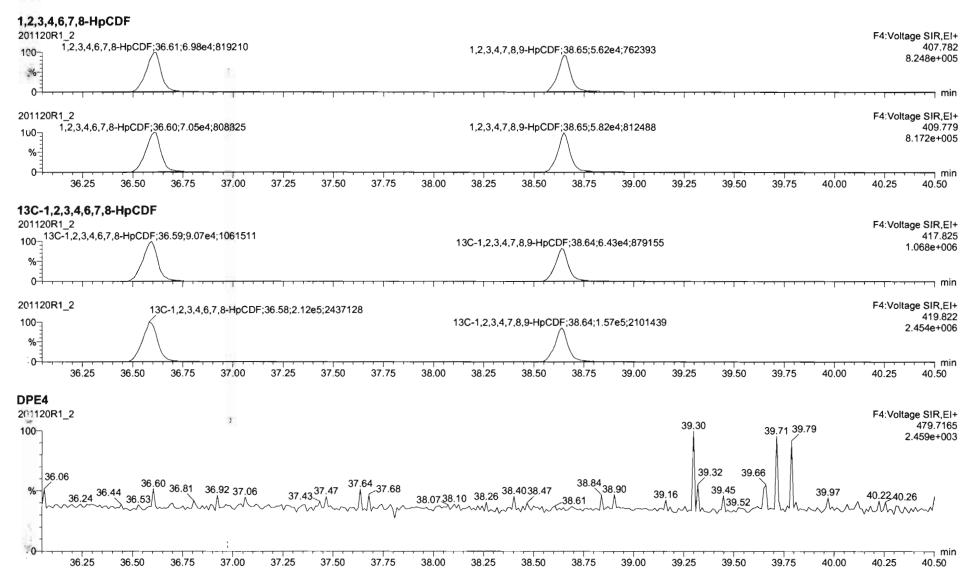
Dataset:

Untitled

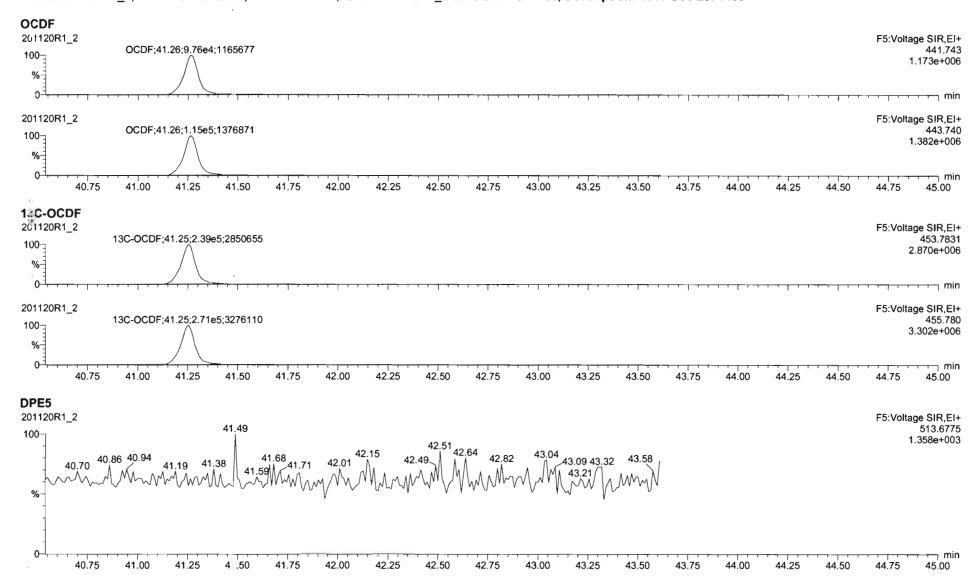

Last Altered: Printed:

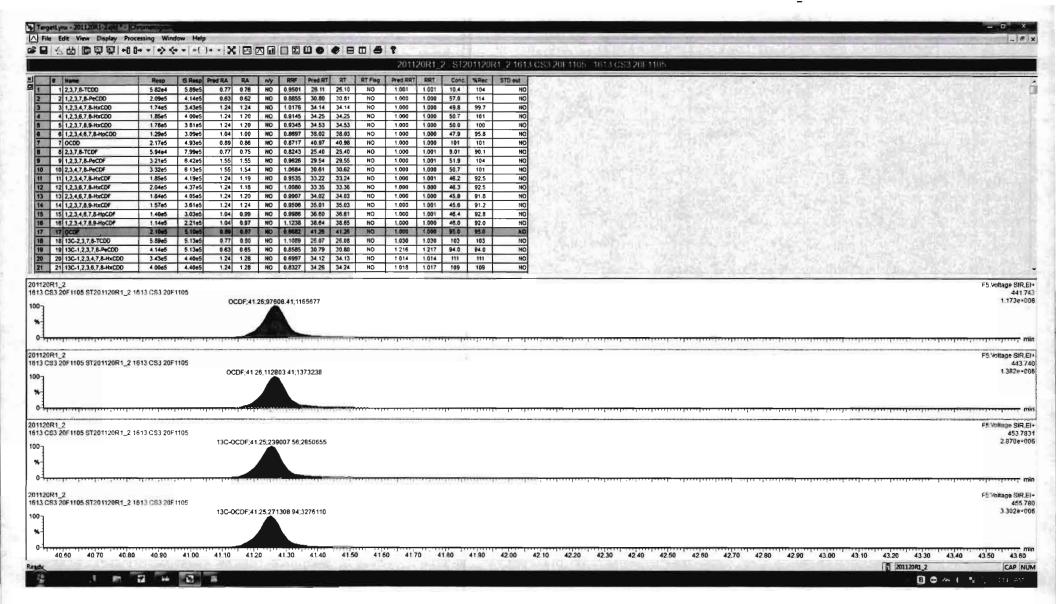
Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

Untitled


Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

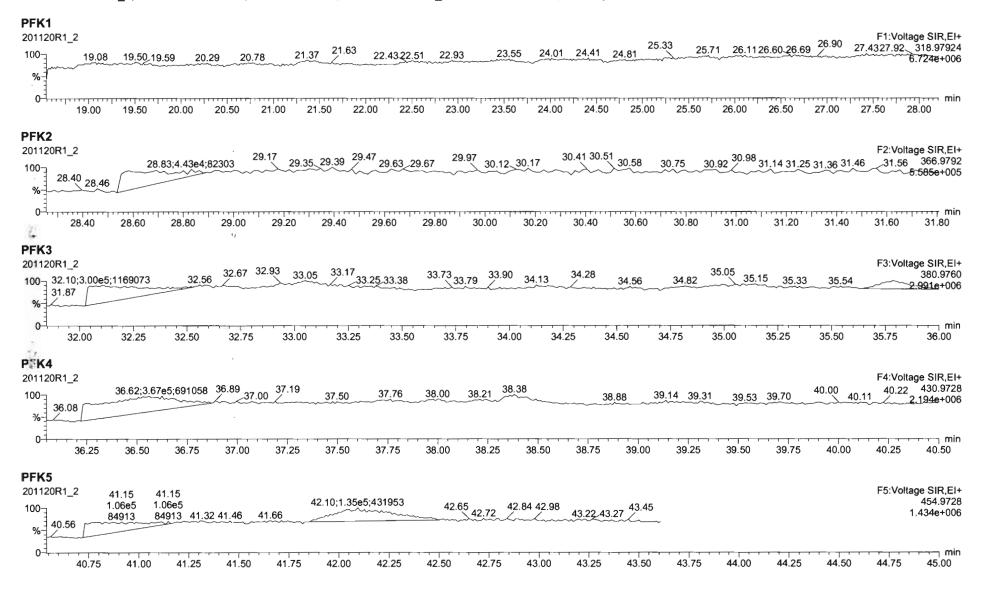
Untitled


Last Altered: Pinted:


Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time

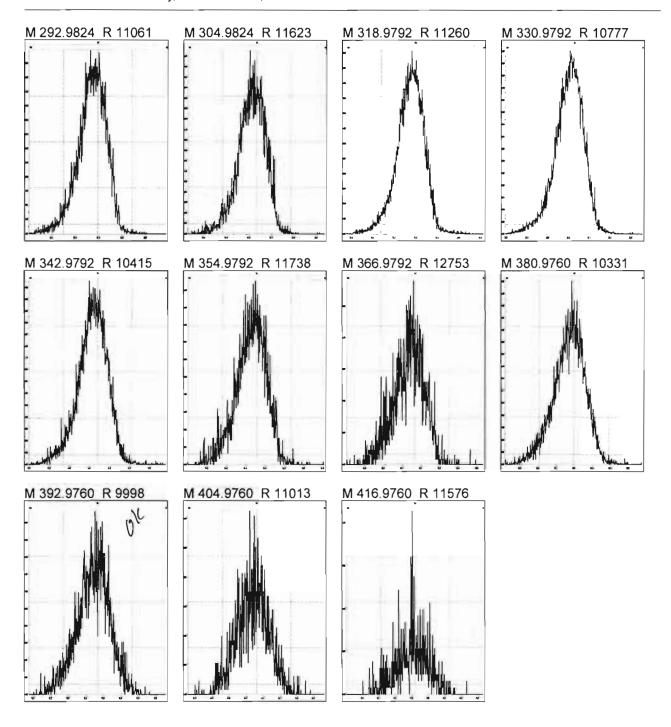
Untitled

Last Altered: Printed: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 21, 2020 9:56:20 AM Pacific Standard Time



Work Order 2002358 Page 200 of 353

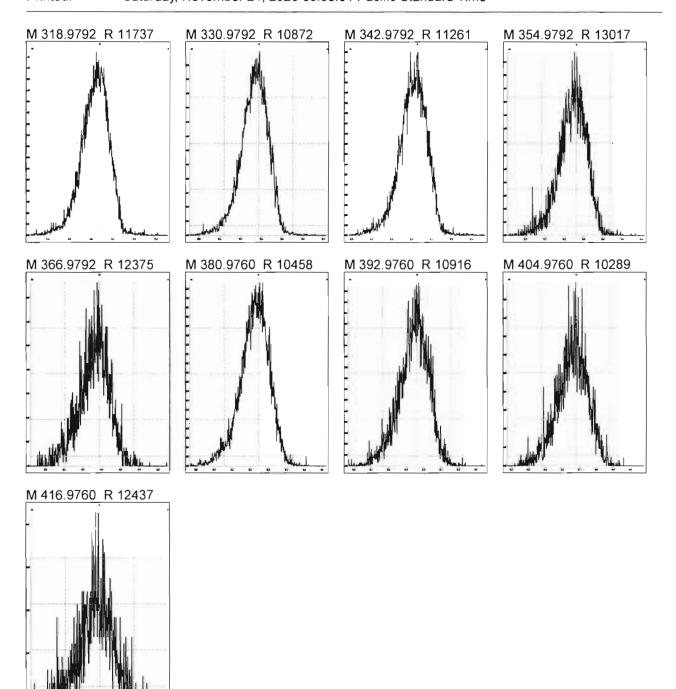
Untitled


Last Altered: Saturday, November 21, 2020 9:51:32 AM Pacific Standard Time Saturday, November 27, 2020 9:56:20 AM Pacific Standard Time

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:

Saturday, November 21, 2020 09:49:39 Pacific Standard Time

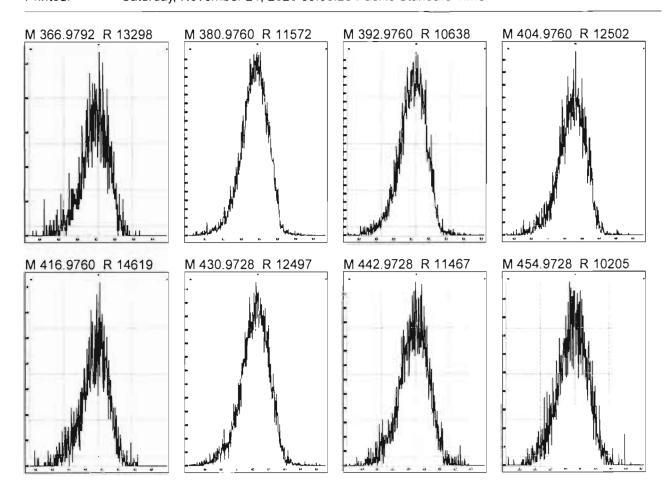


Work Order 2002358 Page 202 of 353

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:

Saturday, November 21, 2020 09:50:01 Pacific Standard Time

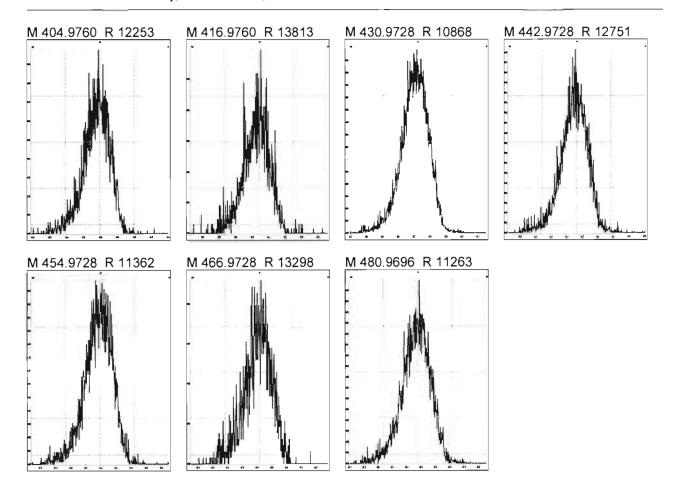


Work Order 2002358 Page 203 of 353

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

Saturday, November 21, 2020 09:50:20 Pacific Standard Time



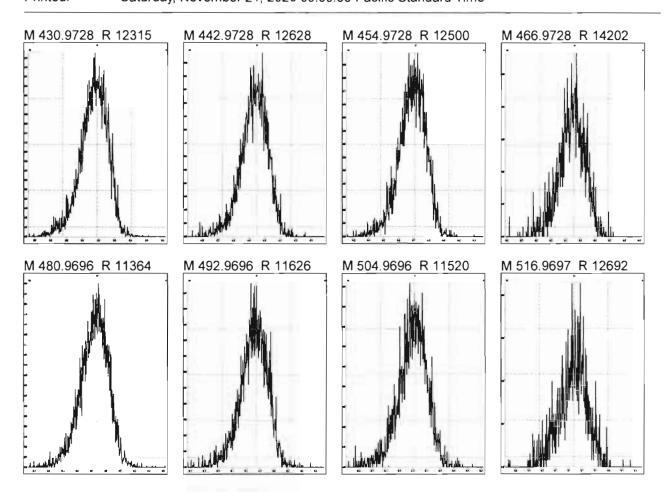
Work Order 2002358 Page 204 of 353

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

Saturday, November 21, 2020 09:50:37 Pacific Standard Time

Work Order 2002358 Page 205 of 353


Page 1 of 1

File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:

Saturday, November 21, 2020 09:50:55 Pacific Standard Time

Work Order 2002358 Page 206 of 353

INITIAL CALIBRATION

Work Order 2002358 Page 207 of 353

MassLynx 4.1 SCN815

Page 1 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

GPB 10/2/2020

Method: U:\VG12.PRO\MethDB\1613rrt-10-20-20.mdb 20 Oct 2020 10:47:39

Calibration: U:\VG12.PR0\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 14:36:10

Compound name: 2,3,7,8-TCDD Response Factor: 0.950098

RRF SD: 0.10465, Relative SD: 11.0146

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)

Curve type: RF

F) (0 545	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	0.250	0.81	NO	26.29	1.001	2.37e3	1.11e6	0.224	-10.3	0.852	MM
2	201020R1_2	0.500	0.75	NO	26.31	1.001	5.59e3	1.28e6	0.460	-8.0	0.874	bb
3	201020R1_3	2.00	0.75	NO	26.29	1.001	2.28e4	1.32e6	1.82	-8.9	0.866	bb
4	201020R1_4	40.0	0.77	NO	26.32	1.000	3.56e5	8.62e5	43.4	8.6	1.03	bb
5	201020R1_5	300	0.78	NO	26.29	1.001	4.63e6	1.39e6	350	16.7	1,11	bb
6	201020R1_6	10.0	0.76	NO	26.29	1.001	1.18e5	1.22e6	10.2	1.9	0.969	MM

Compound name: 1,2,3,7,8-PeCDD

Response Factor: 0.885499

RRF SD: 0.0848416, Relative SD: 9.58122

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)

Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1 73 5	201020R1_1	1.25	0.59	NO	30.96	1.001	8.54e3	8.68e5	1.11	-11.0	0.788	bb
2	201020R1_2	2.50	0.63	NO	30.96	1.000	1.82e4	9.11e5	2.25	-9.8	0.798	bb
3	201020R1_3	10.0	0.61	NO	30.96	1.001	8.73e4	1.03e6	9.59	-4.1	0.849	bb
4	201020R1_4	200	0.62	NO	30.98	1.001	1.24e6	6.47e5	217	8.5	0.961	MM
5	201020R1_5	1500	0.62	NO	30.98	1.001	1.71e7	1.16e6	1670	11.0	0.983	bb
6	201020R1_6	50.0	0.62	NO	30.96	1.001	4.46e5	9.55e5	52.7	5.5	0.934	bb

Work Order 2002358 Page 208 of 353

Page 2 of 16

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed: Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 1,2,3,4,7,8-HxCDD

Response Factor: 1.01755

RRF SD: 0.10207, Relative SD: 10.0309

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)

Curve type: RF

THE	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.20	NO	34.28	1.000	6.99e3	6.21e5	1.11	-11.5	0.901	bd
2	201020R1_2	2.50	1.26	NO	34.27	1.000	1.48e4	6.65e5	2.19	-12.3	0.892	bd
3	201020R1_3	10.0	1.25	NO	34.28	1.001	7.13e4	7.07e5	9.91	-0.9	1.01	bd
4	201020R1_4	200	1.24	NO	34.29	1.000	1.04e6	4.71e5	218	8.9	1.11	bd
5	201020R1_5	1500	1.23	NO	34.28	1.000	1.49e7	8.81e5	1660	10.7	1.13	bd
6	201020R1_6	50.0	1.27	NO	34.28	1.000	3.59e5	6.72e5	52.5	5.0	1.07	bd

Compound name: 1,2,3,6,7,8-HxCDD

Response Factor: 0.914527

RRF SD: 0.0845585, Relative SD: 9.24614

Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)

Curve type: RF

100	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.17	NO	34.41	1.001	7.95e3	7.36e5	1.18	-5.5	0.864	db
2	201020R1_2	2.50	1.28	NO	34.40	1.001	1.57e4	7.73e5	2.22	-11.1	0.813	db
3	201020R1_3	10.0	1.29	NO	34.40	1.001	7.37e4	8.70e5	9.27	-7.3	0.847	db
4	201020R1_4	200	1.25	NO	34.41	1.001	1.17e6	5.87e5	218	8.9	0.996	db
5	201020R1_5	1500	1.24	NO	34.40	1.000	1.55e7	1.02e6	1670	11.1	1.02	db
6	201020R1_6	50.0	1.26	NO	34.41	1.001	3.73e5	7.84e5	52.0	4.0	0.951	db

Compound name: 1,2,3,7,8,9-HxCDD

Response Factor: 0.934452

RRF SD: 0.104124, Relative SD: 11.1428

Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)

Curve type: RF

0.5700	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.17	NO	34.67	1.000	6.89e3	6.69e5	1.10	-11.8	0.824	bb
2	201020R1_2	2.50	1.24	NO	34.67	1.000	1.48e4	7.19e5	2.21	-11.8	0.825	bb

Work Order 2002358 Page 209 of 353

Page 3 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 1,2,3,7,8,9-HxCDD

15 10 12	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	201020R1_3	10.0	1.25	NO	34.66	1.000	7.04e4	8.01e5	9.42	-5.8	0.880	bb
4	201020R1_4	200	1.24	NO	34.69	1.000	1.07 e 6	5.18e5	222	10.9	1.04	bb
5	201020R1_5	1500	1.24	NO	34.67	1.000	1.48e7	9.42e5	1680	12.3	1.05	bb
6	201020R1_6	50.0	1.24	NO	34.67	1.000	3.59e5	7.24e5	53.1	6.2	0.992	bb

Compound name: 1,2,3,4,6,7,8-HpCDD

Response Factor: 0.869732

RRF SD: 0.101922, Relative SD: 11.7188

Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)

Curve type: RF

10000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1.01002	201020R1_1	1.25	1.01	NO	38.16	1.001	5.19e3	5.60e5	1.07	-14.6	0.742	bb
2	201020R1_2	2.50	1.00	NO	38.14	1.000	1.26e4	6.39e5	2.27	-9.4	0.788	bb
3	201020R1_3	10.0	1.06	NO	38.15	1.000	5.46e4	6.69e5	9.38	-6.2	0.816	bd
4	201020R1_4	200	1.03	NO	38.16	1.000	8.51e5	4.44e5	221	10.3	0.960	bb
5	201020R1_5	1500	1.03	NO	38.16	1.001	1.20e7	8.00e5	1720	14.6	0.997	bb
6	201020R1_6	50.0	1.01	NO	38.16	1.000	2.81e5	6.15e5	52.6	5.2	0.915	bb

Compound name: OCDD Response Factor: 0.871682

RRF SD: 0.0918681, Relative SD: 10.5392

Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)

Curve type: RF

13-600	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	2.50	0.91	NO	41.11	1.000	8.88e3	8.86e5	2.30	-8.0	0.802	MM
2	201020R1_2	5.00	0.83	NO	41.10	1.000	2.03e4	1.06e6	4.38	-12.3	0.764	bd
3	201020R1_3	20.0	0.91	NO	41.12	1.000	9.08e4	1.12e6	18.6	-7.0	0.811	bd
4	201020R1_4	400	0.89	NO	41.10	1.000	1.42e6	7.38e5	442	10.4	0.963	bb
5	201020R1_5	3000	0.87	NO	41.13	1.000	2.01e7	1.36e6	3380	12.8	0.983	bb
6	201020R1_6	100	0.88	NO	41.12	1.000	4.65e5	1.02e6	104	4.1	0.907	ММ

Work Order 2002358 Page 210 of 353

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 2,3,7,8-TCDF Response Factor: 0.824288

RRF SD: 0.0905517, Relative SD: 10.9854

Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)

Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	, Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	0.250	0.75	NO	25.61	1.001	2.81e3	1.53e6	0.223	-11.0	0.734	MM
2	201020R1_2	0.500	0.74	NO	25.61	1.001	6.37e3	1.70e6	0.454	-9.1	0.749	MM
3	201020R1_3	2.00	0.77	NO	25.61	1.001	2.79e4	1.82e6	1.86	-7.2	0.765	bb
4	201020R1_4	40.0	0.75	NO	25.64	1.000	4.26e5	1.19e6	43.4	8.5	0.895	bb
5	201020R1_5	300	0.76	NO	25.61	1.001	5.36e6	1.86e6	349	16.4	0.959	bb
6	201020R1_6	10.0	0.75	NO	25.61	1.001	1.42e5	1.69e6	10.2	2.4	0.844	bb

Compound name: 1,2,3,7,8-PeCDF

Response Factor: 0.962587

RRF SD: 0.0802385, Relative SD: 8.33572

Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)

Curve type: RF

THE STA	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.60	NO	29.71	1.001	1.34e4	1.22e6	1.14	-8.9	0.877	bb
2	201020R1_2	2.50	1.55	NO	29.71	1.001	2.85e4	1.30e6	2.27	-9.4	0.872	bb
3	201020R1_3	10.0	1.60	NO	29.71	1.001	1.32e5	1.42e6	9.68	-3.2	0.932	bb
4	201020R1_4	200	1.56	NO	29.73	1.001	1.94e6	9.55e5	211	5.6	1.02	bd
5	201020R1_5	1500	1.55	NO	29.71	1.000	2.60e7	1.63e6	1660	10.5	1.06	bb
6	201020R1_6	50.0	1.57	NO	29.71	1.001	7.00e5	1.38e6	52.7	5.4	1.01	bb

Compound name: 2,3,4,7,8-PeCDF

Response Factor: 1.06841

RRF SD: 0.0935936, Relative SD: 8.76011

Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)

Curve type: RF

1500	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.58	NO	30.76	1.000	1.39e4	1.16e6	1.13	-9.8	0.964	bb
2	201020R1_2	2.50	1.59	NO	30.77	1.001	3.11e4	1.29e6	2.26	-9.6	0.966	bb

Work Order 2002358 Page 211 of 353

Page 5 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 2,3,4,7,8-PeCDF

1 28	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	201020R1_3	10.0	1.62	NO	30.75	1.000	1.51e5	1.45e6	9.71	-2.9	1.04	bb
4	201020R1_4	200	1.56	NO	30.77	1.000	2.12e6	9.27e5	214	7.1	1.14	bd
5	201020R1_5	1500	1.55	NO	30.77	1.001	2.83e7	1.59e6	1660	10.9	1.18	bb
6	201020R1_6	50.0	1.55	NO	30.76	1.000	7.58e5	1.36e6	52.1	4.2	1.11	bb

Compound name: 1,2,3,4,7,8-HxCDF

Response Factor: 0.953478

RRF SD: 0.113056, Relative SD: 11.8572

Response type: Internal Std (Ref 28), Area * (IS Conc. / IS Area)

Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.21	NO	33.37	1.000	8.75e3	8.65e5	1.06	-15.1	0.809	bd
2	201020R1_2	2.50	1.22	NO	33.37	1.000	1.91e4	9.23e5	2.17	-13.2	0.828	bd
3	201020R1_3	10.0	1.23	NO	33.37	1.001	9.24e4	9.76e5	9.93	-0.7	0.947	bd
4	201020R1_4	200	1.22	NO	33.38	1.000	1.33e6	6.36e5	219	9.6	1.05	bd
5	201020R1_5	1500	1.22	NO	33.37	1.000	1.86e7	1.15e6	1690	12.9	1.08	bd
6	201020R1_6	50.0	1.23	NO	33.37	1.000	4.69e5	9.24e5	53.2	6.4	1.01	bd

Compound name: 1,2,3,6,7,8-HxCDF

Response Factor: 1.00798

RRF SD: 0.112388, Relative SD: 11.1498

Response type: Internal Std (Ref 29), Area * (IS Conc. / IS Area)

Curve type: RF

3 22000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	(S Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.18	NO	33.50	1.000	1.00e4	9.15e5	1.08	-13.2	0.875	db
2	201020R1_2	2.50	1.29	NO	33.50	1.000	2.13e4	9.59e5	2.20	-11.9	0.888	db
3	201020R1_3	10.0	1.23	NO	33.50	1.001	1.00e5	1.03e6	9.63	-3.7	0.971	db
4	201020R1_4	200	1.22	NO	33.51	1.000	1.55e6	6.96e5	221	10.5	1.11	db
5	201020R1_5	1500	1.22	NO	33.50	1.000	2.04e7	1.21e6	1680	11.7	1.13	db
6	201020R1_6	50.0	1.23	NO	33.50	1.000	5.13e5	9.53 e 5	53.3	6.7	1.08	db

Page 212 of 353 Work Order 2002358

Page 6 of 16

Dataset:

U:\VG12.PR0\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 2,3,4,6,7,8-HxCDF

Response Factor: 0.990683

RRF SD: 0.116635, Relative SD: 11.7732

Response type: Internal Std (Ref 30), Area * (IS Conc. / IS Area)

Curve type: RF

RATE AS	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.19	NO	34.18	1.001	8.93e3	8.28e5	1.09	-12.9	0.863	bb
2	201020R1_2	2.50	1.24	NO	34.17	1.000	1.87e4	8.79e5	2.15	-13.9	0.853	bb
3	201020R1_3	10.0	1.27	NO	34.17	1.001	9.17e4	9.58e5	9.66	-3.4	0.957	bb
4	201020R1_4	200	1.23	NO	34.18	1.000	1.37e6	6.32e5	219	9.6	1.09	bb
5	201020R1_5	1500	1.22	NO	34.17	1.000	1.87e7	1.11e6	1700	13.3	1.12	bb
6	201020R1_6	50.0	1.22	NO	34.18	1.001	4.65e5	8.75e5	53.6	7.3	1.06	bb

Compound name: 1,2,3,7,8,9-HxCDF

Response Factor: 0.950625

RRF SD: 0.11684, Relative SD: 12.2908

Response type: Internal Std (Ref 31), Area * (IS Conc. / IS Area)

Curve type: RF

N. State !	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.23	NO	35.18	1.001	7.16e3	6.87e5	1.10	-12.3	0.834	bb
2	201020R1_2	2.50	1.20	NO	35.18	1.001	1.62e4	7.96e5	2.14	-14.5	0.813	bb
3	201020R1_3	10.0	1.19	NO	35.17	1.001	7.41e4	8.23e5	9.48	-5.2	0.901	bb
4	201020R1_4	200	1.23	NO	35.19	1.001	1.15e6	5.57e5	217	8.6	1.03	bb
5	201020R1_5	1500	1.23	NO	35.18	1.001	1.60e7	9.75e5	1720	14.8	1.09	bb
6	201020R1_6	50.0	1.25	NO	35.18	1.000	3.95e5	7.65e5	54.3	8.6	1.03	bb

Compound name: 1,2,3,4,6,7,8-HpCDF

Response Factor: 0.998573

RRF SD: 0.149251, Relative SD: 14.9464

Response type: Internal Std (Ref 32), Area * (IS Conc. / IS Area)

Curve type: RF

TERM !	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	0.94	NO	36.74	1.000	6.80e3	6.49e5	1.05	-16.2	0.837	bb
2	201020R1_2	2.50	0.96	NO	36.73	1.000	1.54e4	7.21e5	2.13	-14.7	0.852	bb

Work Order 2002358 Page 213 of 353

Page 7 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 1,2,3,4,6,7,8-HpCDF

The state of	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	201020R1_3	10.0	0.99	NO	36.74	1.000	7.28e4	8.00e5	9.11	-8.9	0.909	bb
4	201020R1_4	200	1.01	NO	36.76	1.000	1.11e6	4.85e5	230	14.9	1.15	bb
5	201020R1_5	1500	1.01	NO	36.76	1.001	1.52e7	8.73e5	1750	16.3	1.16	bb
6	201020R1_6	50.0	1.01	NO	36.76	1.000	3.78e5	6.97e5	54.2	8.5	1.08	bb

Compound name: 1,2,3,4,7,8,9-HpCDF

Response Factor: 1.12384

RRF SD: 0.136934, Relative SD: 12.1845

Response type: Internal Std (Ref 33), Area * (IS Conc. / IS Area)

Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	1.25	1.02	NO	38.77	1.000	5.83e3	4.78e5	1.08	-13.2	0.975	MM
2	201020R1_2	2.50	1.00	NO	38.77	1.000	1.44e4	5.79e5	2.21	-11.4	0.995	MM
3	201020R1_3	10.0	1.02	NO	38.77	1.000	5.99e4	5.77e5	9.23	-7.7	1.04	bb
4	201020R1_4	200	1.01	NO	38.77	1.000	9.50e5	3.83e5	220	10.2	1.24	bb
5	201020R1_5	1500	1.00	NO	38.78	1.000	1.36e7	7.02e5	1720	14.8	1.29	bb
6	201020R1_6	50.0	1.01	NO	38.78	1.000	3.25e5	5.39e5	53.7	7.4	1.21	bb

Compound name: OCDF Response Factor: 0.868237

RRF SD: 0.10594, Relative SD: 12.2017

Response type: Internal Std (Ref 34), Area * (IS Conc. / IS Area)

Curve type: RF

Charles of	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
Total in	201020R1_1	2.50	0.84	NO	41.38	1.000	9.82e3	1.05e6	2.16	-13.7	0.749	MM
2	201020R1_2	5.00	0.90	NO	41.39	1.000	2.31e4	1.24e6	4.32	-13.7	0.750	MM
3	201020R1_3	20.0	0.88	NO	41.40	1.000	1.08e5	1.29e6	19.3	-3.6	0.837	bb
4	201020R1_4	400	0.89	NO	41.39	1.000	1.66e6	8.74e5	439	9.7	0.952	bb
5	201020R1_5	3000	0.89	NO	41.41	1.000	2.39e7	1.60e6	3450	14.9	0.998	bb
6	201020R1_6	100	0.87	NO	41.41	1.000	5.43e5	1.18e6	106	6.4	0.924	bb

Work Order 2002358 Page 214 of 353

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-2,3,7,8-TCDD

Response Factor: 1.10889

RRF SD: 0.0354221, Relative SD: 3.19438

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)

Curve type: RF

No. of State of	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.79	NO	26.27	1.030	1.11e6	1.05e6	95.9	-4.1	1.06	bb
2	201020R1_2	100	0.79	NO	26.27	1.030	1.28e6	1.12e6	103	2.6	1.14	bd
3	201020R1_3	100	0.79	NO	26.27	1.030	1.32e6	1.18e6	100	0.5	1.11	bb
4	201020R1_4	100	0.78	NO	26.31	1.030	8.62e5	7.98e5	97.4	-2.6	1.08	bb
5	201020R1_5	100	0.79	NO	26.27	1.030	1.39e6	1.20e6	104	4.4	1.16	bb
6	201020R1_6	100	0.78	NO	26.27	1.030	1.22e6	1.11e6	99.1	-0.9	1.10	bb

Compound name: 13C-1,2,3,7,8-PeCDD

Response Factor: 0.858504

RRF SD: 0.0583655, Relative SD: 6.79851

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)

Curve type: RF

E CHICK	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	FIRE	X = dropped
1	201020R1_1	100	0.62	NO	30.94	1.212	8.68e5	1.05e6	96.7	-3.3	0.830	bb
2	201020R1_2	100	0.63	NO	30.96	1.213	9.11e5	1.12e6	94.4	-5.6	0.811	bb
3	201020R1_3	100	0.63	NO	30.94	1.212	1.03e6	1.18e6	101	1.4	0.871	bb
4	201020R1_4	100	0.62	NO	30.96	1.212	6.47e5	7.98e5	94.5	-5.5	0.811	MM
5	201020R1_5	100	0.63	NO	30.96	1.213	1.16e6	1.20e6	112	12.5	0.966	bb
6	201020R1_6	100	0.63	NO	30.94	1.212	9.55e5	1.11e6	100	0.5	0.863	bb.

Compound name: 13C-1,2,3,4,7,8-HxCDD

Response Factor: 0.699736

RRF SD: 0.0536682, Relative SD: 7.66977

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF)<=dropped
1	201020R1_1	100	1.28	NO	34.27	1.014	6.21e5	9.36e5	94.9	-5.1	0.664	bd
2	201020R1_2	100	1.27	NO	34.27	1.014	6.65e5	9.80e5	97.0	-3.0	0.679	bđ

Page 215 of 353 Work Order 2002358

Page 9 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-1,2,3,4,7,8-HxCDD

10 P 40	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	201020R1_3	100	1.29	NO	34.26	1.014	7.07e5	1.05e6	96.3	-3.7	0.674	bd
4	201020R1_4	100	1.27	NO	34.28	1.014	4.71e5	6.87e5	98.1	-1.9	0.686	bd
5	201020R1_5	100	1.28	NO	34.27	1.014	8.81e5	1.09e6	115	15.4	0.808	bd
6	201020R1_6	100	1.28	NO	34.27	1.014	6.72e5	9.76e5	98.4	-1.6	0.688	bd

Compound name: 13C-1,2,3,6,7,8-HxCDD

Response Factor: 0.832718

RRF SD: 0.0561256, Relative SD: 6.74005

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

S 3 3 5 5	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
4	201020R1_1	100	1.27	NO	34.38	1.017	7.36e5	9.36e5	94.5	-5.5	0.787	db
2	201020R1_2	100	1.27	NO	34.38	1.017	7.73e5	9.80e5	94.7	-5.3	0.789	db
3	201020R1_3	100	1.29	NO	34.38	1.017	8.70e5	1.05e6	99.5	-0.5	0.829	db
4	201020R1_4	100	1.28	NO	34.39	1.017	5.87e5	6.87 e 5	103	2.5	0.854	db
5	201020R1_5	100	1.26	NO	34.39	1.018	1.02e6	1.09e6	112	12.2	0.935	db
6	201020R1_6	100	1.27	NO	34.39	1.018	7.84e5	9.76e5	96.5	-3.5	0.803	db

Compound name: 13C-1,2,3,7,8,9-HxCDD

Response Factor: 0.761805

RRF SD: 0.0524899, Relative SD: 6.8902

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

STORES !	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	1.24	NO	34.66	1.026	6.69e5	9.36e5	93.9	-6.1	0.715	bb
2	201020R1_2	100	1.21	NO	34.66	1.026	7.19e5	9.80e5	96.3	-3.7	0.733	bb
3	201020R1_3	100	1.23	NO	34.65	1.025	8.01e5	1.05e6	100	0.1	0.763	bb
4	201020R1_4	100	1.27	NO	34.67	1.026	5.18e5	6.87e5	99.1	-0.9	0.755	MM
5	201020R1_5	100	1.24	NO	34.66	1.026	9.42e5	1.09e6	113	13.3	0.863	MM
6	201020R1_6	100	1.25	NO	34.66	1.026	7.24e5	9.76e5	97.4	-2.6	0.742	bb

Work Order 2002358 Page 216 of 353

Page 10 of 16

Vista Analytical Laboratory

Dataset: U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Printed: Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-1,2,3,4,6,7,8-HpCDD

Response Factor: 0.649564

RRF SD: 0.0451664, Relative SD: 6.95334

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

G BY	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	1.05	NO	38.14	1.128	5.60e5	9.36e5	92.1	-7.9	0.598	bb
2	201020R1_2	100	1.09	NO	38.14	1.128	6.39e5	9.80e5	100	0.4	0.652	MM
3	201020R1_3	100	1.04	NO	38.14	1.128	6.69e5	1.05e6	98.2	-1.8	0.638	bb
4	201020R1_4	100	1.07	NO	38.15	1.128	4.44e5	6.87e5	99.4	-0.6	0.646	MM
5	201020R1_5	100	1.07	NO	38.14	1.128	8.00e5	1.09e6	113	12.9	0.733	MM
6	201020R1_6	100	1.04	NO	38.15	1.129	6.15e5	9.76e5	97.0	-3.0	0.630	MM

Compound name: 13C-OCDD

Response Factor: 0.539367

RRF SD: 0.0489023, Relative SD: 9.06662

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

1000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	200	0.92	NO	41.10	1.216	8.86e5	9.36e5	175	-12.3	0.473	bb
2	201020R1_2	200	0.90	NO	41.08	1.216	1.06e6	9.80e5	201	0.4	0.542	bb
3	201020R1_3	200	0.89	NO	41.11	1.216	1.12e6	1.05e6	198	-1.0	0.534	bb
4	201020R1_4	200	0.88	NO	41.08	1.215	7.38e5	6.87e5	199	-0.4	0.537	bb
5	201020R1_5	200	0.89	NO	41.10	1.216	1.36e6	1.09e6	232	15.9	0.625	bb
6	201020R1_6	200	0.89	NO	41.10	1.216	1.02e6	9.76e5	195	-2.6	0.525	bb

Compound name: 13C-2,3,7,8-TCDF

Response Factor: 0.981384

RRF SD: 0.0297957, Relative SD: 3.03609

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

1,931	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.78	NO	25.59	1.003	1.53e6	1.65e6	94.6	-5.4	0.928	bb
2	201020R1_2	100	0.77	NO	25.59	1.003	1.70e6	1.75e6	99.3	-0.7	0.974	bb

Work Order 2002358 Page 217 of 353

Vista Analytical Laboratory

Page 11 of 16

Dataset:

U:\VG12.PR0\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-2,3,7,8-TCDF

2007190	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	201020R1_3	100	0.77	NO	25.59	1.003	1.82e6	1.83e6	101	1.3	0.994	bb
4	201020R1_4	100	0.77	NO	25.63	1.003	1.19e6	1.22e6	99.5	-0.5	0.976	bb
5	201020R1_5	100	0.78	NO	25.59	1.003	1.86e6	1.84e6	103	3.0	1.01	bb
6	201020R1_6	100	0.78	NO	25.59	1.003	1.69e6	1.68e6	102	2.3	1.00	bb

Compound name: 13C-1,2,3,7,8-PeCDF

Response Factor: 0.791688

RRF SD: 0.0545703, Relative SD: 6.89291

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

30300	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	1.58	NO	29.69	1.163	1.22e6	1.65e6	93.5	-6.5	0.740	bb
2	201020R1_2	100	1.58	NO	29.69	1.163	1.30e6	1.75e6	94.3	-5.7	0.747	bb
3	201020R1_3	100	1.61	NO	29.69	1.163	1.42e6	1.83e6	97.5	-2.5	0.772	bb
4	201020R1_4	100	1.61	NO	29.71	1.163	9.55e5	1.22e6	99.0	-1.0	0.784	bd
15	201020R1_5	100	1.58	NO	29.71	1.164	1.63e6	1.84e6	112	11.9	0.886	bb
6	201020R1_6	100	1.59	NO	29.69	1.163	1.38e6	1.68e6	104	3.7	0.821	bb

Compound name: 13C-2,3,4,7,8-PeCDF

Response Factor: 0.777714

RRF SD: 0.0578231, Relative SD: 7.435

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

Annah S	Name	Std. Conc	RA	nly	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	1.59	NO	30.76	1.205	1.15e6	1.65e6	90.1	-9.9	0.701	bb
2	201020R1_2	100	1.61	NO	30.75	1.205	1.29e6	1.75e6	94.8	-5.2	0.737	bb
3	201020R1_3	100	1.62	NO	30.75	1.205	1.45e6	1.83e6	102	1.9	0.793	bb
4	201020R1_4	100	1.60	NO	30.77	1.205	9.27e5	1.22e6	97.8	-2.2	0.761	dd
5	201020R1_5	100	1.60	NO	30.75	1.205	1.59e6	1.84e6	111	11.2	0.865	bb
6	201020R1_6	100	1.60	NO	30.76	1.205	1.36e6	1.68e6	104	4.1	0.810	bb

Page 218 of 353 Work Order 2002358

Page 12 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-1,2,3,4,7,8-HxCDF

Response Factor: 0.953706

RRF SD: 0.0497892, Relative SD: 5.22061

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

581-97	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.51	NO	33.36	0.987	8.65e5	9.36e5	96.9	-3.1	0.924	bd
2	201020R1_2	100	0.51	NO	33.36	0.987	9.23e5	9.80e5	98.8	-1.2	0.942	bd
3	201020R1_3	100	0.51	NO	33.35	0.987	9.76e5	1.05e6	97.5	-2.5	0.930	bd
4	201020R1_4	100	0.51	NO	33.37	0.987	6.36e5	6.87e5	97.1	-2.9	0.926	bd
5	201020R1_5	100	0.51	NO	33.36	0.987	1.15e6	1.09e6	110	10.5	1.05	bd
6	201020R1_6	100	0.51	NO	33.36	0.987	9.24e5	9.76e5	99.3	-0.7	0.947	bd

Compound name: 13C-1,2,3,6,7,8-HxCDF

Response Factor: 1.00595

RRF SD: 0.0507361, Relative SD: 5.04362

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

300000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.50	NO	33.49	0.991	9.15e5	9.36e5	97.2	-2.8	0.978	db
2	201020R1_2	100	0.52	NO	33.49	0.991	9.59e5	9.80e5	97.3	-2.7	0.979	db
3	201020R1_3	100	0.52	NO	33.48	0.991	1.03e6	1.05e6	97.7	-2.3	0.982	db
4	201020R1_4	100	0.51	NO	33.50	0.991	6.96e5	6.87e5	101	8.0	1.01	db
5	201020R1_5	100	0.51	NO	33.49	0.991	1.21e6	1.09e6	110	9.9	1.11	db
6	201020R1_6	100	0.51	NO	33.49	0.991	9.53e5	9.76e5	97.1	-2.9	0.977	db

Compound name: 13C-2,3,4,6,7,8-HxCDF

Response Factor: 0.921049

RRF SD: 0.0481045, Relative SD: 5.2228

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

17.95	Name	Std. (Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.52	NO	34.16	1.011	8.28e5	9.36e5	96.1	-3.9	0.885	bd
2	201020R1_2	100	0.51	NO	34.16	1.011	8.79e5	9.80e5	97.4	-2.6	0.897	bb

Work Order 2002358 Page 219 of 353

Quantify Compound Summary Report Vista Analytical Laboratory MassLynx 4.1 SCN815

Page 13 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-2,3,4,6,7,8-HxCDF

18114	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	201020R1_3	100	0.51	NO	34.15	1.010	9.58e5	1.05e6	99.1	-0.9	0.913	bb
4	201020R1_4	100	0.51	NO	34.17	1.011	6.32e5	6.87e5	99.8	-0.2	0.919	bb
5	201020R1_5	100	0.51	NO	34.16	1.011	1.11e6	1.09e6	110	10.3	1.02	bb
6	201020R1_6	100	0.50	NO	34.16	1.011	8.75e5	9.76e5	97.3	-2.7	0.897	bb

Compound name: 13C-1,2,3,7,8,9-HxCDF

Response Factor: 0.803358

RRF SD: 0.0529087, Relative SD: 6.58594

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

THE STATE OF	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.51	NO	35.16	1.040	6.87e5	9.36e5	91.4	-8.6	0.734	MM
2	201020R1_2	100	0.50	NO	35.16	1.040	7.96e5	9.80e5	101	1.1	0.813	bb
3	201020R1_3	100	0.52	NO	35.15	1.040	8.23e5	1.05e6	97.6	-2.4	0.784	bd
4	201020R1_4	100	0.50	NO	35.17	1.040	5.57e5	6.87e5	101	1.0	0.811	bd
5	201020R1_5	100	0.51	NO	35.16	1.040	9.75e5	1.09e6	111	11.3	0.894	bb
6	201020R1_6	100	0.51	NO	35.17	1.041	7.65e5	9.76e5	97.6	-2.4	0.784	bb

Compound name: 13C-1,2,3,4,6,7,8-HpCDF

Response Factor: 0.735455

RRF SD: 0.0398884, Relative SD: 5.42364

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

10000	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRE	X = dropped
1	201020R1 1	100	0.42	NO	36.73	1.087	6.49e5	9.36e5	94.3	-5.7	0.694	bb
2	201020R1 2	100	0.44	NO	36.73	1.087	7.21e5	9.80e5	100	0.0	0.736	bd
3	201020R1_3	100	0.41	NO	36.73	1.087	8.00e5	1.05e6	104	3.6	0.762	bb
4	201020R1_4	100	0.43	NO	36.75	1.087	4.85e5	6.87e5	96.0	-4.0	0.706	bb
5	201020R1_5	100	0.44	NO	36.74	1.087	8.73e5	1.09e6	109	8.8	0.800	bb
6	201020R1_6	100	0.43	NO	36.75	1.087	6.97e5	9.76e5	97.2	-2.8	0.715	bb

Work Order 2002358 Page 220 of 353

Page 14 of 16

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-1,2,3,4,7,8,9-HpCDF

Response Factor: 0.567644

RRF SD: 0.0450507, Relative SD: 7.93644

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

1	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.44	NO	38.76	1.147	4.78e5	9.36e5	90.0	-10.0	0.511	bd
2	201020R1_2	100	0.43	NO	38.76	1.147	5.79e5	9.80e5	104	4.1	0.591	bb
3	201020R1_3	100	0.44	NO	38.76	1.147	5.77e5	1.05e6	96.9	-3.1	0.550	bd
4	201020R1_4	100	0.43	NO	38.76	1.147	3.83e5	6.87e5	98.3	-1.7	0.558	bd
5	201020R1_5	100	0.43	NO	38.77	1.147	7.02e5	1.09e6	113	13.4	0.644	bb
6	201020R1_6	100	0.45	NO	38.77	1.147	5.39e5	9.76e5	97.3	-2 .7	0.552	bd

Compound name: 13C-OCDF Response Factor: 0.629245

RRF SD: 0.0574861, Relative SD: 9.13572

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	200	0.91	NO	41.38	1.224	1.05e6	9.36e5	178	-11.0	0.560	MM
2	201020R1_2	200	0.87	NO	41.38	1.224	1.24e6	9.80e5	200	0.2	0.630	MM
3	201020R1_3	200	0.90	NO	41.40	1.225	1.29e6	1.05e6	195	-2.5	0.614	bd
4	201020R1_4	200	0.86	NO	41.38	1.224	8.74e5	6.87e5	202	1.1	0.636	bb
5	201020R1_5	200	0.88	NO	41.40	1.225	1.60e6	1.09e6	233	16.5	0.733	bb
6	201020R1 6	200	0.90	· NO	41.39	1.225	1.18e6	9.76e5	191	-4.3	0.602	bd

Compound name: 37CI-2,3,7,8-TCDD

Response Factor: 1.08781

RRF SD: 0.174332, Relative SD: 16.0259

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)

Curve type: RF

-5 -0-AD	Name	Std. Conc R	A n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	0.250		26.29	1.030	2.24e3	1.05e6	0.197	-21.1	0.858	bb
2	201020R1_2	0.500		26.29	1.030	5.14e3	1.12e6	0.420	-15.9	0.915	bb

Work Order 2002358 Page 221 of 353

Quantify Compound Summary Report

MassLynx 4.1 SCN815

Page 15 of 16

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 37CI-2,3,7,8-TCDD

gelt sy	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
3	201020R1_3	2.00			26.29	1.030	2.59e4	1.18e6	2.02	0.8	1.10	bb
4	201020R1_4	40.0			26.32	1.031	3.82e5	7.98e5	44.0	10.0	1.20	bb
5	201020R1_5	200			26.29	1.030	3.17e6	1.20e6	243	21.4	1.32	bb
6	201020R1_6	10.0			26.29	1.030	1.26e5	1.11e6	10.5	4.8	1.14	bb

Compound name: 13C-1,2,3,4-TCDD

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)

Curve type: RF

86 60 6	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.78	NO	25.52	1.000	1.05e6	1.05e6	100	0.0	1.00	bb
2	201020R1_2	100	0.79	NO	25.52	1.000	1.12e6	1.12e6	100	0.0	1.00	bb
3	201020R1_3	100	0.78	NO	25.52	1.000	1.18e6	1.18e6	100	0.0	1.00	bb
4	201020R1_4	100	0.77	NO	25.54	1.000	7.98e5	7.98 e 5	100	0.0	1.00	bb
5	201020R1_5	100	0.78	NO	25.52	1.000	1.20e6	1.20e6	100	0.0	1.00	bb
6	201020R1_6	100	0.79	NO	25.52	1.000	1.11e6	1.11 e 6	100	0.0	1.00	bb

Compound name: 13C-1,2,3,4-TCDF

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)

Curve type: RF

STATE OF THE	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.80	NO	24.04	1.000	1.65e6	1.65e6	100	0.0	1.00	bb
2	201020R1_2	100	0.79	NO	24.06	1.000	1.75e6	1.75e6	100	0.0	1.00	bb
3	201020R1_3	100	0.79	NO	24.04	1.000	1.83e6	1.83e6	100	0.0	1.00	bb
4	201020R1_4	100	0.79	NO	24.07	1.000	1.22e6	1.22e6	100	0.0	1.00	bb
5	201020R1_5	100	0.79	NO	24.04	1.000	1.84e6	1.84e6	100	0.0	1.00	bb
6	201020R1_6	100	0.79	NO	24.04	1.000	1.68e6	1.68e6	100	0.0	1.00	bb

Work Order 2002358 Page 222 of 353

Quantify Compound Summary Report

MassLynx 4.1 SCN815

Page 16 of 16

Vista Analytical Laboratory

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-CRV.qld

Last Altered: Printed:

Tuesday, October 20, 2020 14:36:10 Pacific Daylight Time Tuesday, October 20, 2020 15:22:41 Pacific Daylight Time

Compound name: 13C-1,2,3,4,6,9-HxCDF

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)

Curve type: RF

MAN COLOR	Name	Std. Conc	RA	n/y	RT	RRT	Resp	IS Resp	Conc.	%Dev	RRF	X = dropped
1	201020R1_1	100	0.51	NO	33.80	1.000	9.36e5	9.36e5	100	0.0	1.00	bb
2	201020R1_2	100	0.52	NO	33.80	1.000	9.80e5	9.80e5	100	0.0	1.00	bb
3	201020R1_3	100	0.51	NO	33.80	1.000	1.05e6	1.05e6	100	0.0	1.00	bb
4	201020R1_4	100	0.51	NO	33.81	1.000	6.87e5	6.87e5	100	0.0	1.00	bb
5	201020R1_5	100	0.51	NO	33.80	1.000	1.09e6	1.09e6	100	0.0	1.00	bb
6	201020R1_6	100	0.52	NO	33.80	1.000	9.76e5	9.76 e5	100	0.0	1.00	bd

Work Order 2002358 Page 223 of 353

MassLynx 4.1 SCN815

Page 1 of 1

Dataset:

Untitled

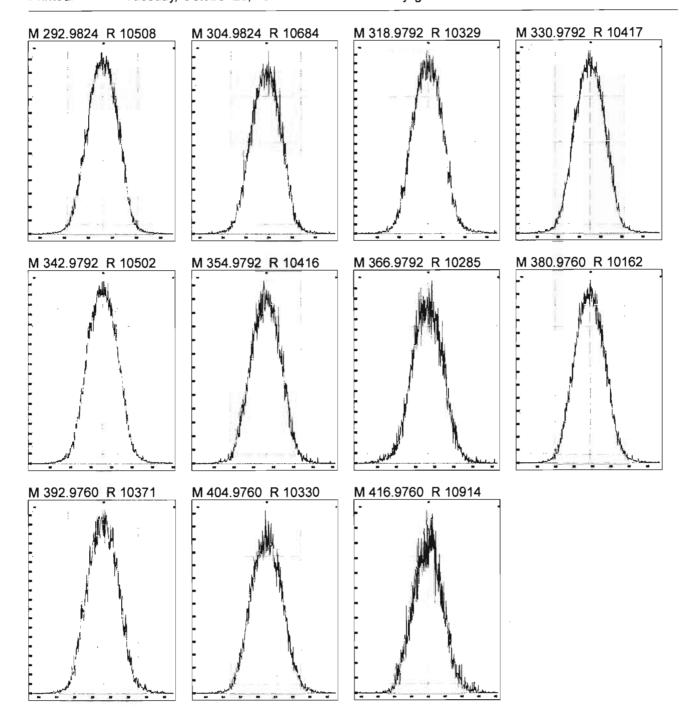
Last Altered: Printed:

Wednesday, October 21, 2020 06:53:54 Pacific Daylight Time Wednesday, October 21, 2020 06:54:05 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-10-10-20.mdb 12 Oct 2020 11:06:31 Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-10-20.cdb 12 Oct 2020 14:50:48

Compound name: 2,3,7,8-TCDD

THE REAL PROPERTY.	Name	ID	Acq.Date	Acq.Time
1	201020R1_1	ST201020R1_1 1613 CS0 20F1102	20-Oct-20	09:17:10
2	201020R1_2	ST201020R1_2 1613 CS1 20F1103	20-Oct-20	10:04:05
3	201020R1_3	ST201020R1_3 1613 CS2 20F1104	20-Oct-20	10:48:17
4	201020R1_4	ST201020R1_4 1613 CS4 20F1106	20-Oct-20	11:32:31
5	201020R1_5	ST201020R1_5 1613 CS5 20F1107	20-Oct-20	12:16:56
6	201020R1_6	ST201020R1_6 1613 CS3 20F1105	20-Oct-20	13:01:38
7	201020R1_7	SOLVENT BLANK	20-Oct-20	13:45:46
8	201020R1_8	SS201020R1_1 1613 SSS 20F1108	20-Oct-20	14:29:33
9	201020R1_9	TCDF CPSM	20-Oct-20	15:13:50


Work Order 2002358 Page 224 of 353

File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 1 @ 200 (ppm)

Printed:

Tuesday, October 20, 2020 09:00:19 Pacific Daylight Time


Work Order 2002358 Page 225 of 353

File:

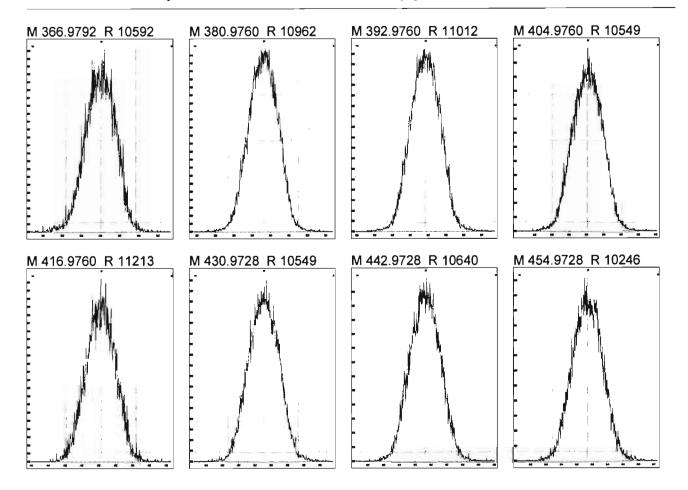
Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 2 @ 200 (ppm)

Printed:

Tuesday, October 20, 2020 09:01:23 Pacific Daylight Time

Work Order 2002358 Page 226 of 353

MassLynx 4.1 SCN815

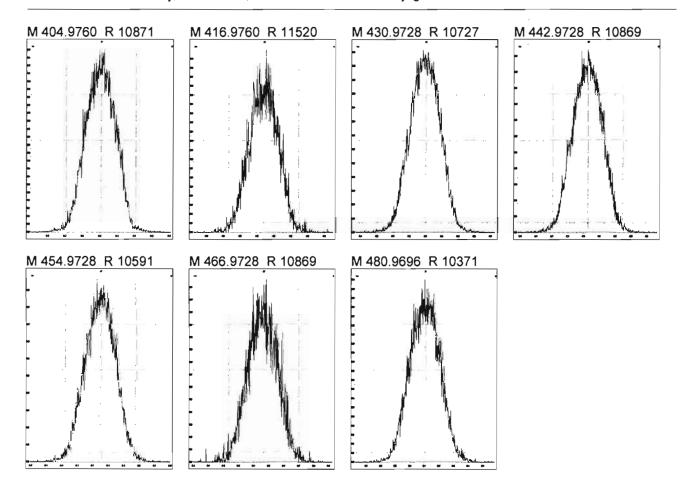

Page 1 of 1

File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 3 @ 200 (ppm)

Printed:

Tuesday, October 20, 2020 09:02:28 Pacific Daylight Time

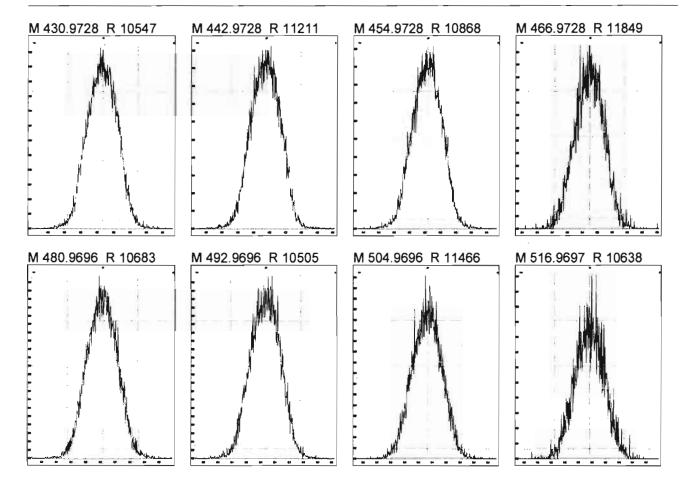

Work Order 2002358 Page 227 of 353

File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 4 @ 200 (ppm)

Printed:

Tuesday, October 20, 2020 09:03:26 Pacific Daylight Time


Work Order 2002358 Page 228 of 353

File:

Experiment: OCDD_DB5_2.exp Reference: Pfk.ref Function: 5 @ 200 (ppm)

Printed:

Tuesday, October 20, 2020 09:04:30 Pacific Daylight Time

Work Order 2002358 Page 229 of 353

MassLynx 4.1 SCN815

Page 1 of 1

Dataset: Untitled

Last Altered: Tuesday, October 20, 2020 14:59:30 Pacific Daylight Time Printed: Tuesday, October 20, 2020 14:59:49 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\CPSM.mdb 20 Sep 2020 10:23:28

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-10-20.cdb 12 Oct 2020 14:50:48

Name: 201020R1_6, Date: 20-Oct-2020, Time: 13:01:38, ID: ST201020R1_6 1613 CS3 20F1105, Description: 1613 CS3 20F1105

	# Name	RT
1	1 1,3,6,8-TCDD (First)	22.55
2	2 1,2,8,9-TCDD (Last)	27.18
3	3 1,2,4,7,9-PeCDD (First)	28.70
4	4 1,2,3,8,9-PeCDD (Last)	31.32
5	5 1,2,4,6,7,9-HxCDD (First)	32.63
6	6 1,2,3,7,8,9-HxCDD (Last)	34.67
7	7 1,2,3,4,6,7,9-HpCDD (First)	37.15
8	8 1,2,3,4,6,7,8-HpCDD (Last)	38.16
9	9 1,3,6,8-TCDF (First)	20.32
10	10 1,2,8,9-TCDF (Last)	27.49
11	11 1,3,4,6,8-PeCDF (First)	27.06
12	12 1,2,3,8,9-PeCDF (Last)	31.68
13	13 1,2,3,4,6,8-HxCDF (First)	32.10
14	14 1,2,3,7,8,9-HxCDF (Last)	35.18
15	15 1,2,3,4,6,7,8-HpCDF (First)	36.76
16	16 1,2,3,4,7,8,9-HpCDF (Last)	38.78

Work Order 2002358 Page 230 of 353

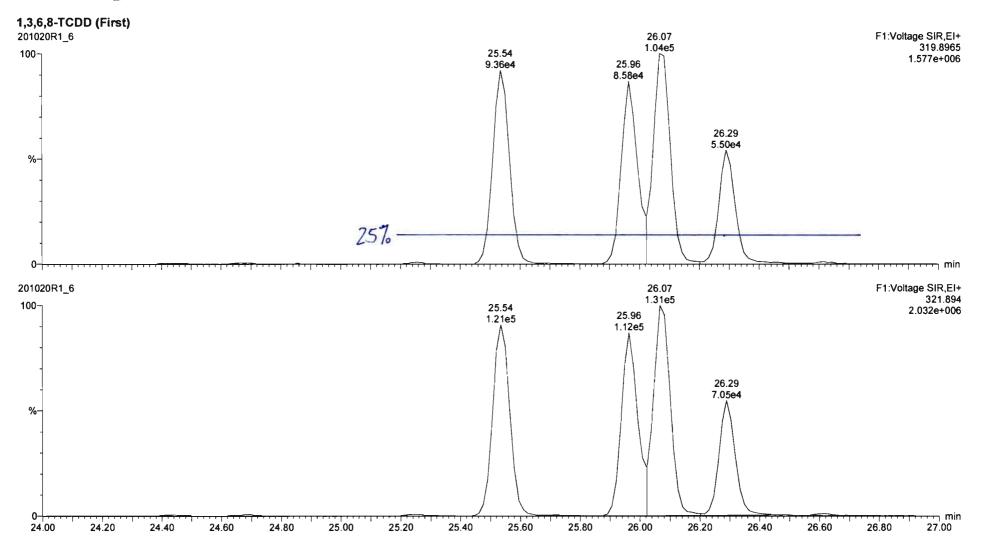
Quantify Sample Report

MassLynx 4.1 SCN815

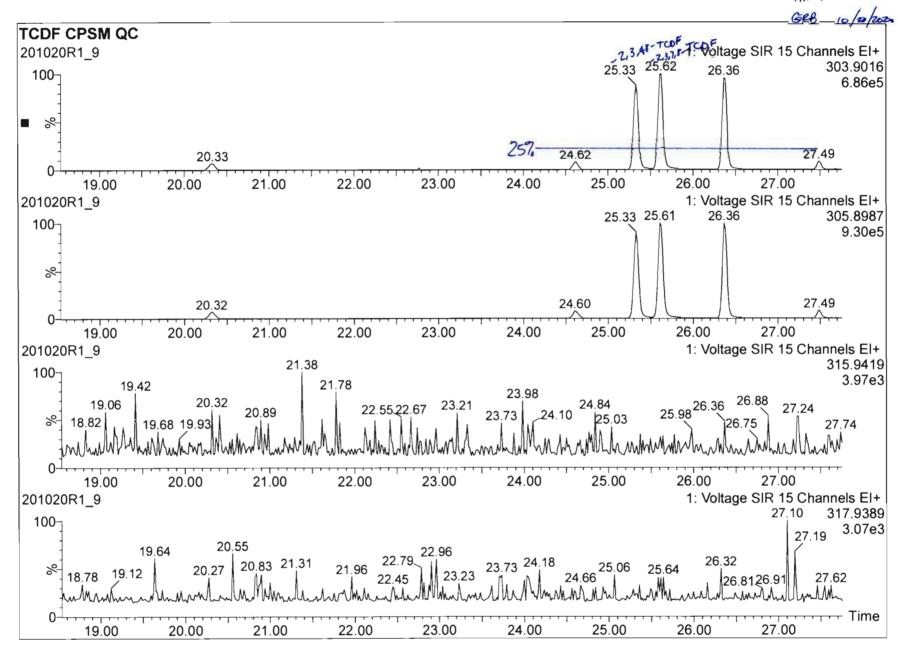
Page 1 of 1

Vista Analytical Laboratory VG-11

Dataset:


Untitled

Last Altered: Printed:

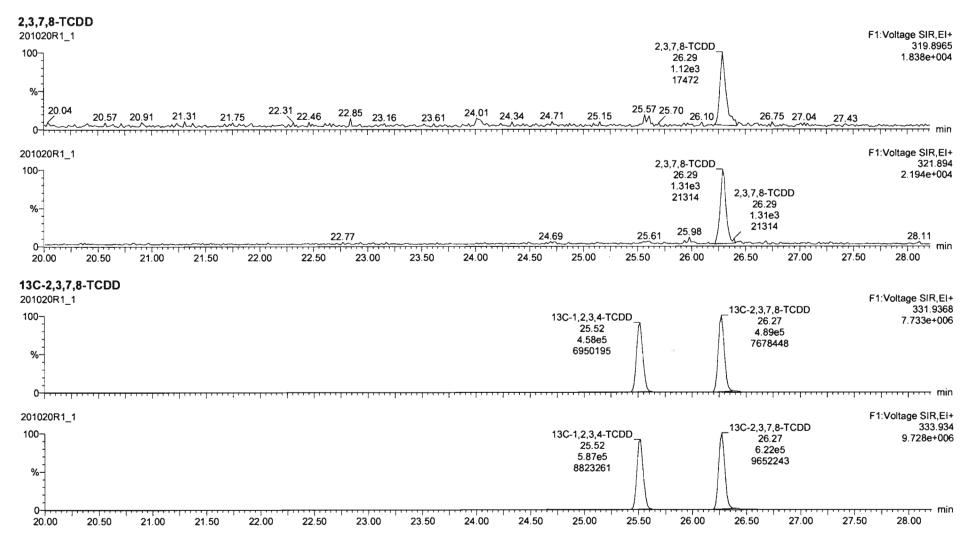

Tuesday, October 20, 2020 14:59:30 Pacific Daylight Time Tuesday, October 20, 2020 14:59:49 Pacific Daylight Time

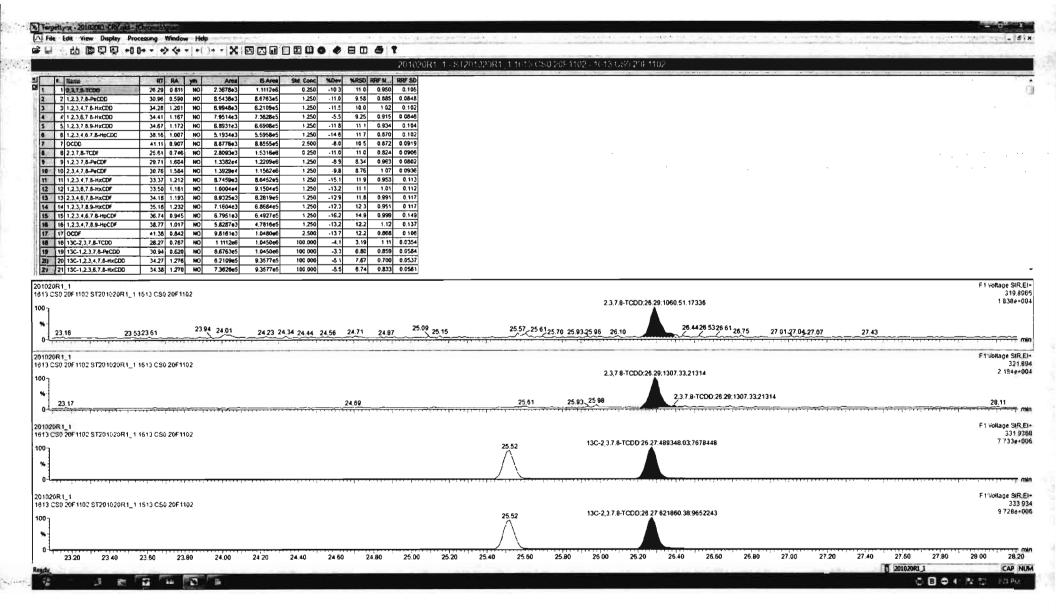
Method: U:\VG12.PRO\MethDB\CPSM.mdb 20 Sep 2020 10:23:28

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-10-20.cdb 12 Oct 2020 14:50:48

HN 10/22/2020

Work Order 2002358 Page 232 of 353


Untitled


Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-10-20-20.mdb 20 Oct 2020 10:47:39

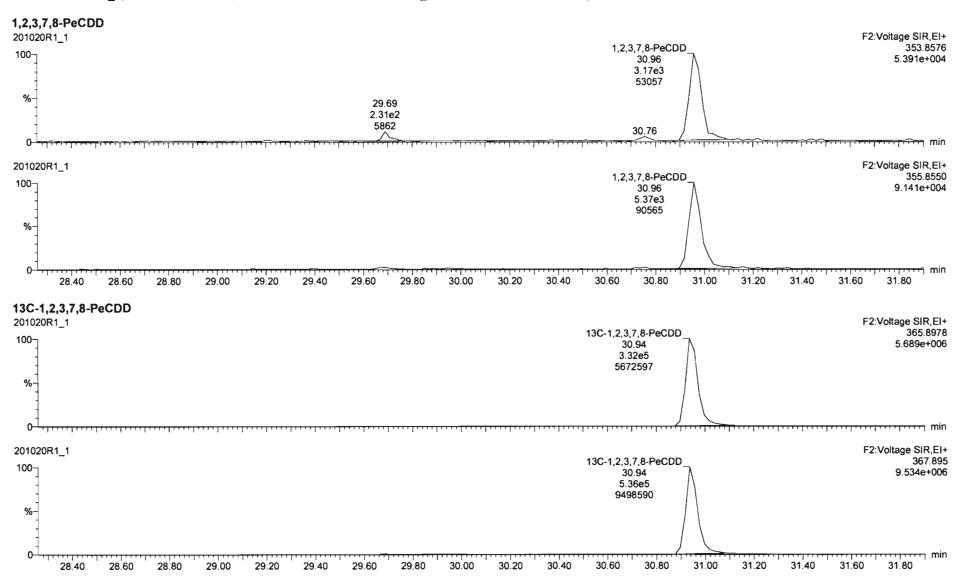
Calibration: 20 Oct 2020 15:17:40

Work Order 2002358 Page 234 of 353

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

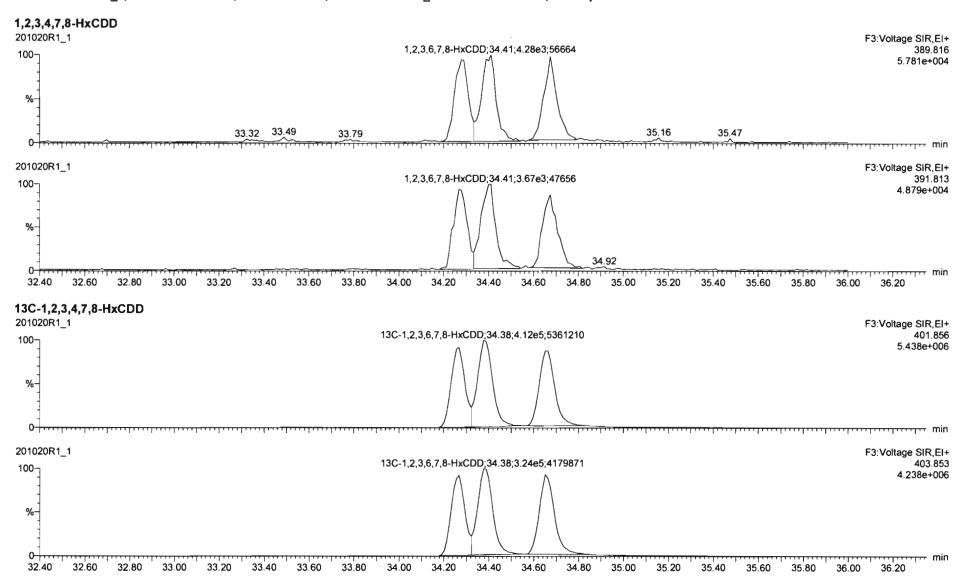

Page 3 of 78

Dataset:

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

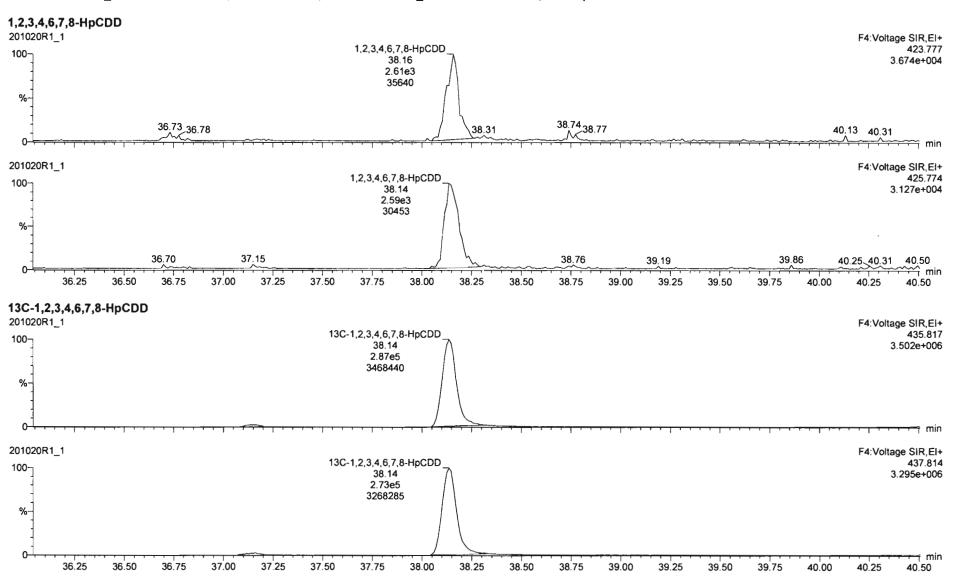


Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_1, Date: 20-Oct-2020, Time: 09:17:10, ID: ST201020R1_1 1613 CS0 20F1102, Description: 1613 CS0 20F1102

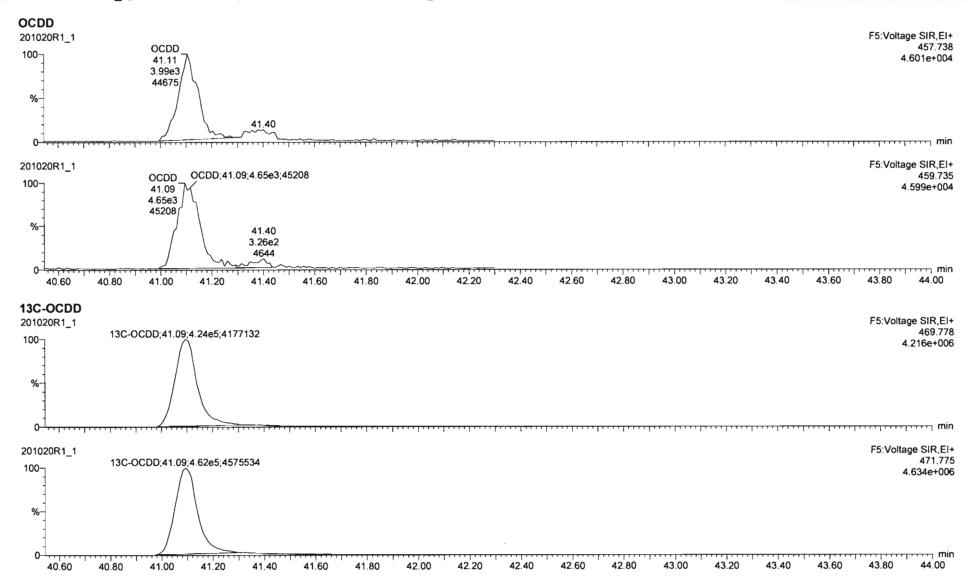


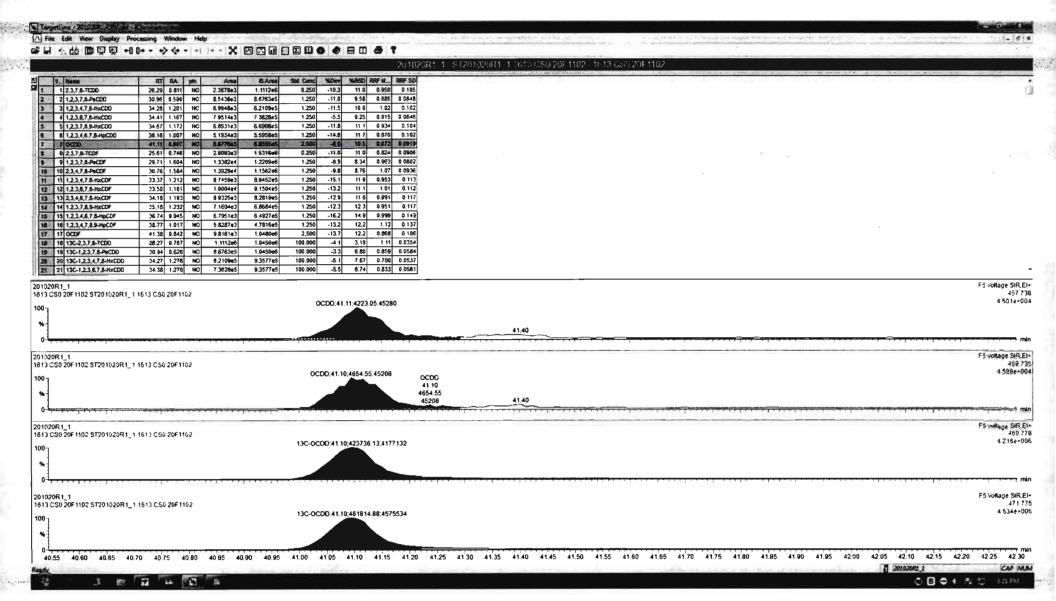
the state of the s

Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_1, Date: 20-Oct-2020, Time: 09:17:10, ID: ST201020R1_1 1613 CS0 20F1102, Description: 1613 CS0 20F1102

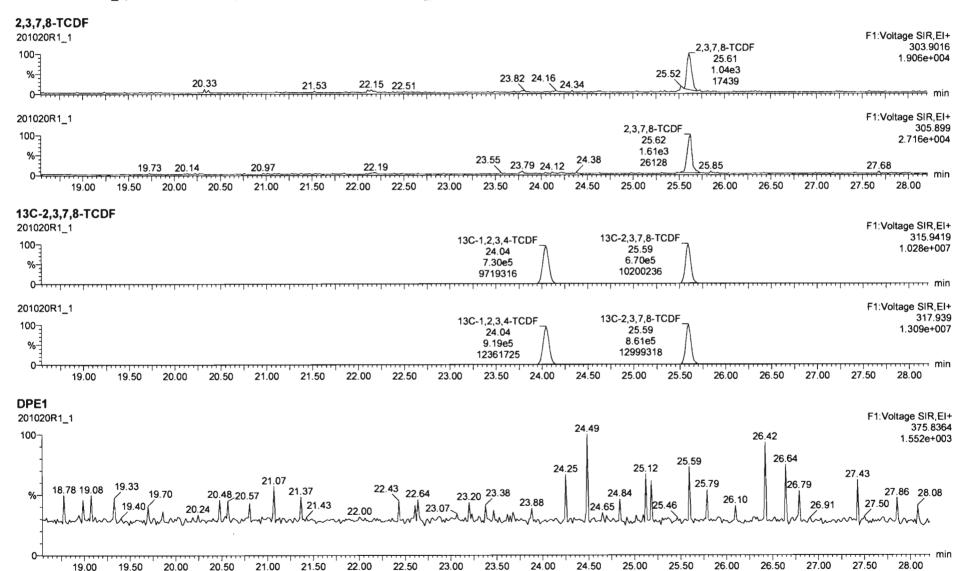


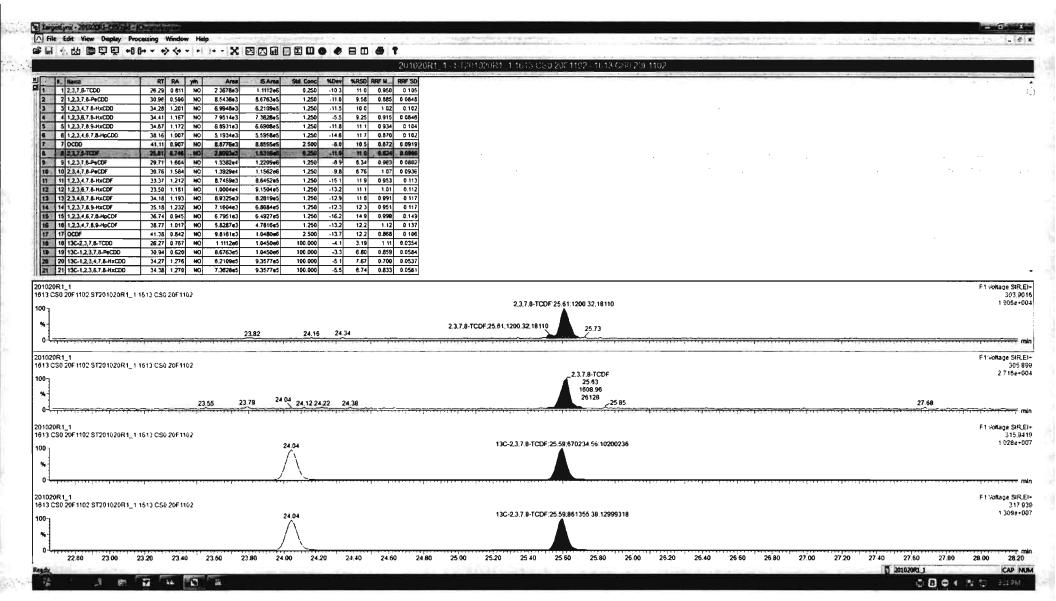

the first and the second of th

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

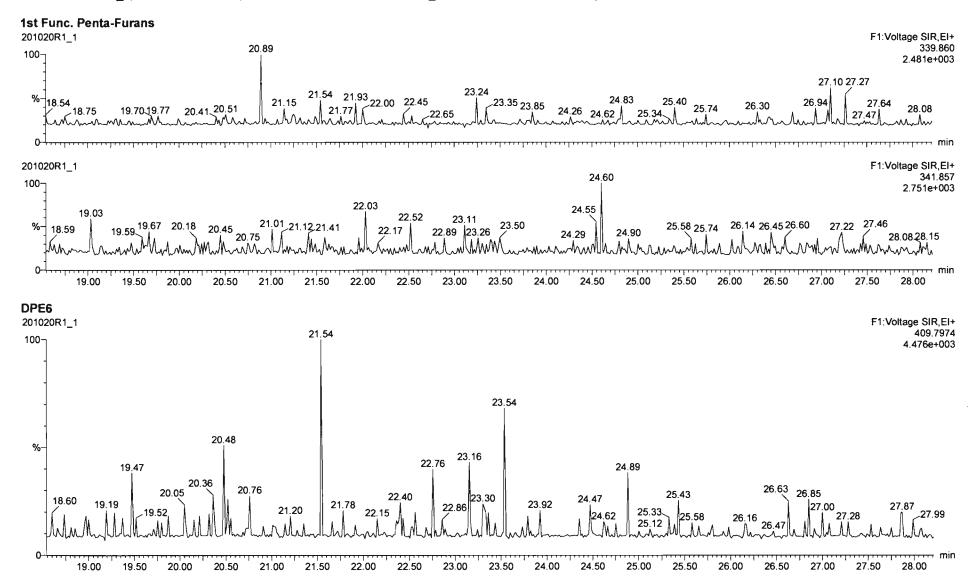

Work Order 2002358 Page 240 of 353


Dataset:

Untitled

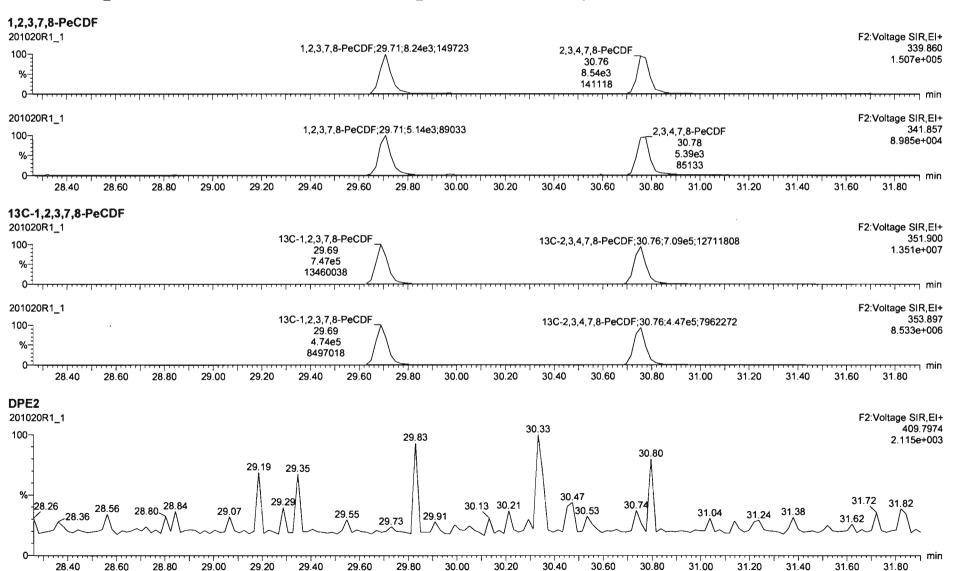
Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


Work Order 2002358 Page 242 of 353

Dataset:

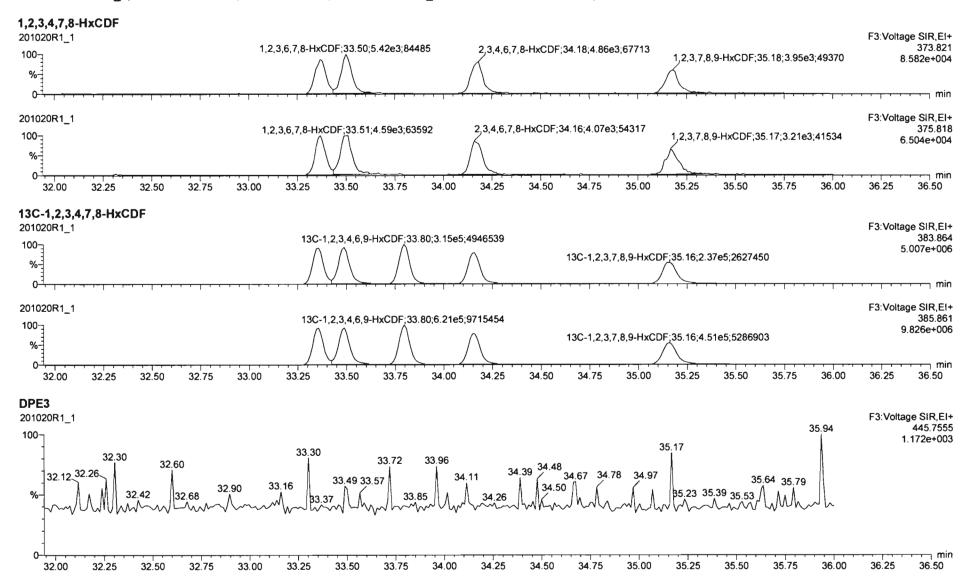
Untitled

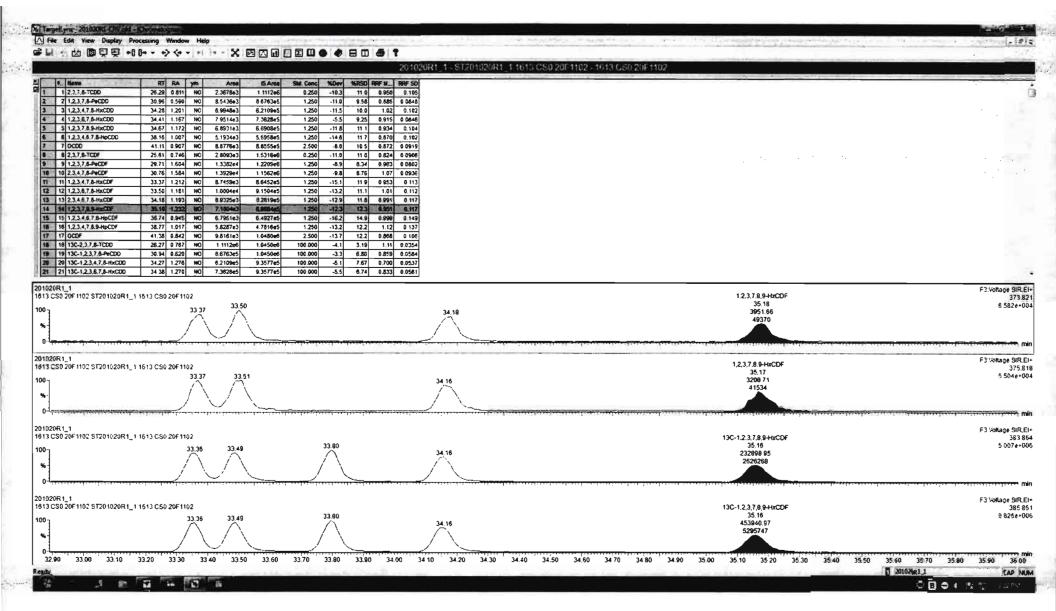

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

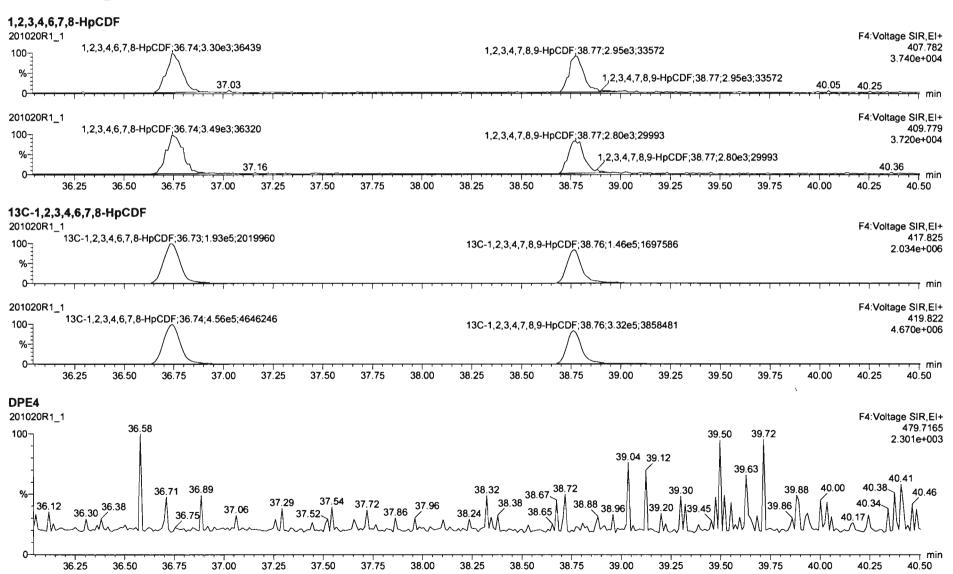



Untitled

Last Altered:

Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

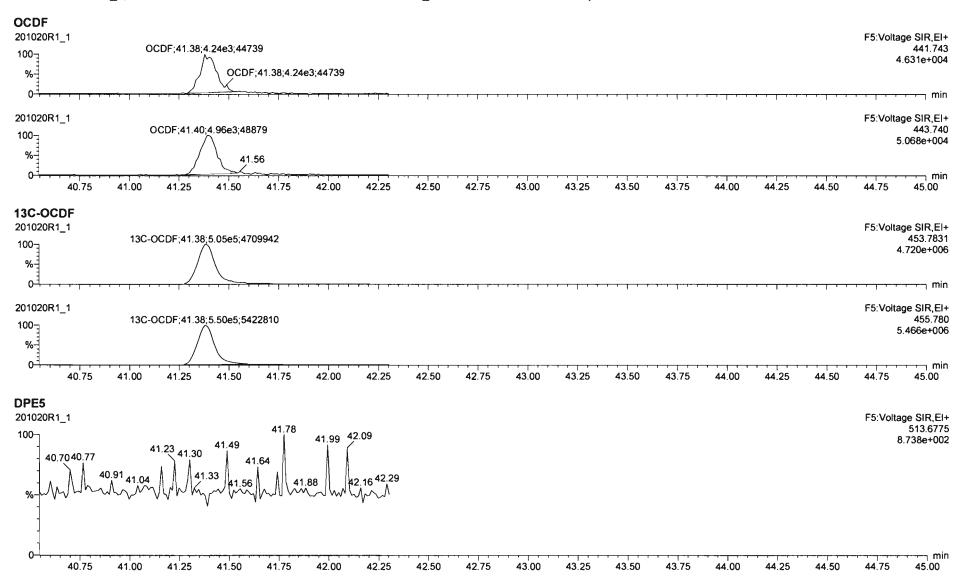

Work Order 2002358 Page 246 of 353

Untitled

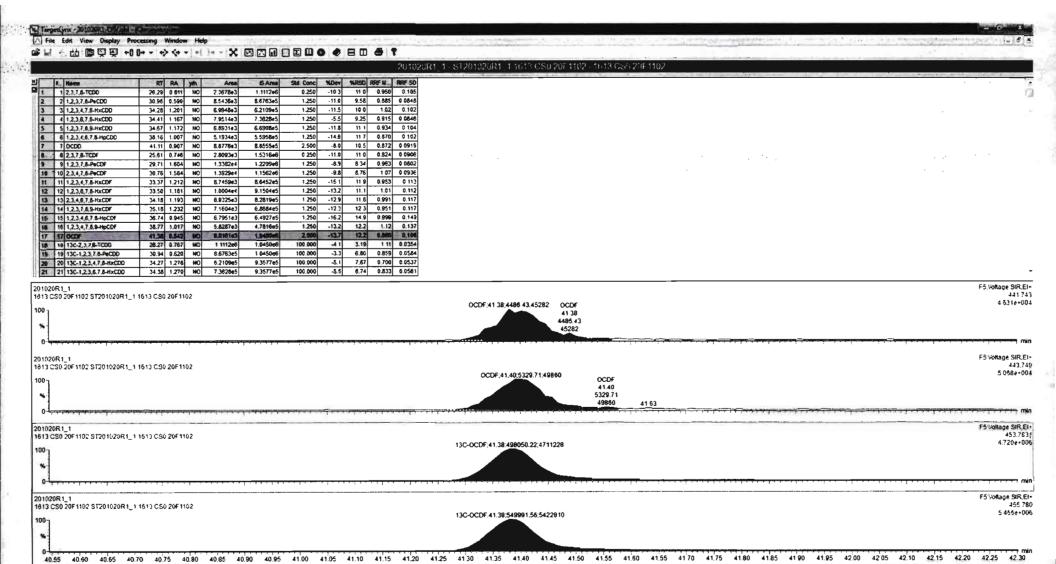
Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time

Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


Work Order 2002358 Page 248 of 353

Untitled


Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_1, Date: 20-Oct-2020, Time: 09:17:10, ID: ST201020R1_1 1613 CS0 20F1102, Description: 1613 CS0 20F1102

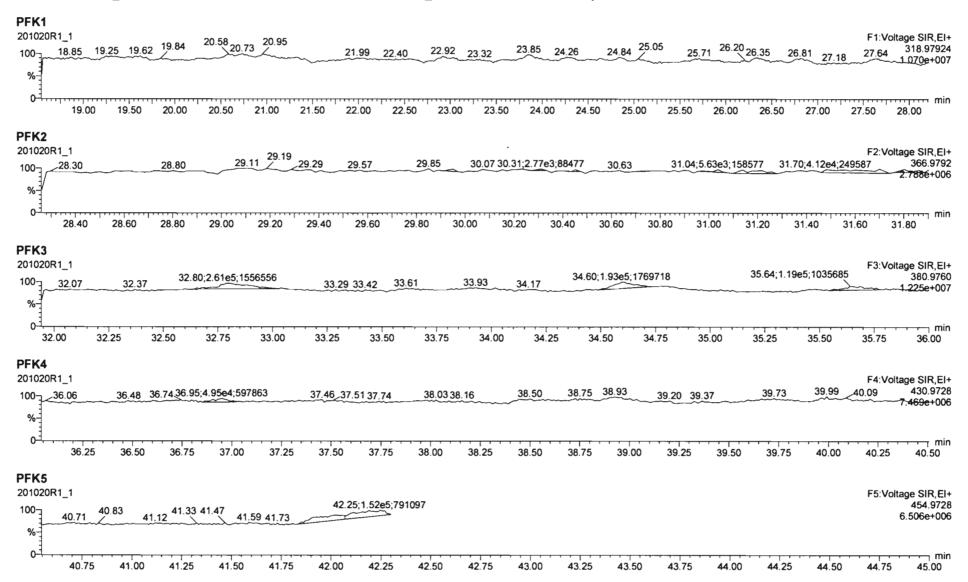
2 7 1 F Vol.

Work Order 2002358 Page 250 of 353

Custom Reporting: Select reports to generate

57 20 TO 12

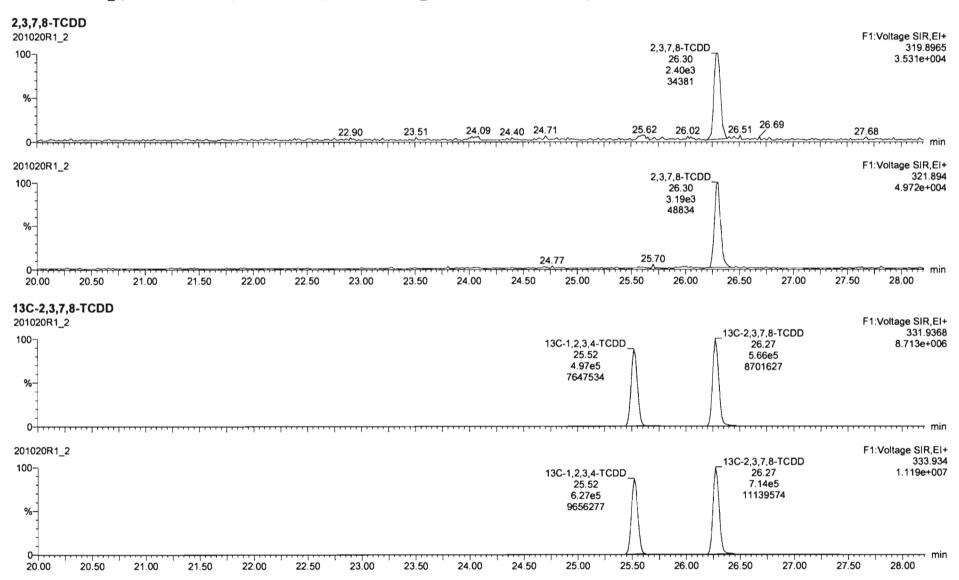
201020R1_1


ា B ≎ + % %

CAP NUM

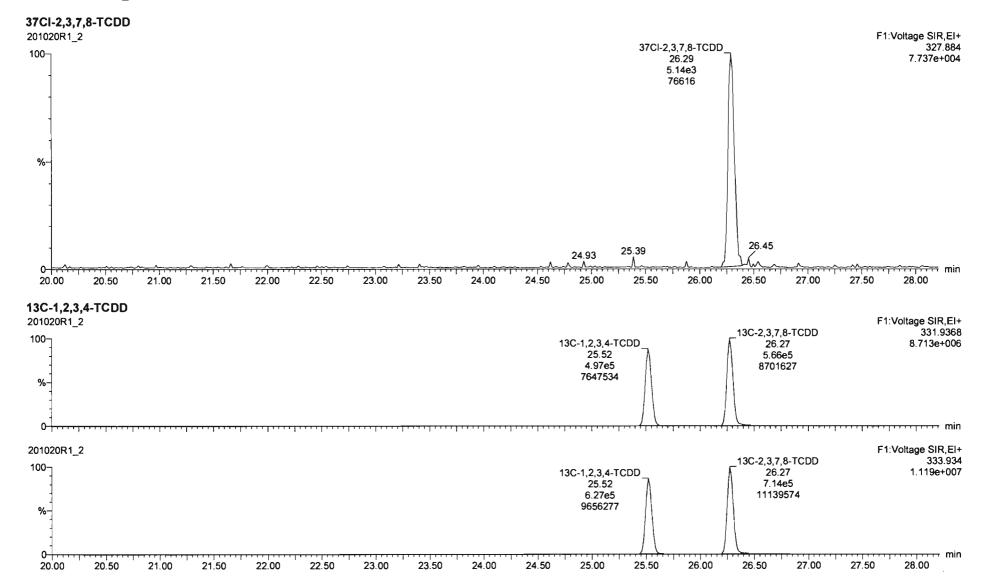
Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

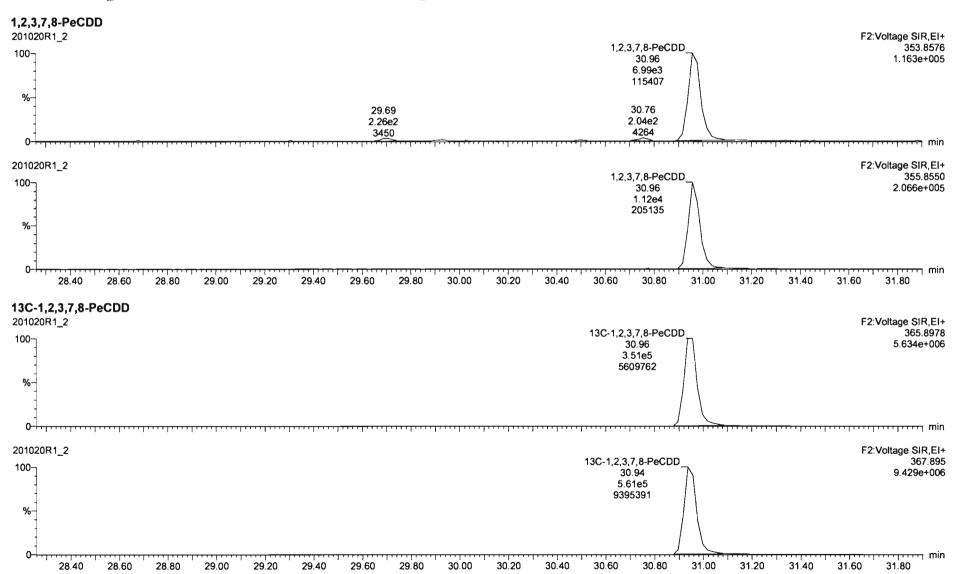
Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Dataset:

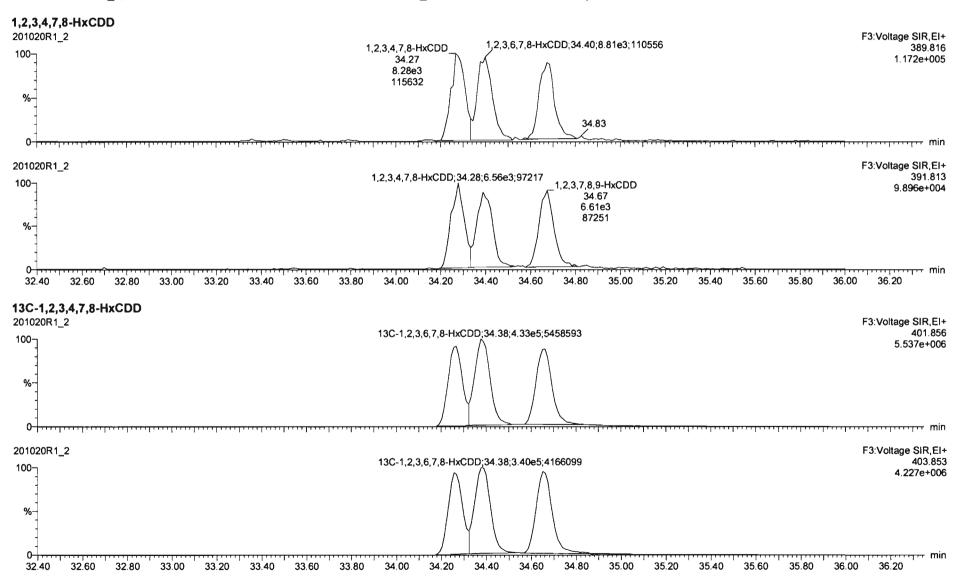

Printed:

t:

Last Altered:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time

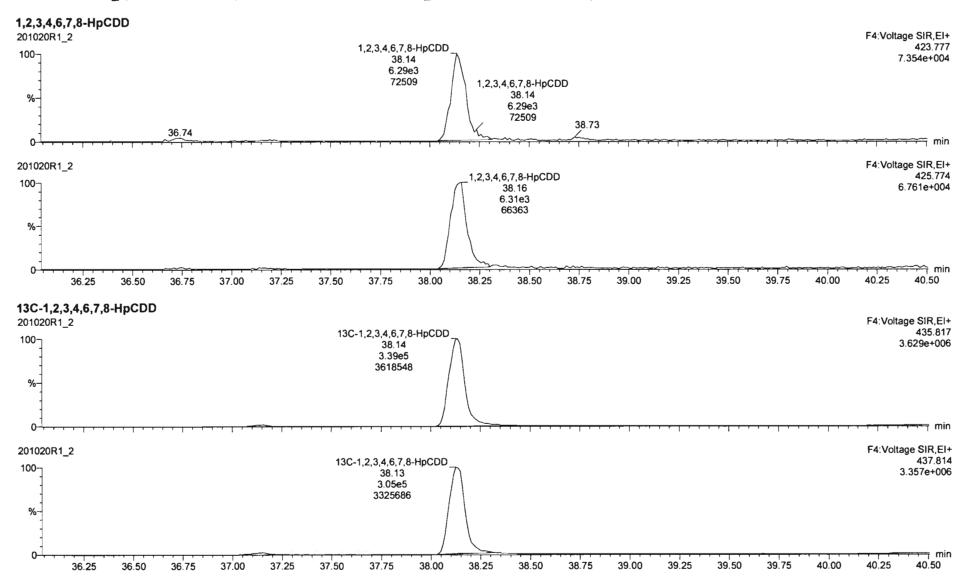
Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

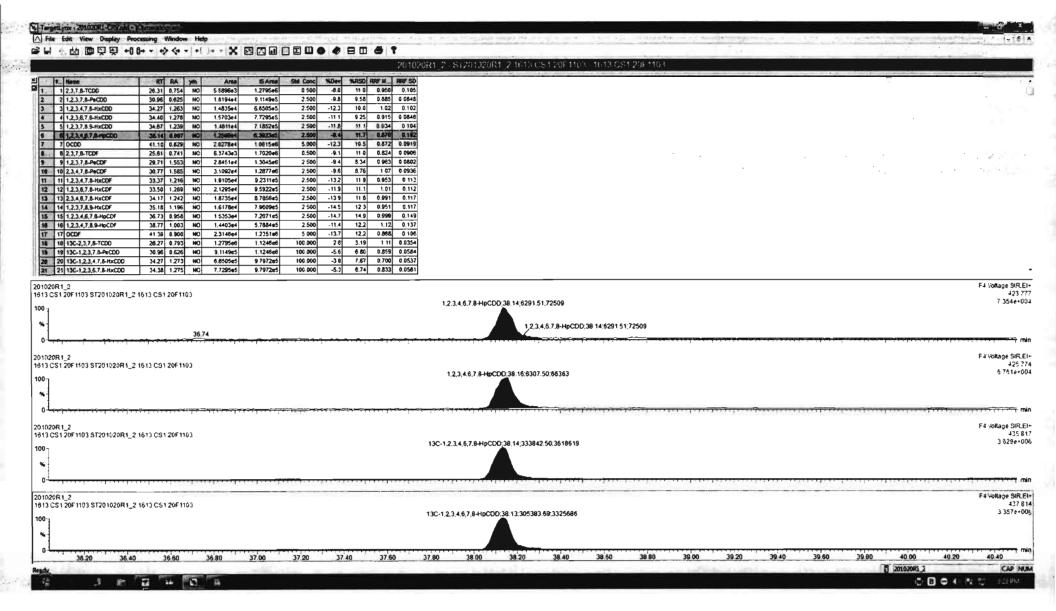


Vista Analytical Laboratory

Dataset:

Untitled

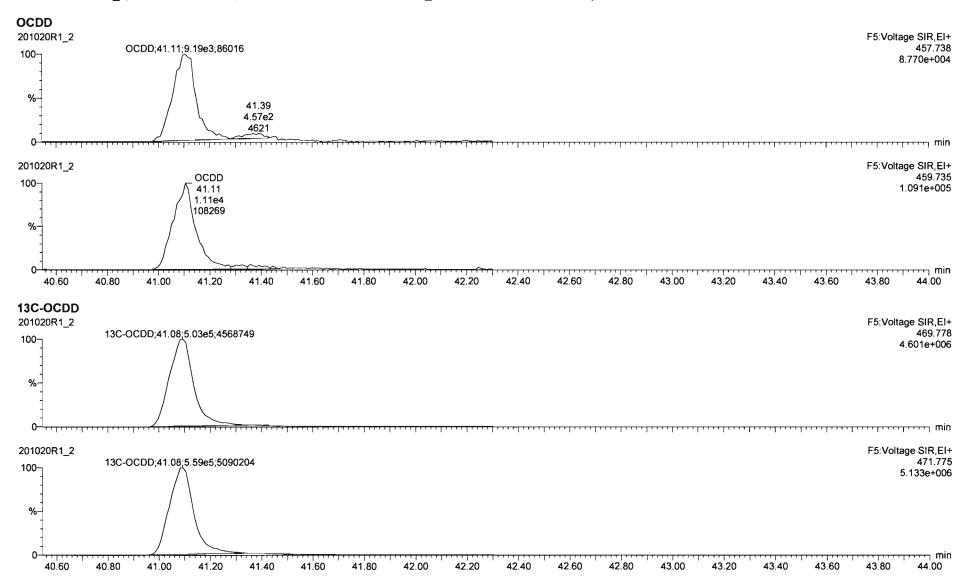

Last Altered: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Printed: Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Untitled

Last Altered: Printed:

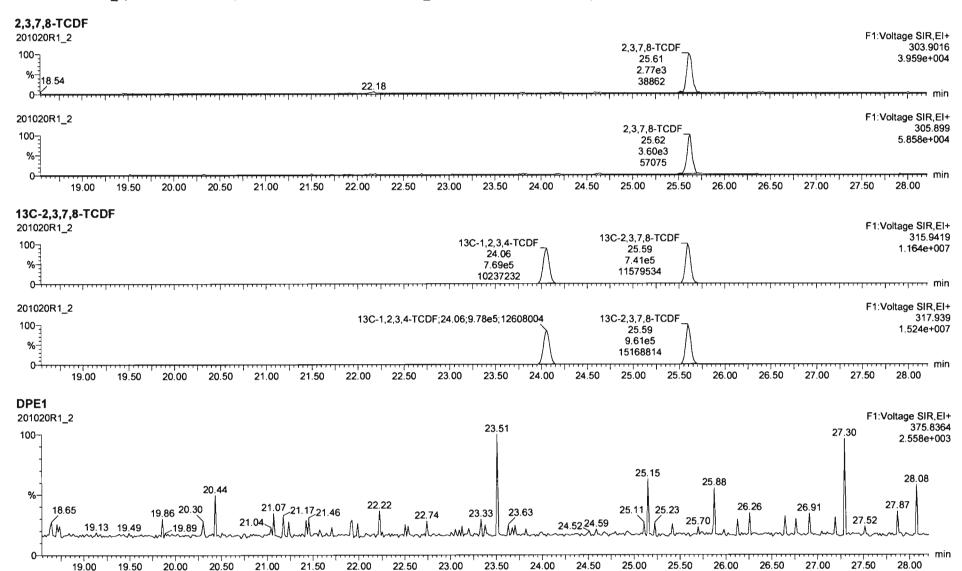
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

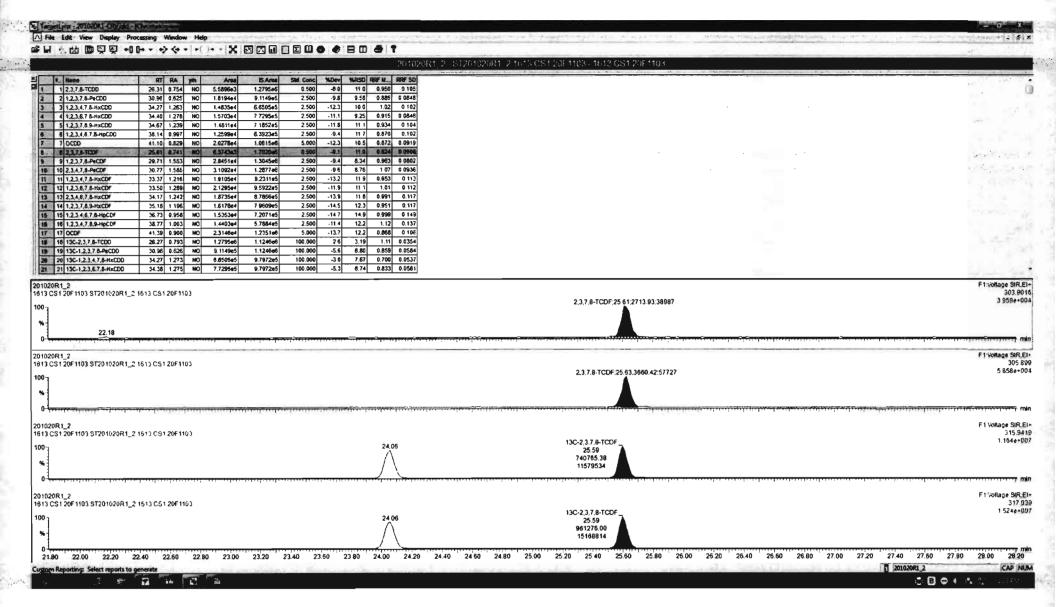

Work Order 2002358 Page 257 of 353

Page 19 of 78: we will be a second of the se

Dataset:

Untitled

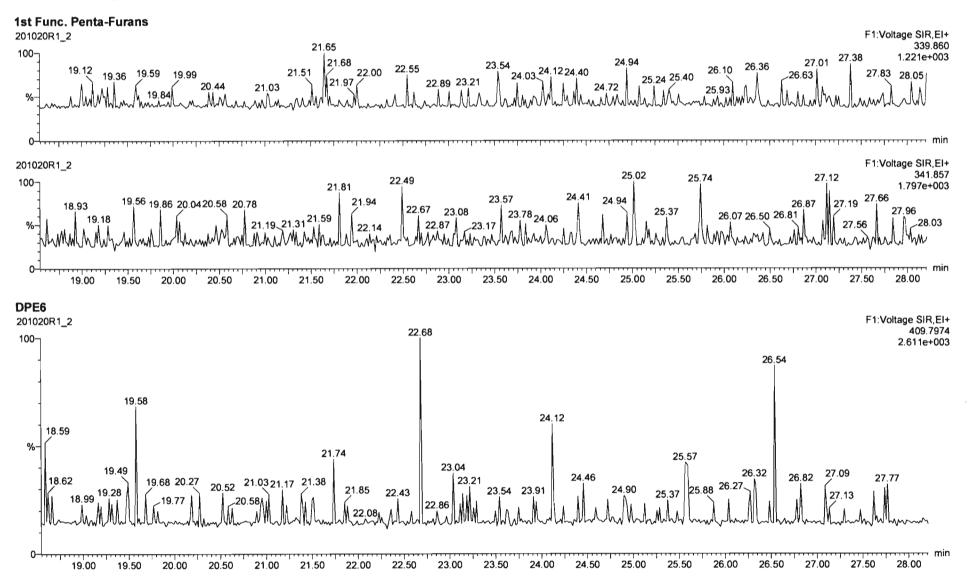

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Untitled

Last Altered: Printed:

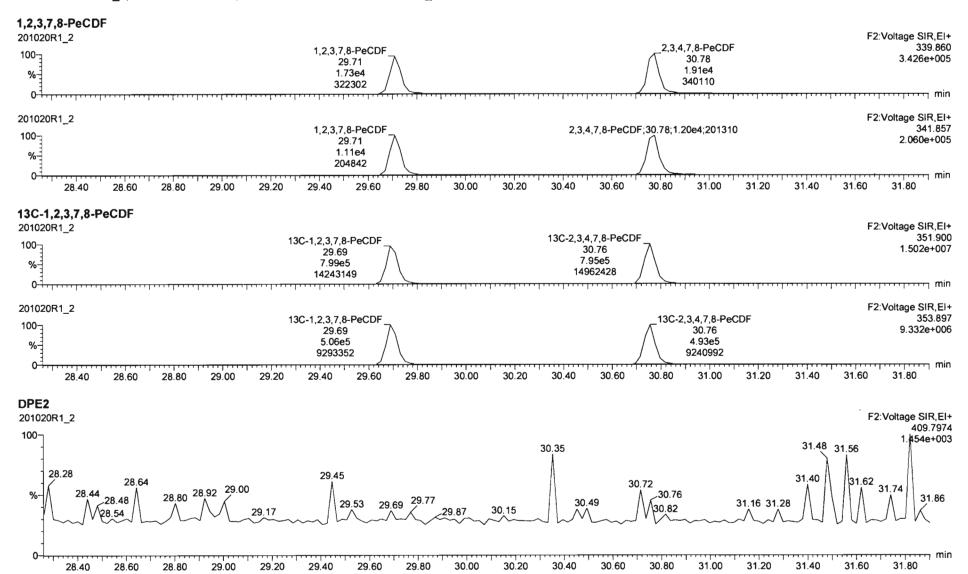
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Work Order 2002358 Page 260 of 353

Untitled

Last Altered: Printed:

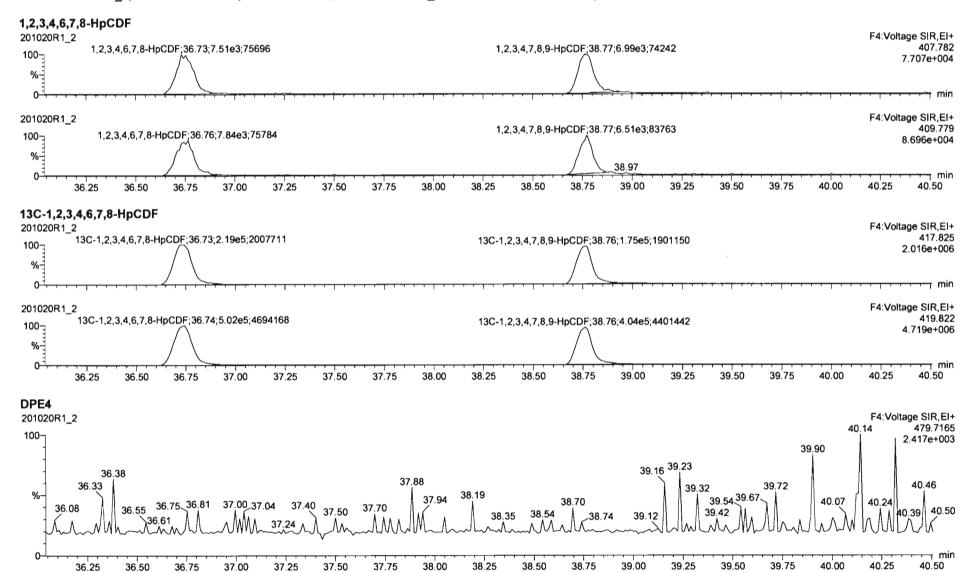

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

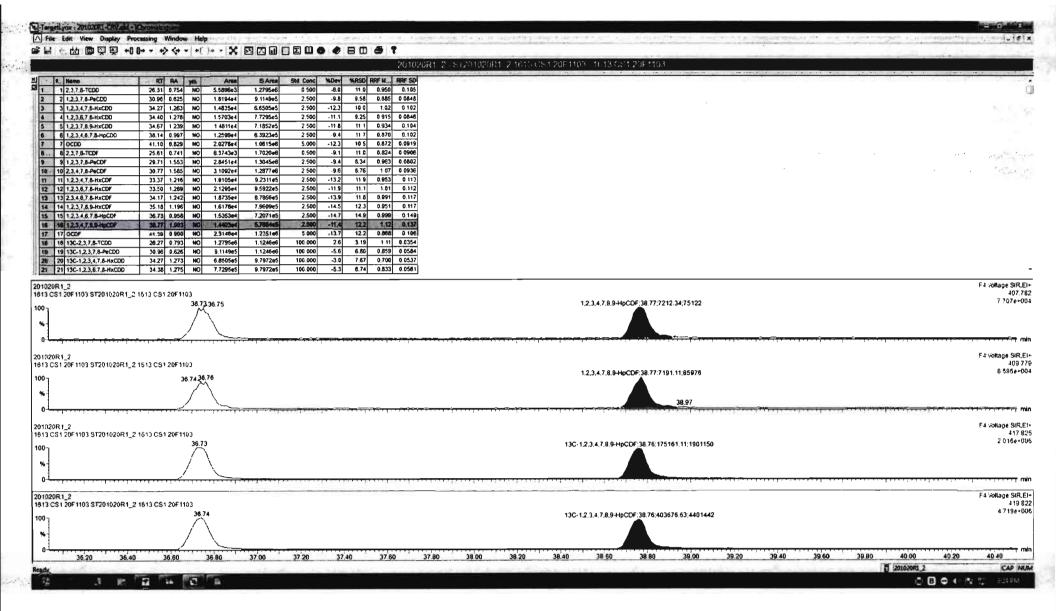
Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

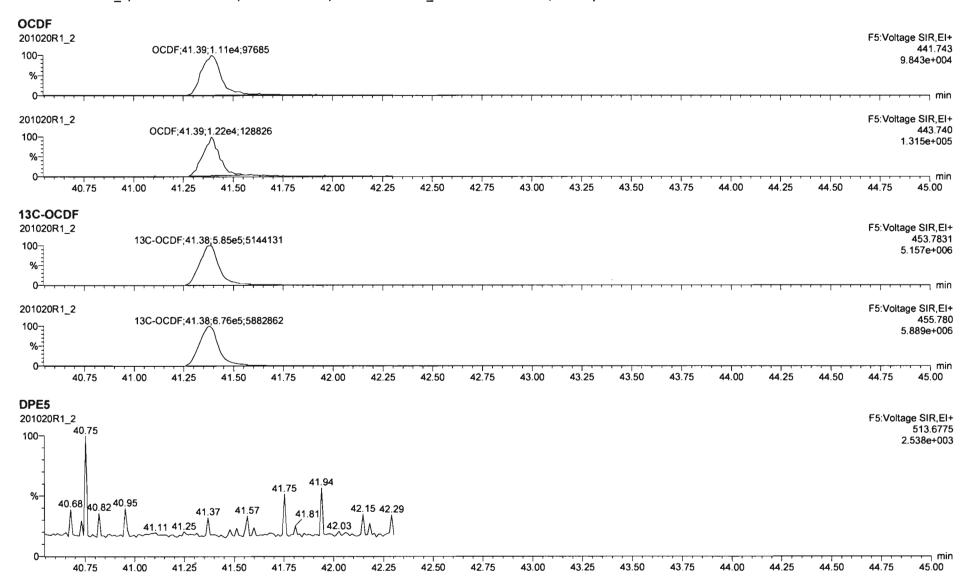

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

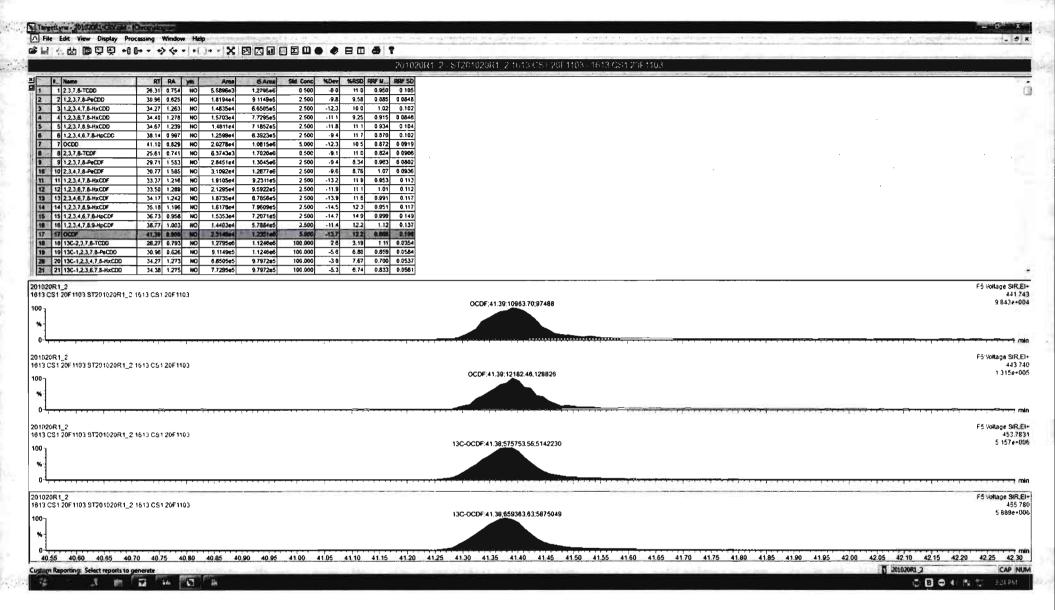


Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

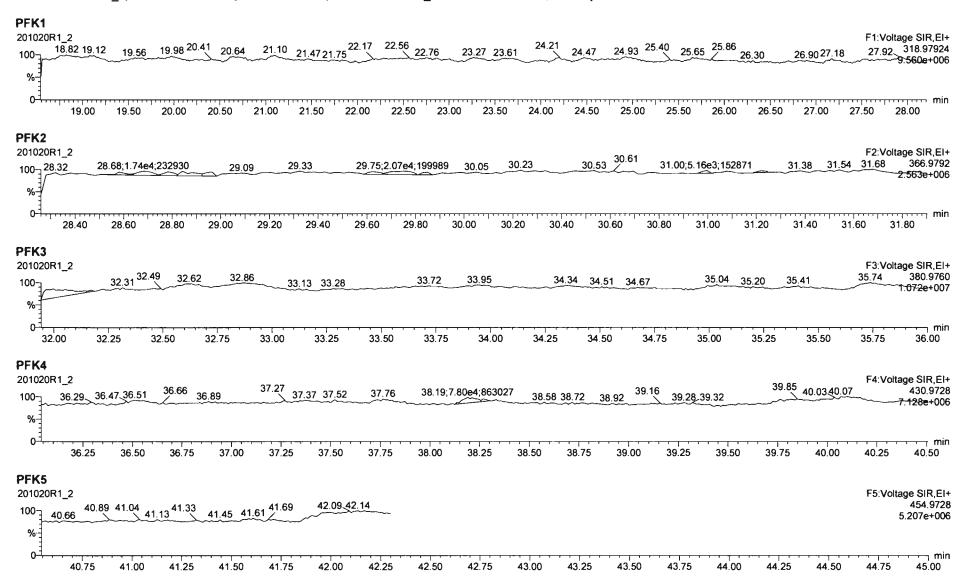



Work Order 2002358 Page 265 of 353

Untitled

Last Altered: Printed:

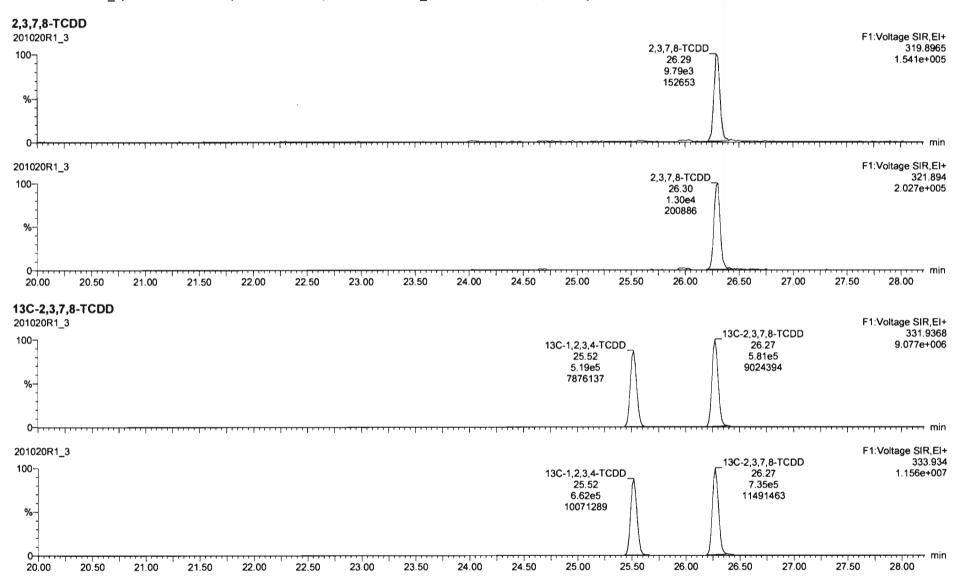
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Work Order 2002358 Page 267 of 353

Untitled

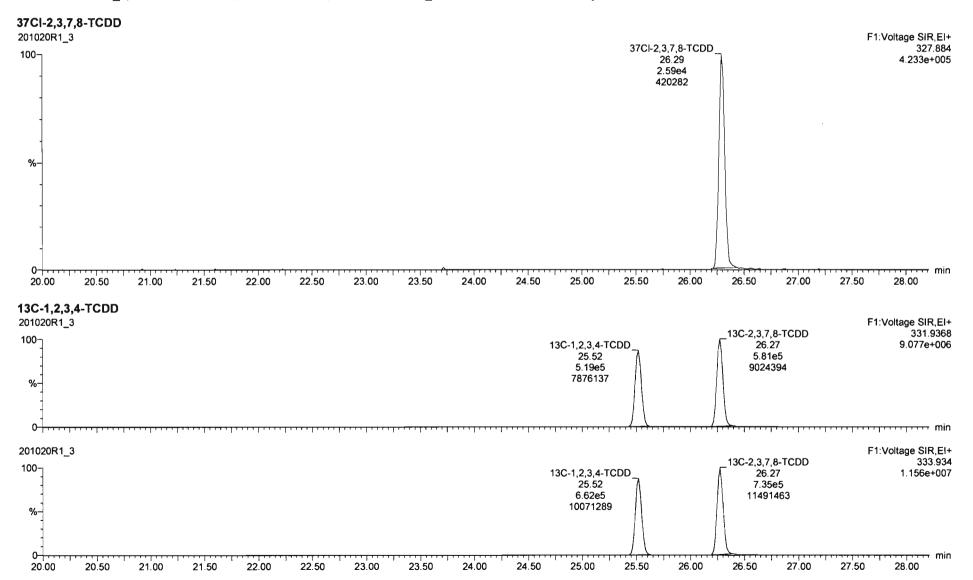
Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

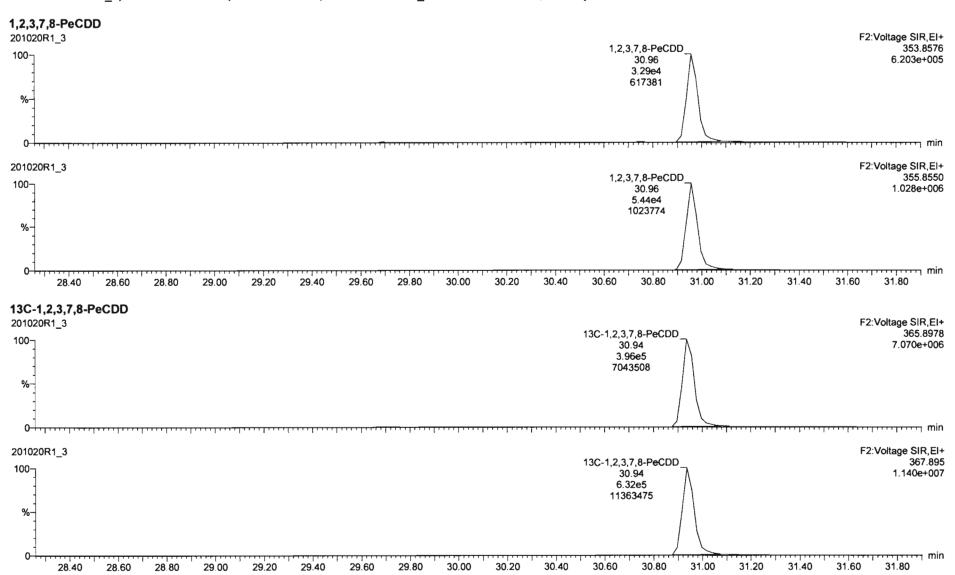
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


Printed:

Untitled

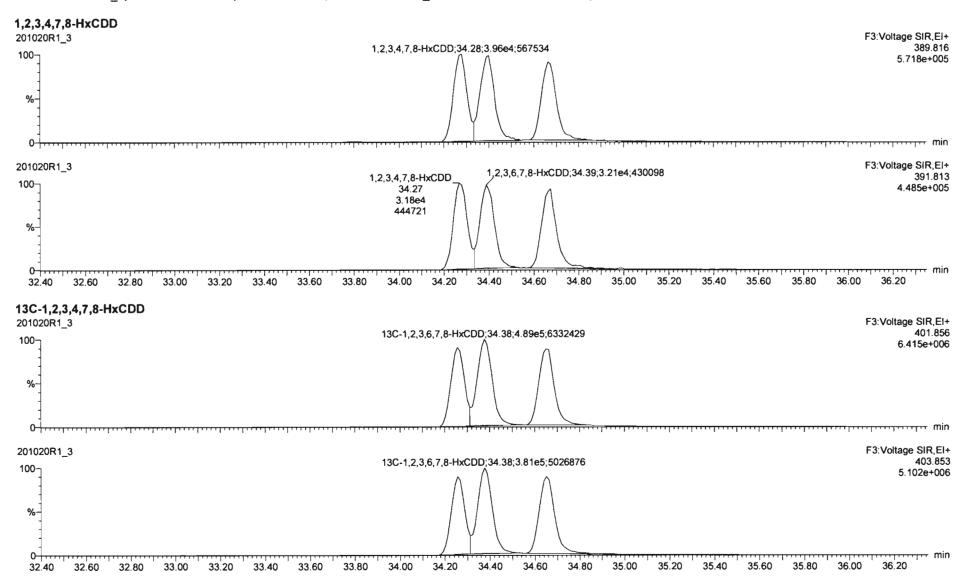
Last Altered:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time


Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

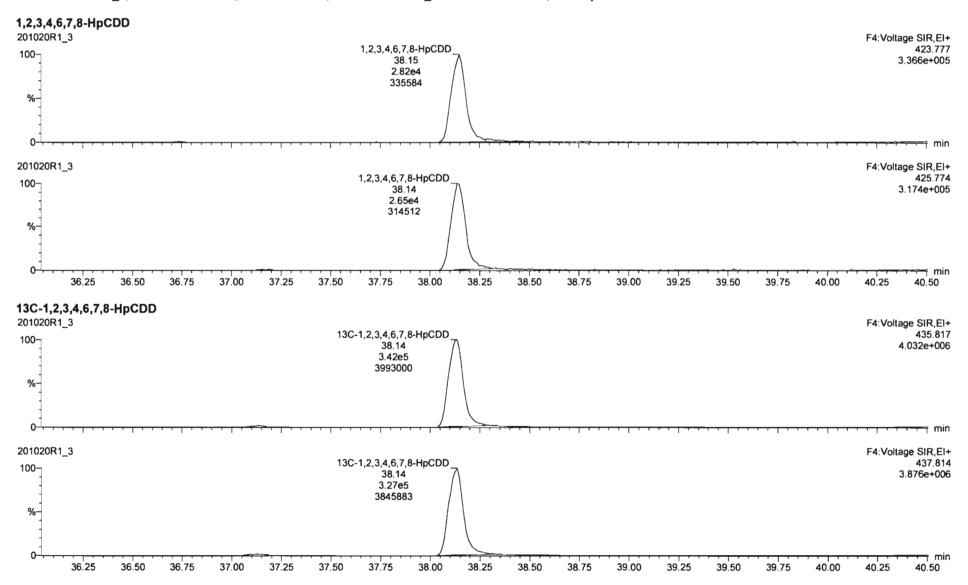
Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

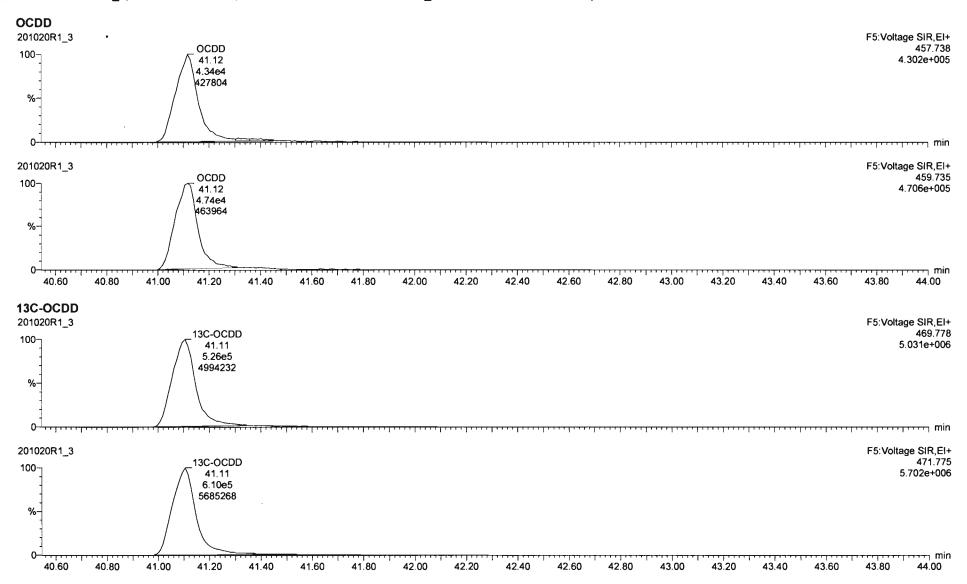
Untitled

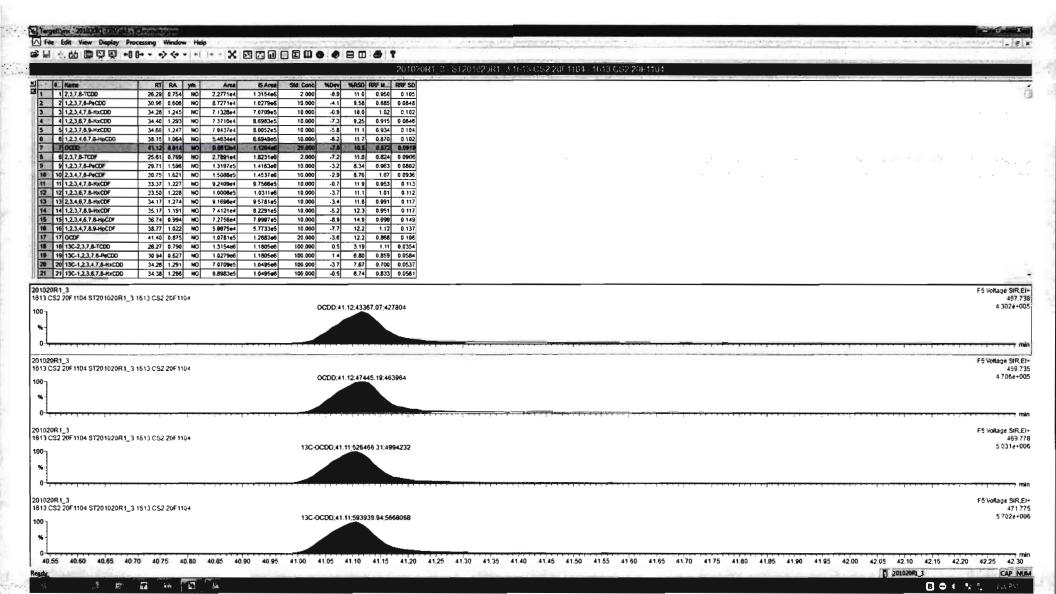
Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

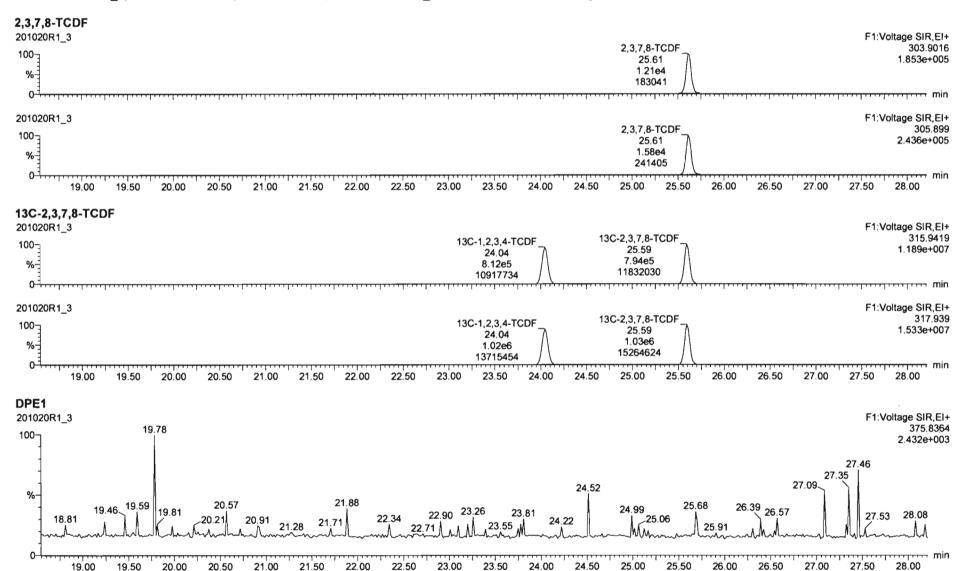

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Untitled

Last Altered: Printed:

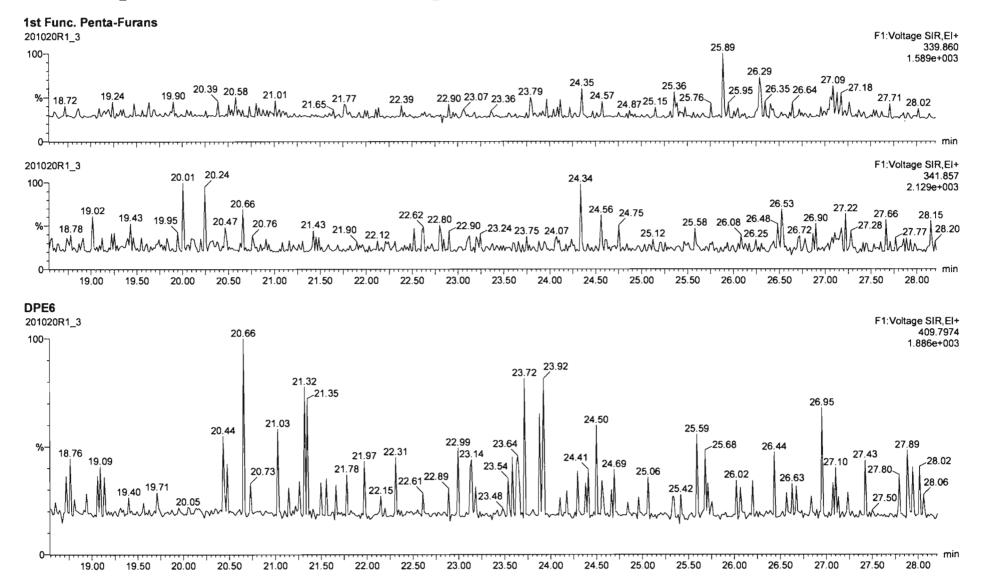
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Work Order 2002358 Page 275 of 353

Untitled

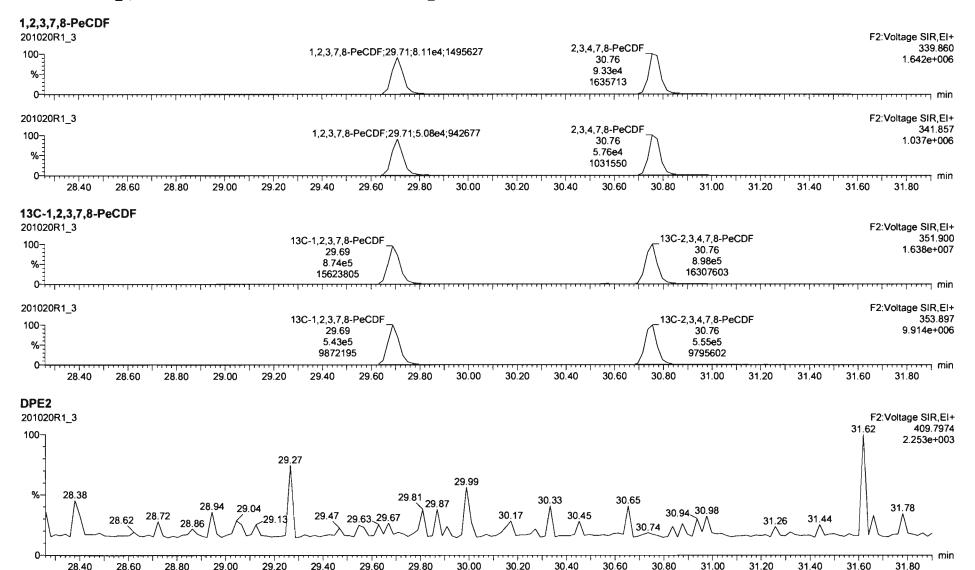
Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


3300 to - 1500 to -

Dataset:

Untitled

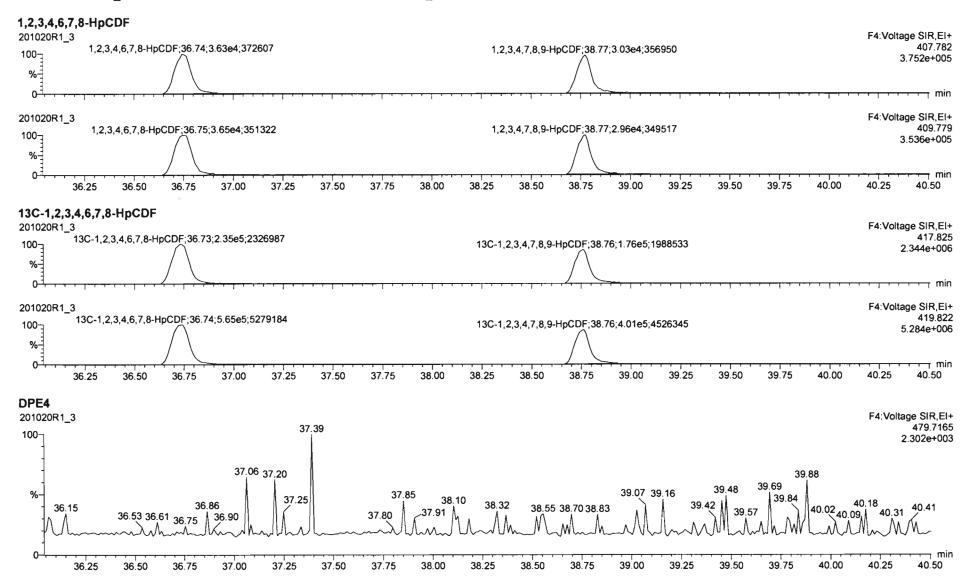
Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

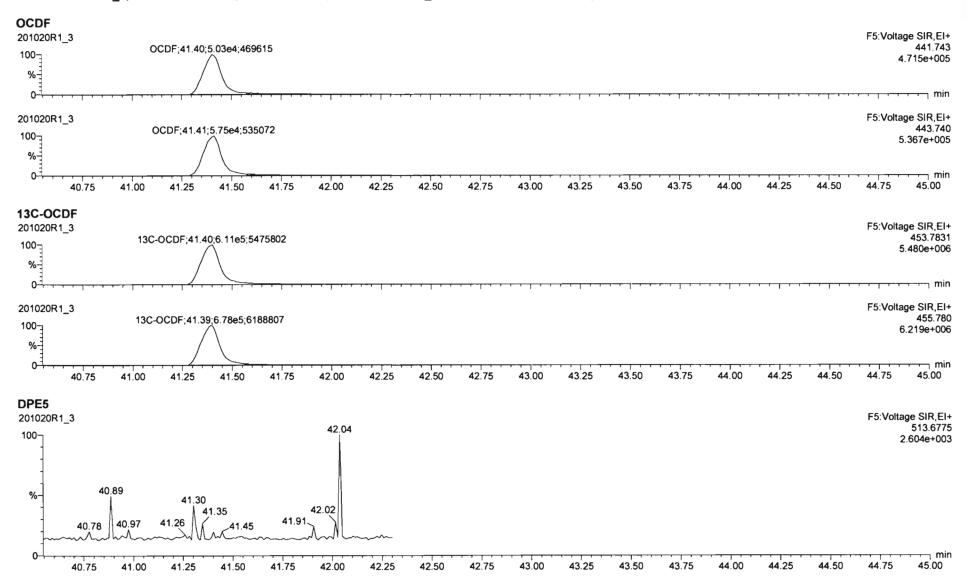
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


การที่ ครูป การรักษา แล้ว รายเป็นเดือนเพลง รัฐบาน และการสนาด แน่น้ำคนเลา การรั

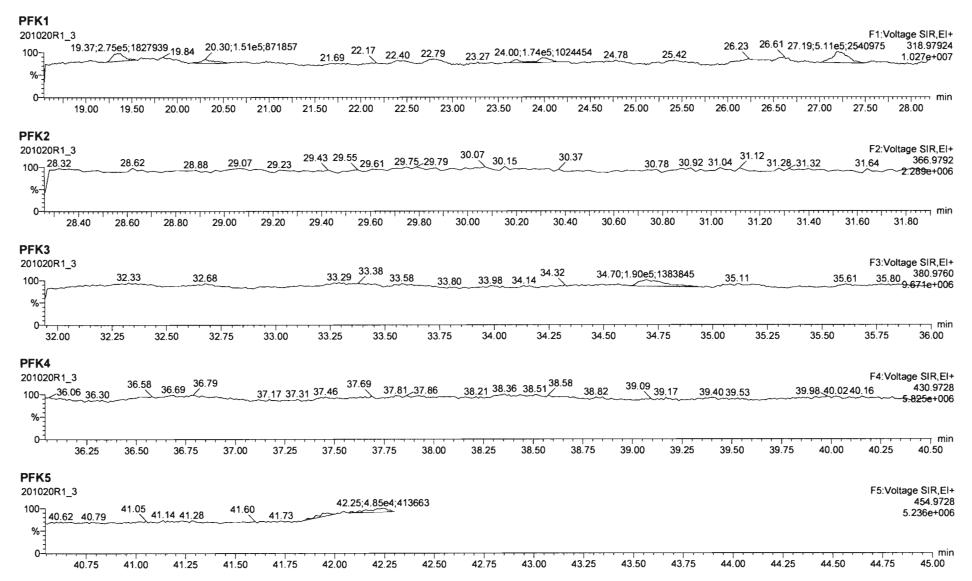
Dataset:

Untitled

Last Altered: Printed:

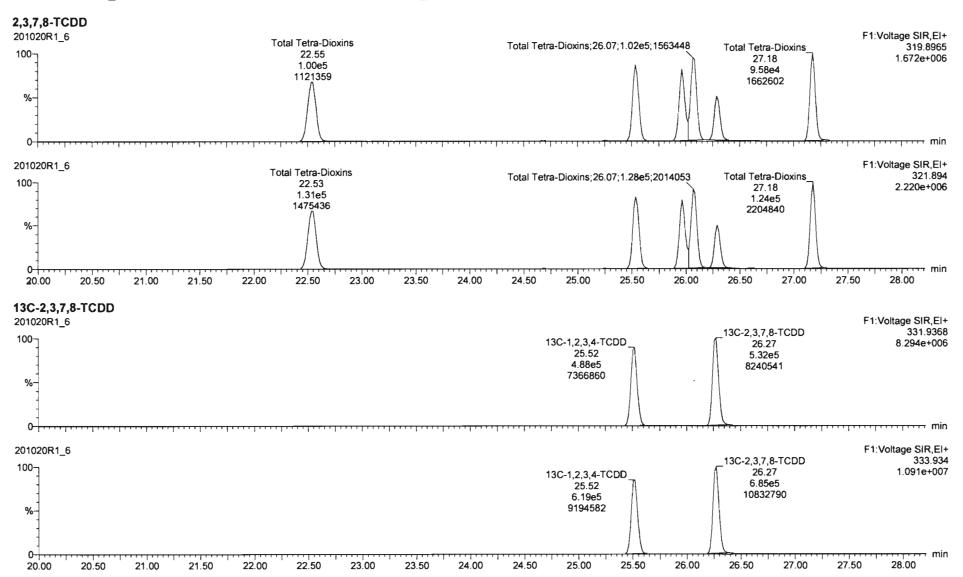

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

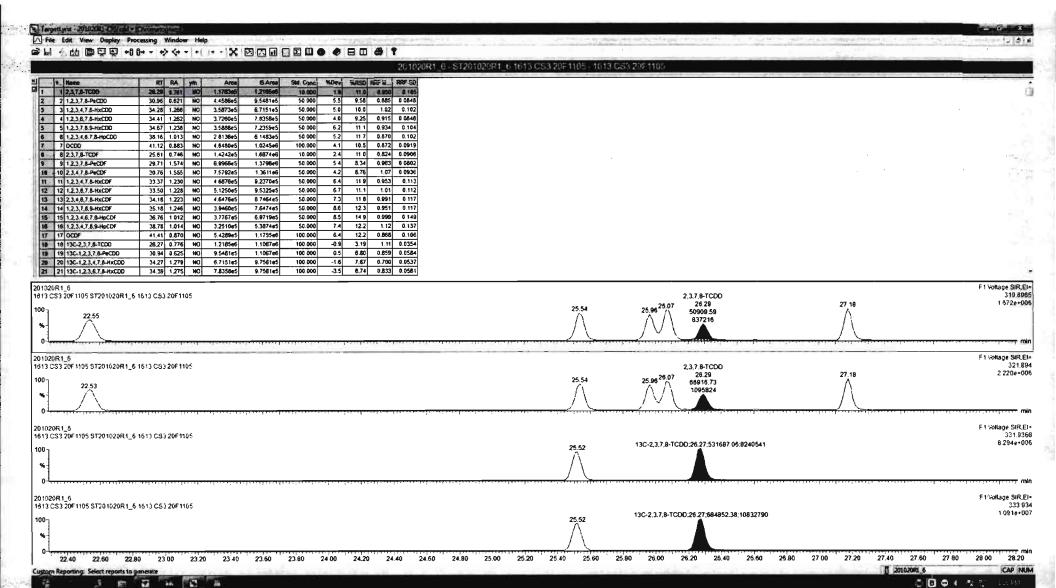
Untitled


Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

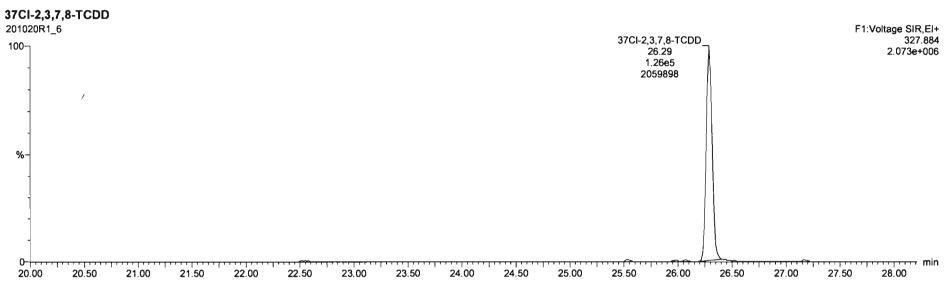

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

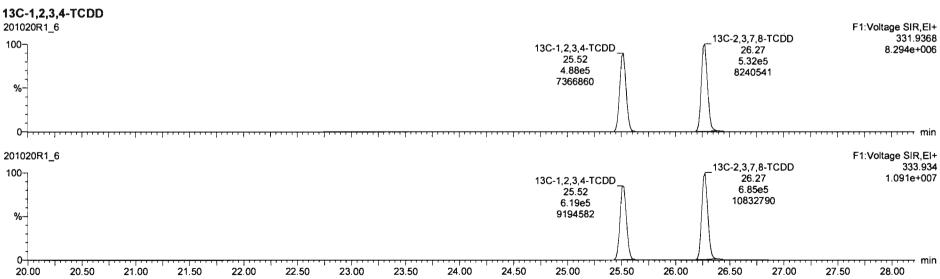


Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

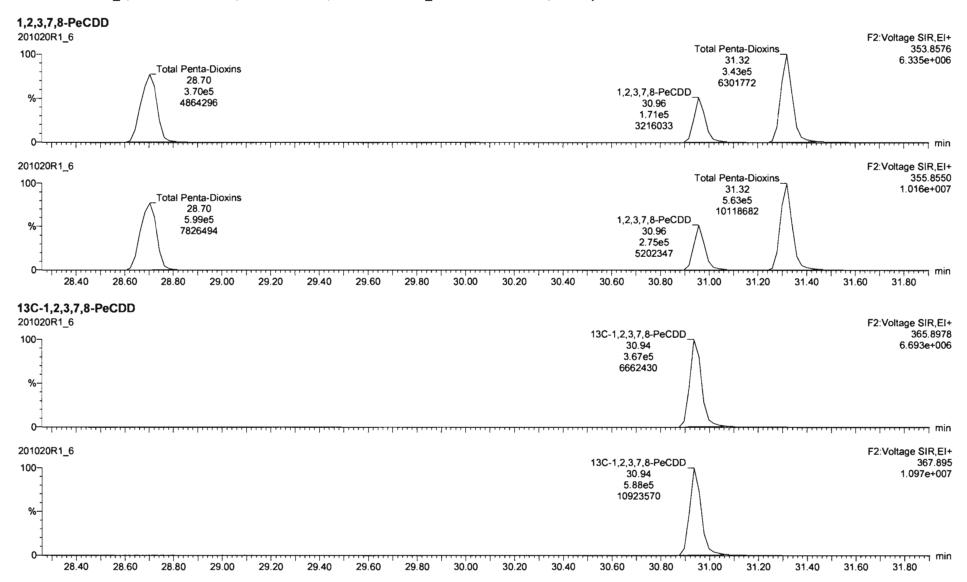



Work Order 2002358 Page 284 of 353

Untitled

Last Altered: Printed:

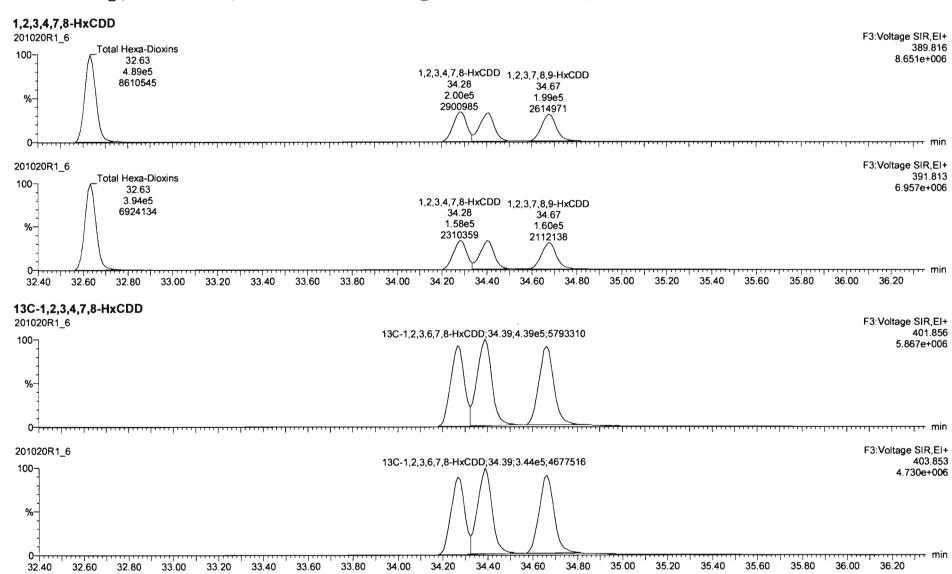
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


NAMES OF THE PROPERTY OF THE P

Dataset:

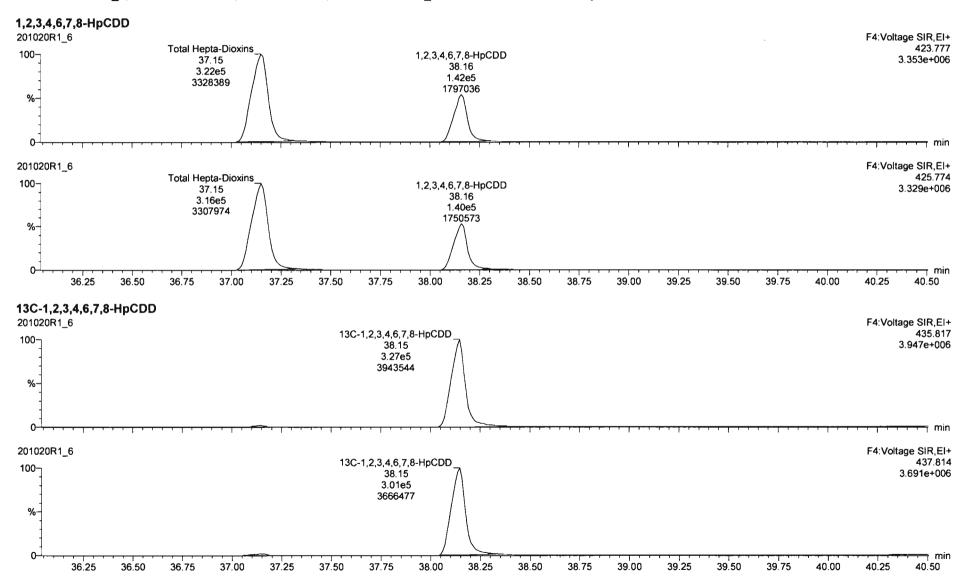
Untitled

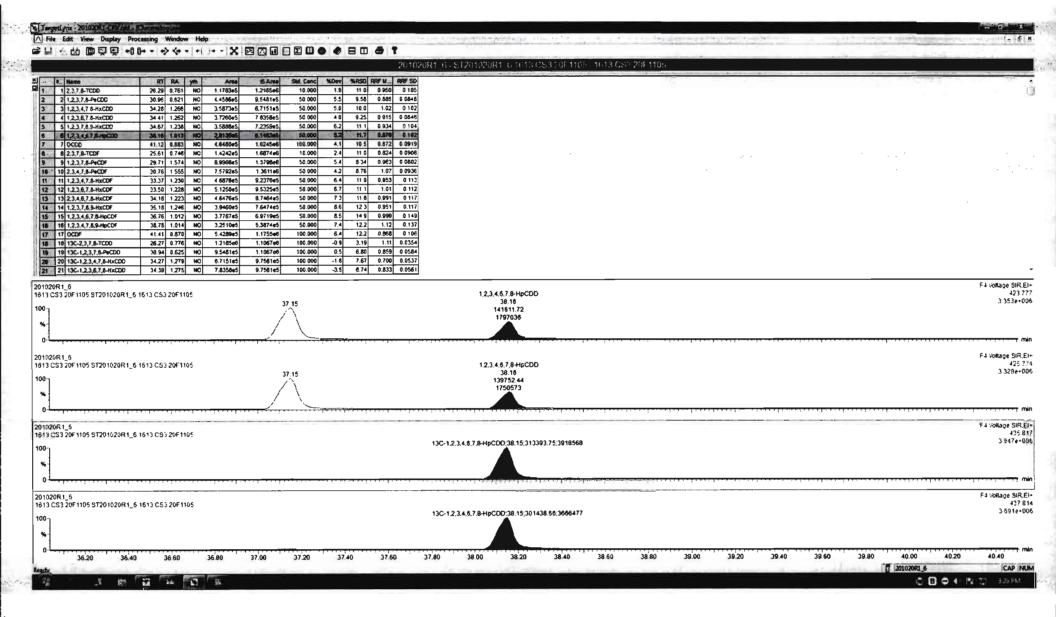
Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

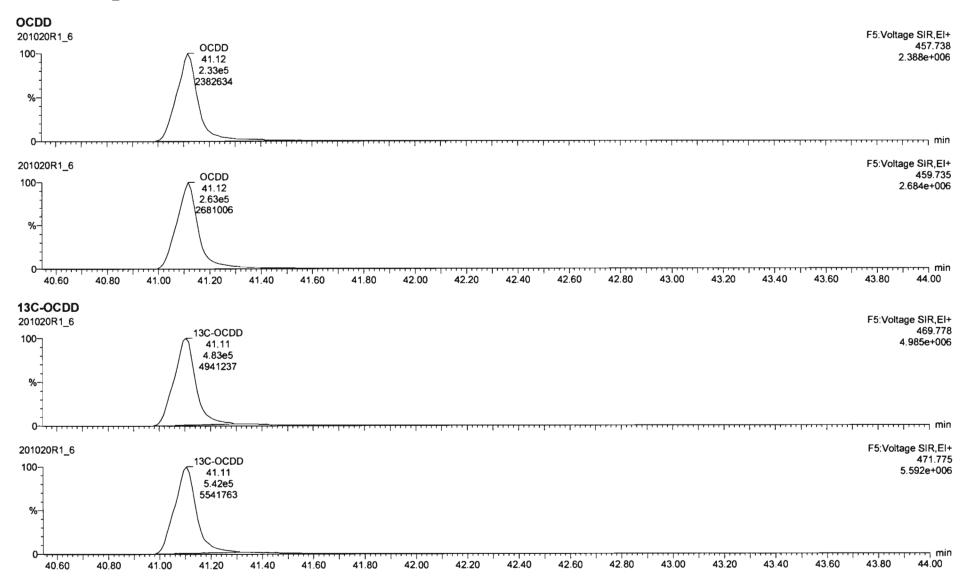

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

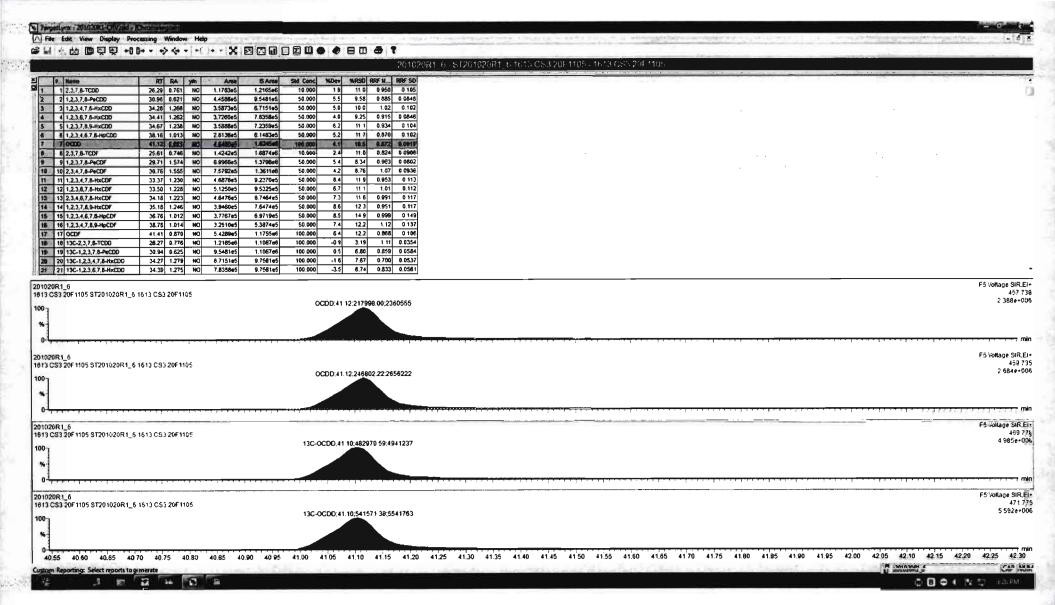


Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_6, Date: 20-Oct-2020, Time: 13:01:38, ID: ST201020R1_6 1613 CS3 20F1105, Description: 1613 CS3 20F1105


Work Order 2002358 Page 289 of 353


The second of the

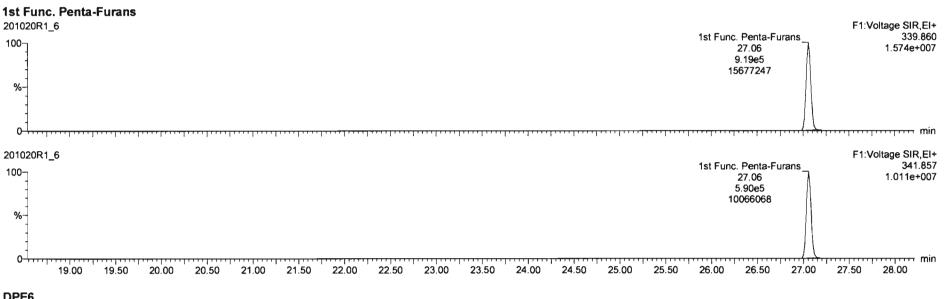
Dataset:

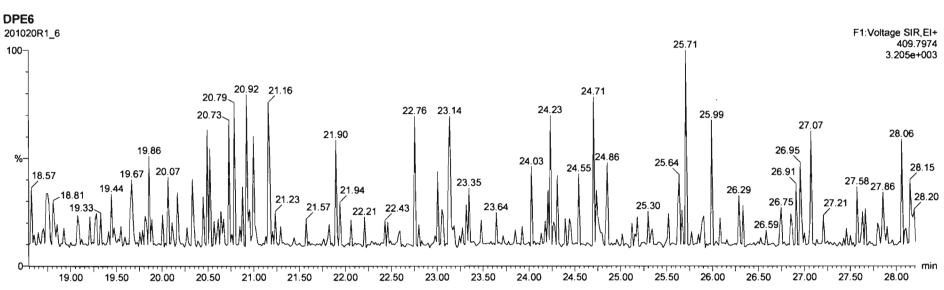
Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Work Order 2002358 Page 291 of 353

Untitled

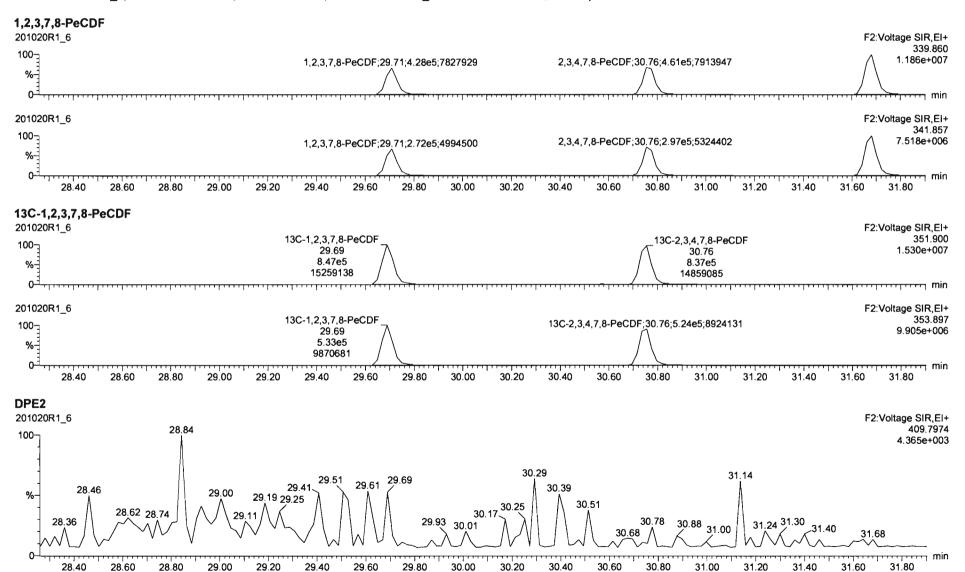

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Untitled

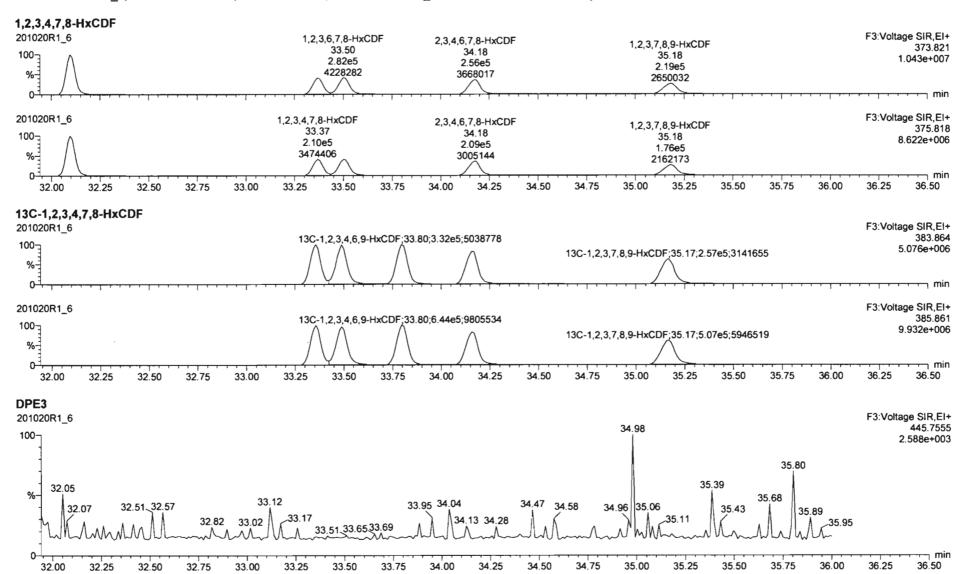
Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

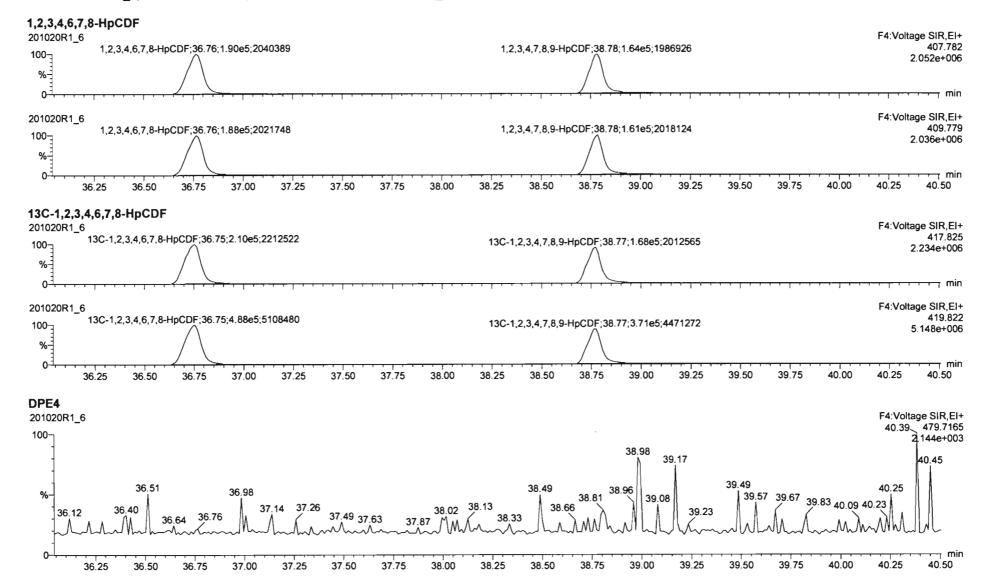


Untitled

Last Altered: Printed:

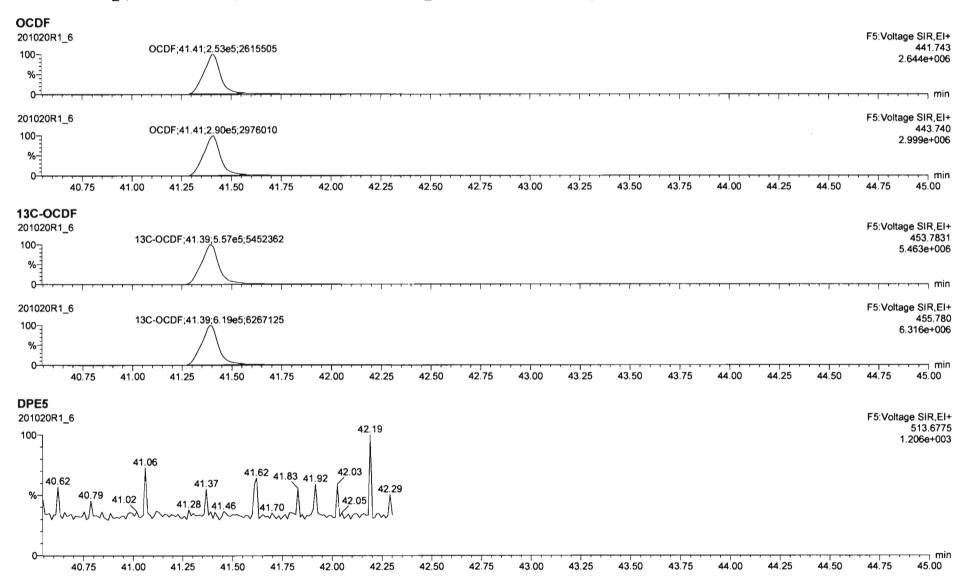

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled


Last Altered: Printed:

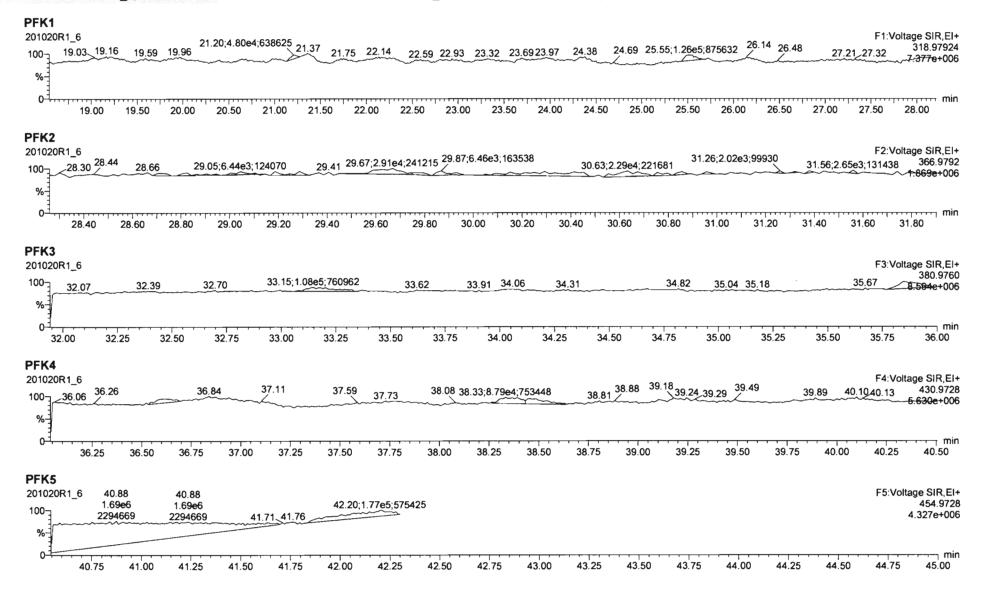
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled


Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

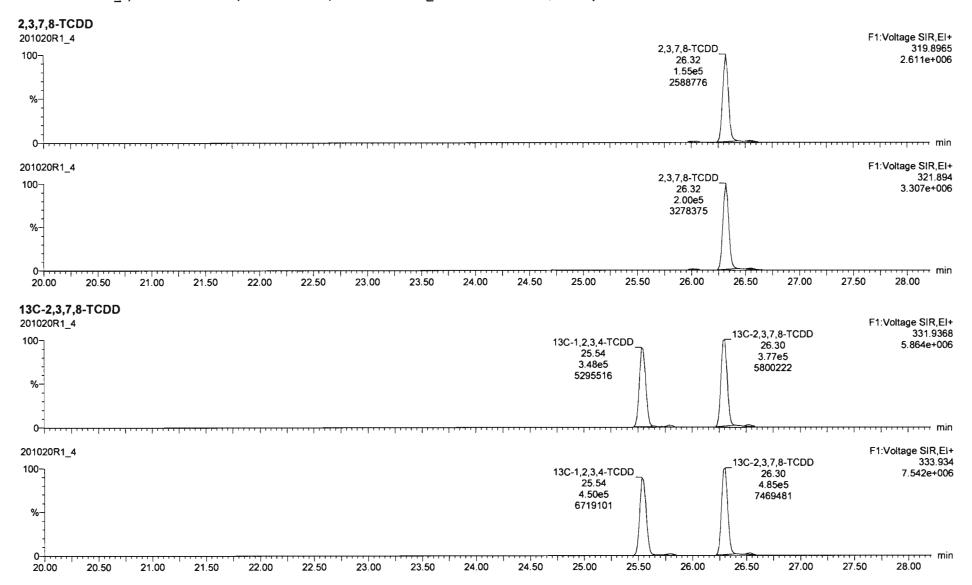
Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

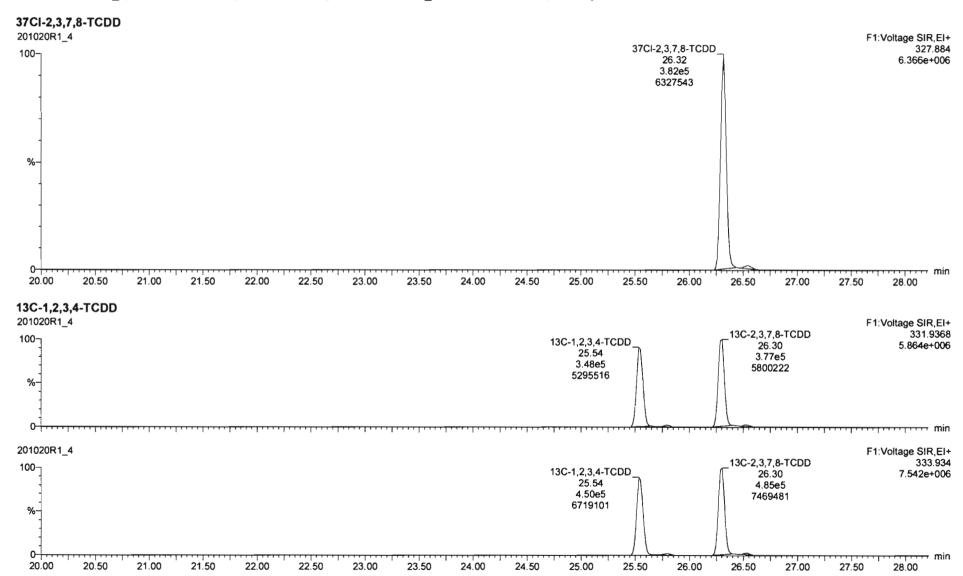
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Dataset:

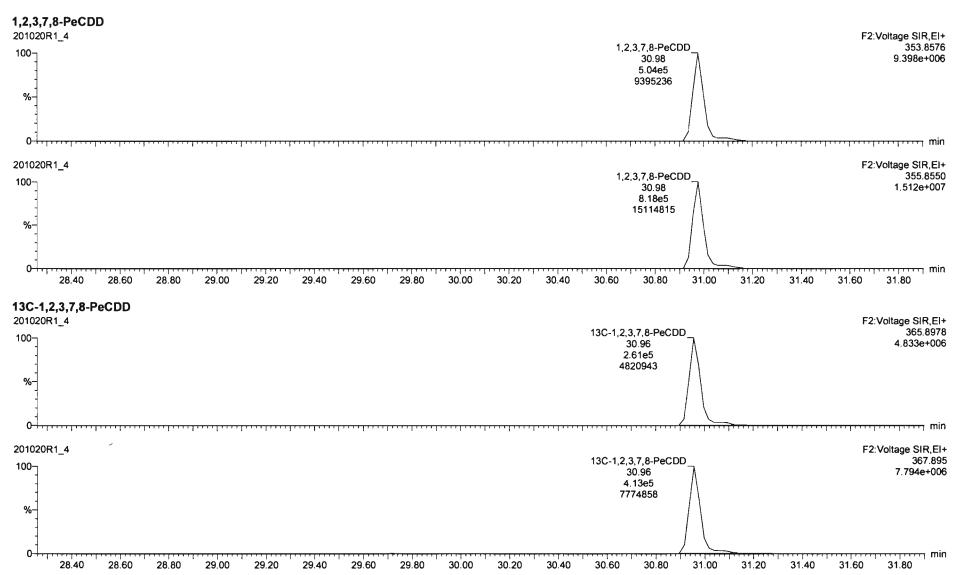
Untitled

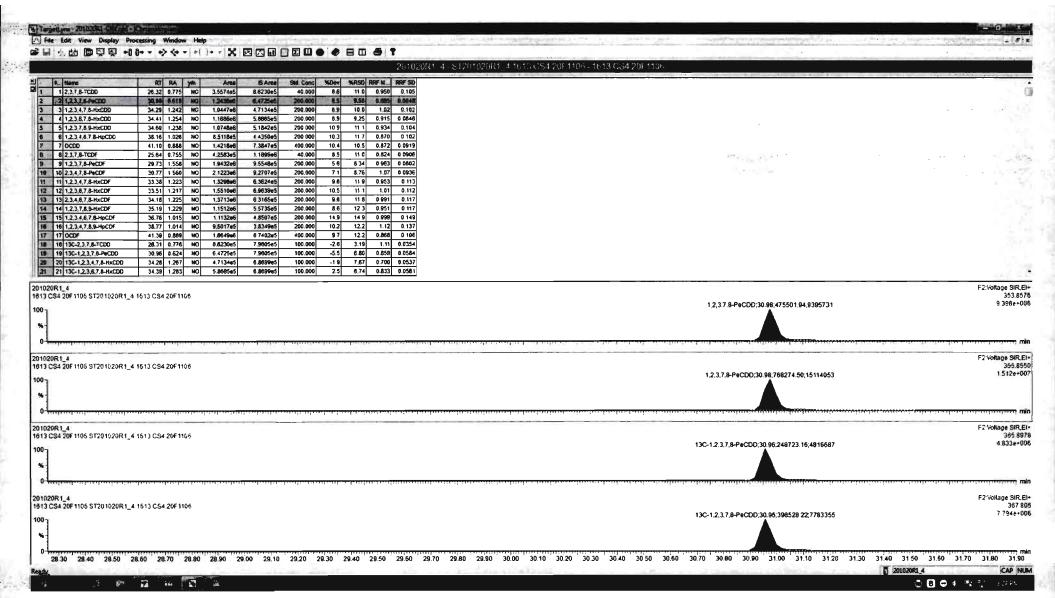
Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

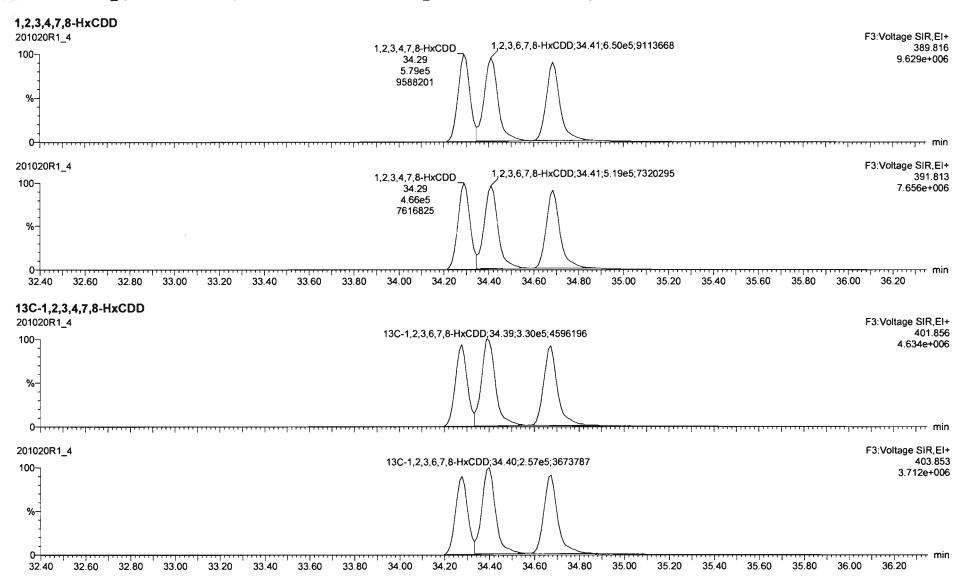

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

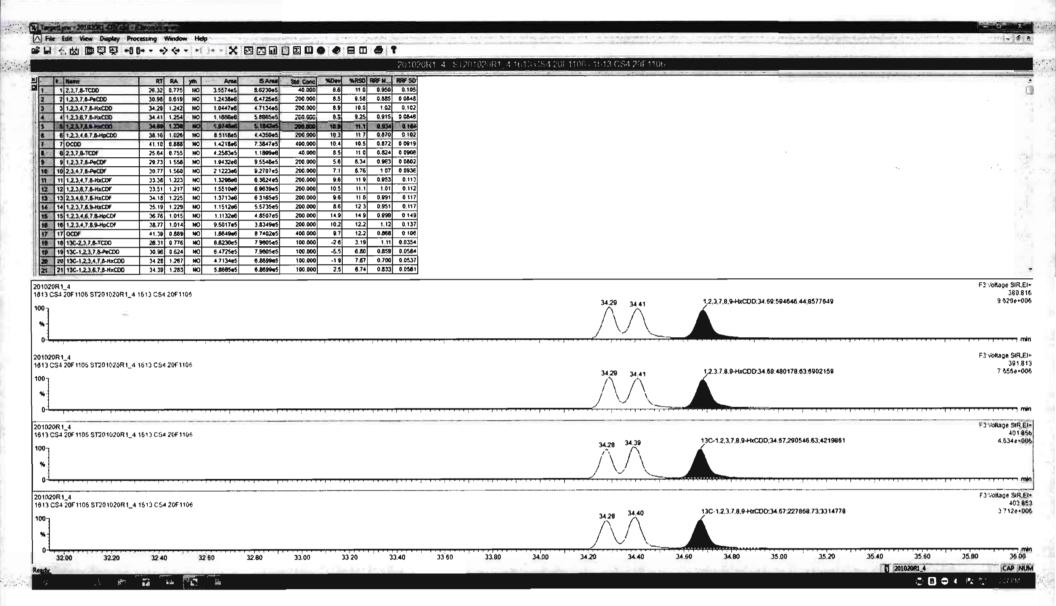


Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



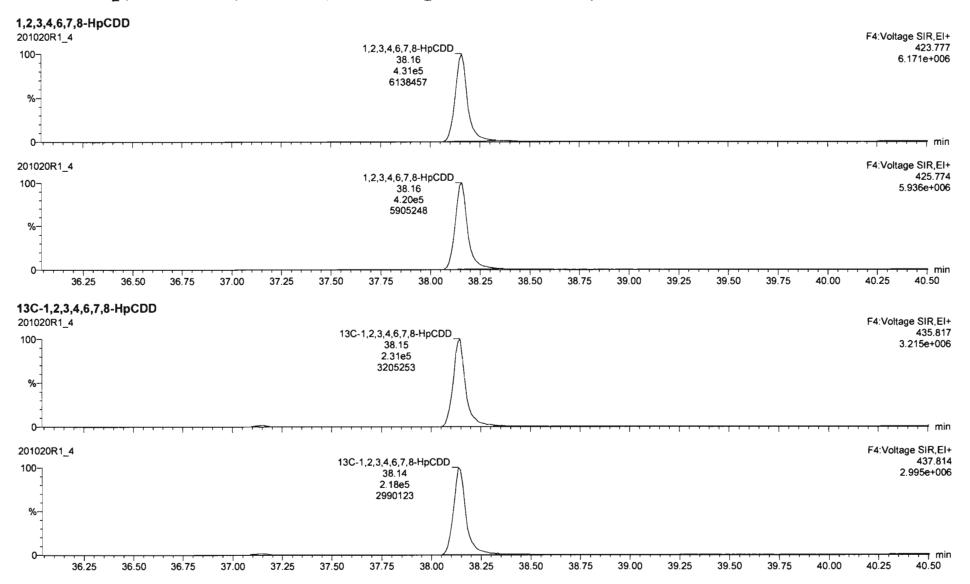

Work Order 2002358 Page 302 of 353

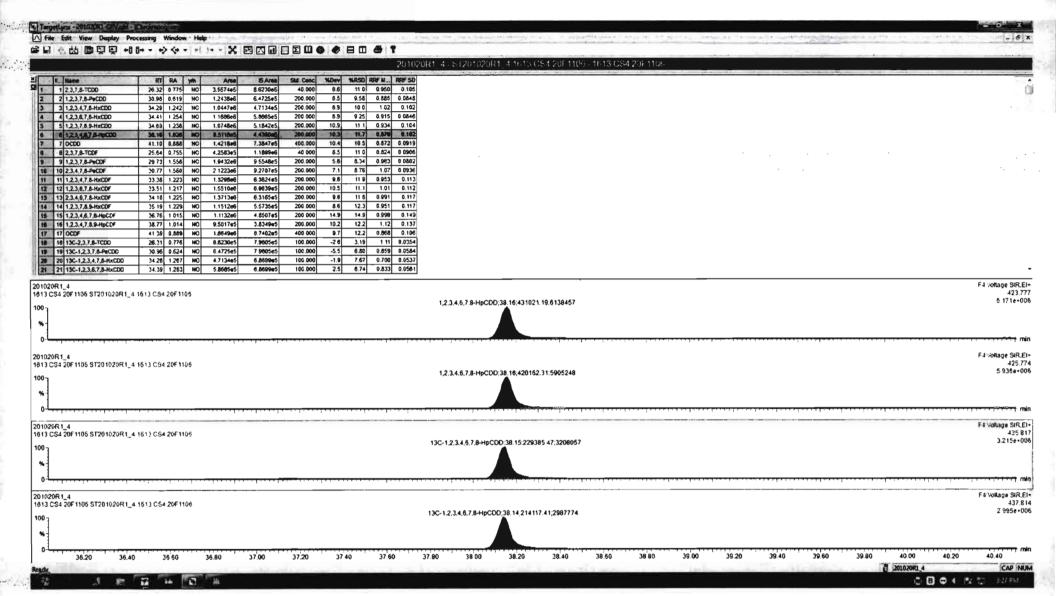
Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

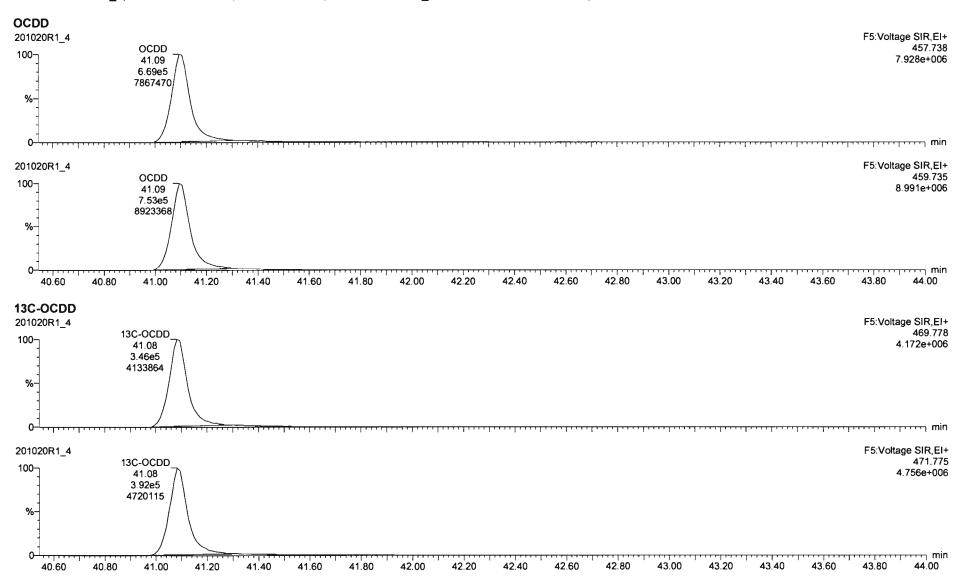
Work Order 2002358 Page 304 of 353


A THAT OF THE PERSON OF THE PE


Dataset:

Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

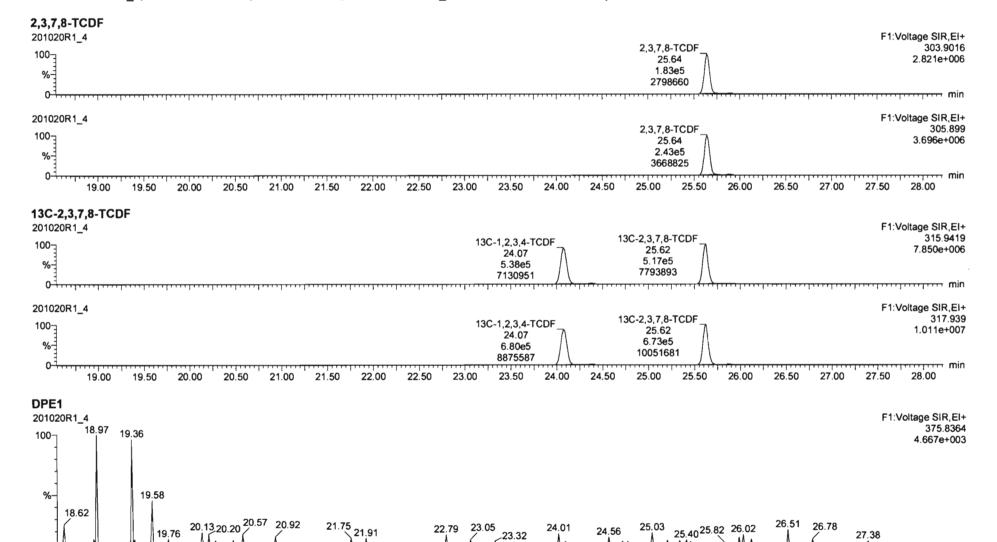
Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Quantify Sample Report Vista Analytical Laboratory

Dataset:

Untitled


Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_4, Date: 20-Oct-2020, Time: 11:32:31, ID: ST201020R1_4 1613 CS4 20F1106, Description: 1613 CS4 20F1106

22.00

22.50

23.00

23.50

24.00

24.50

25.00

25.50

26.00

26.50

27.00

19.00

19.50

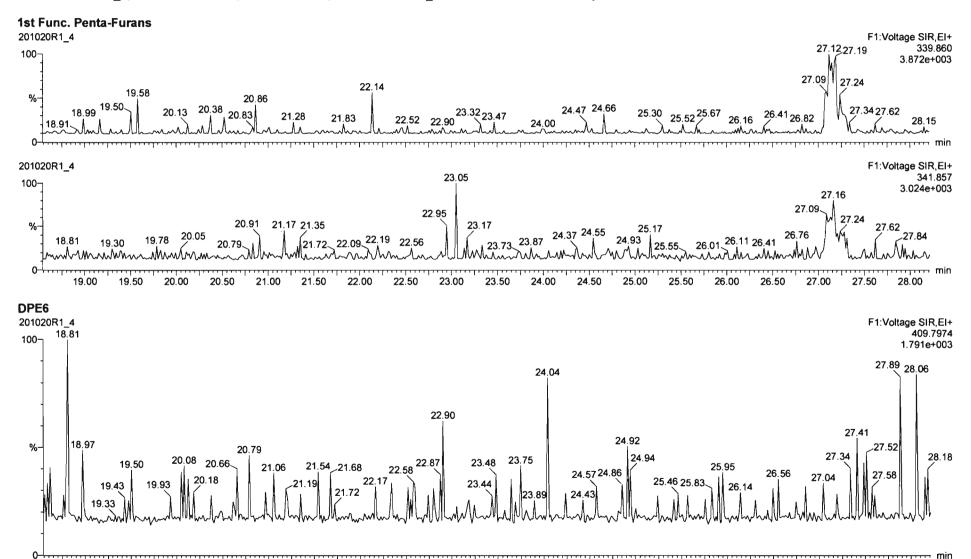
20.00

20.50

21.00

21.50

28.00


27.50

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_4, Date: 20-Oct-2020, Time: 11:32:31, ID: ST201020R1_4 1613 CS4 20F1106, Description: 1613 CS4 20F1106

19.00

19.50

20.00

21.00

20.50

21.50

22.00

22.50

23.00

23.50

24.00

24.50

25.00

25.50

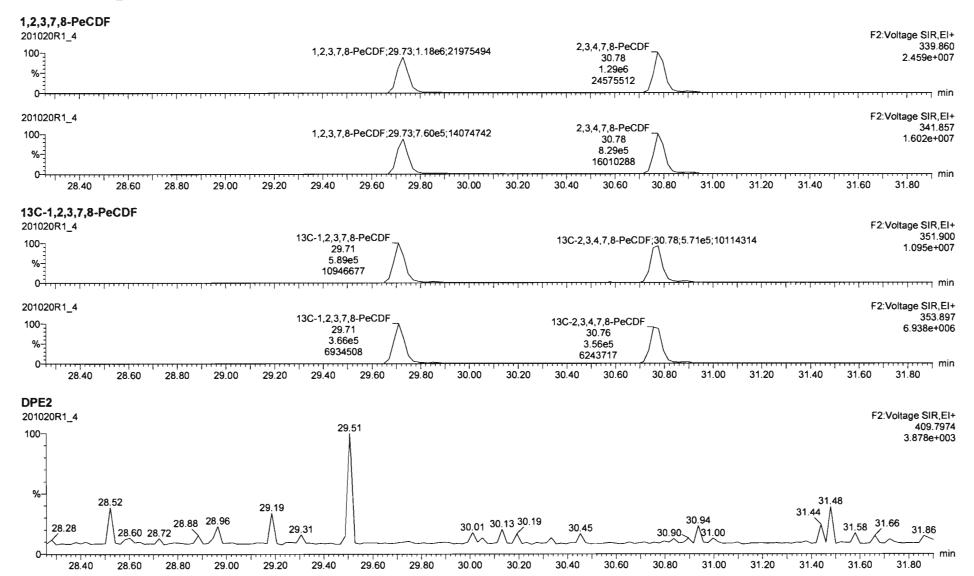
26.00

26.50

27.00

28.00

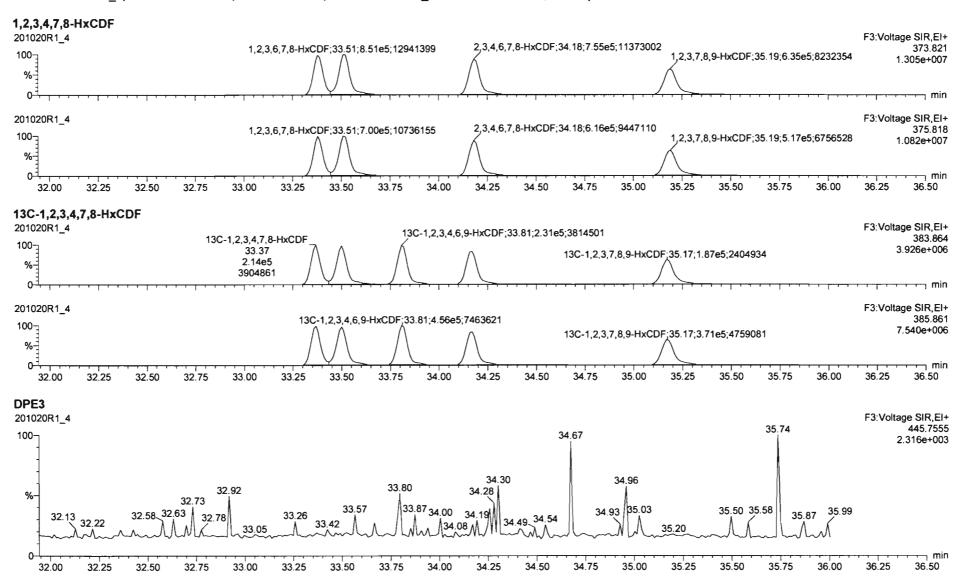
27.50


arting the trace of a conservation and specificate agencies to

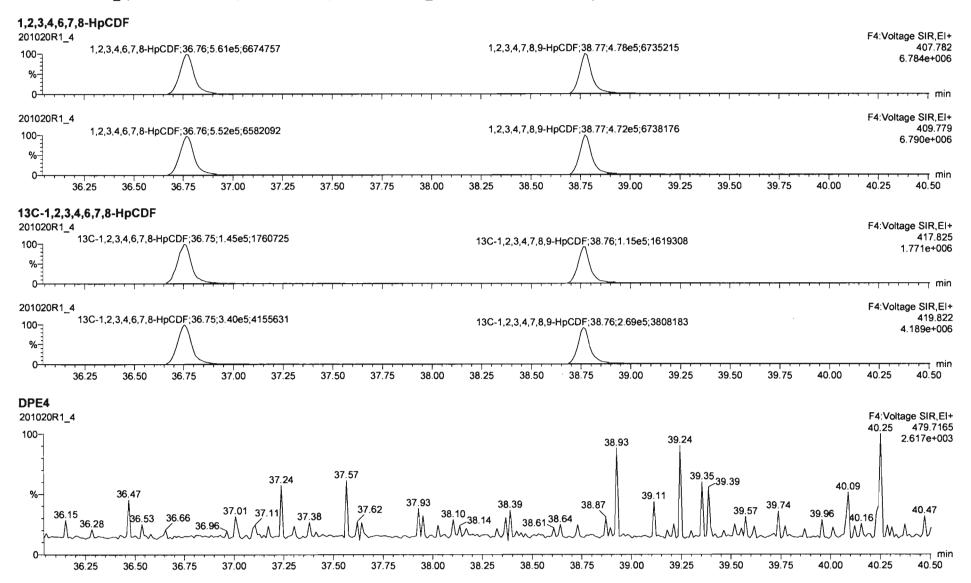
Dataset:

Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

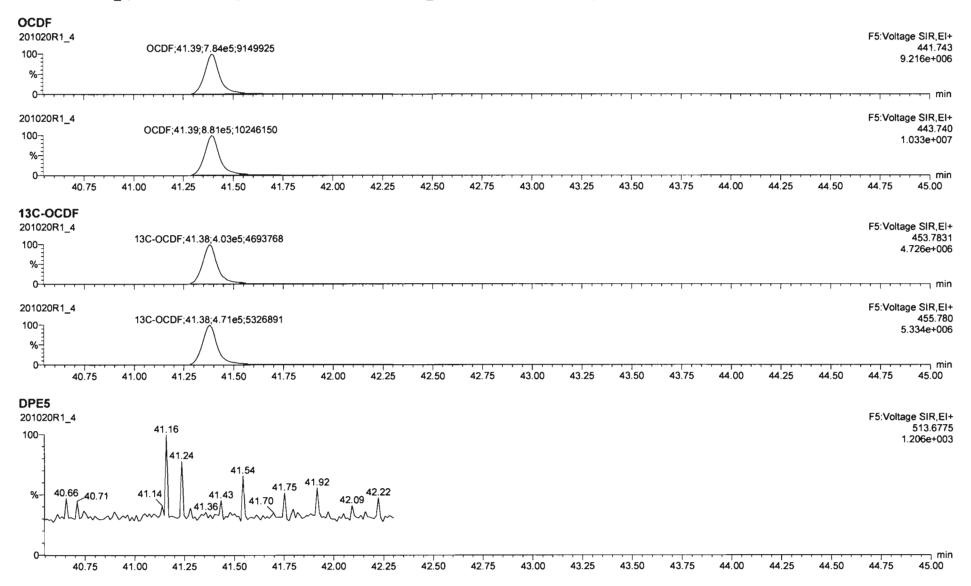
Untitled


Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

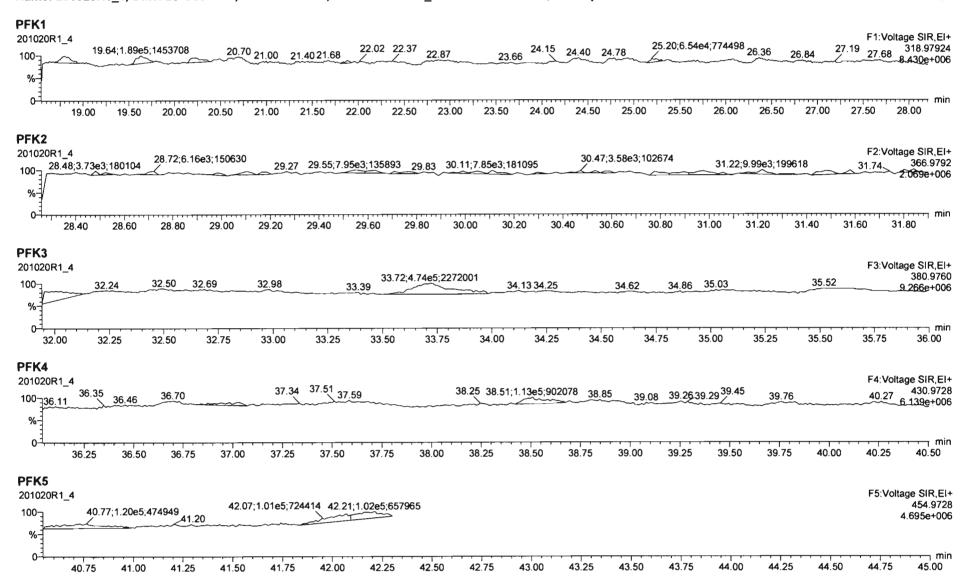
Last Altered: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Printed: Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


to et al. in the soft effective the content of the collection of the collection of

Dataset:

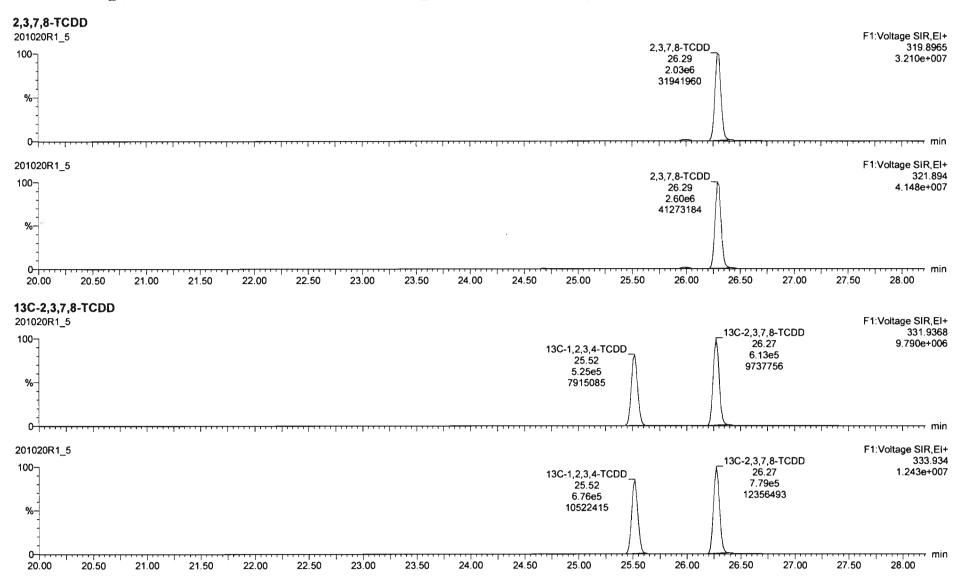
Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

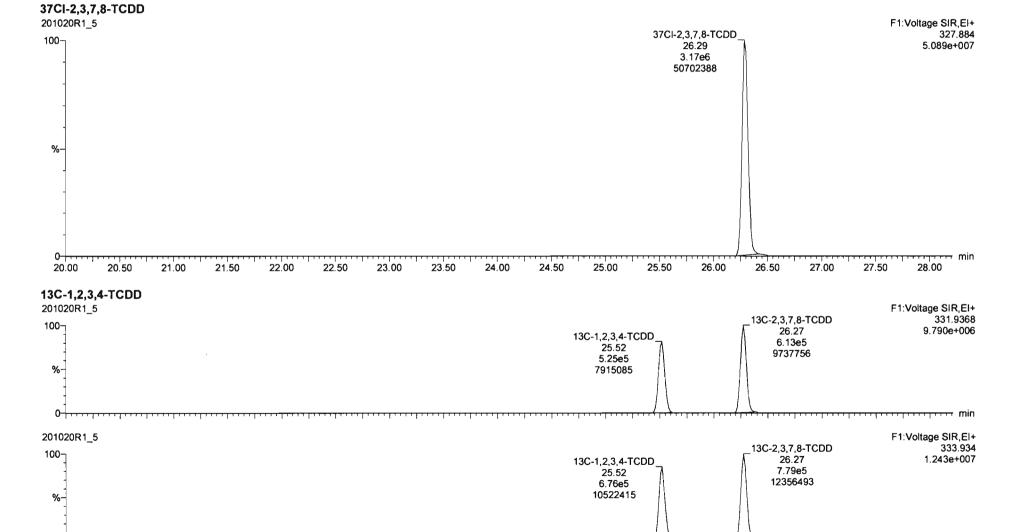
Turner gradings energy knowledge and have a large and the control of the control

26.00

26.50

27.00

Dataset:


Printed:

Untitled

Last Altered:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_5, Date: 20-Oct-2020, Time: 12:16:56, ID: ST201020R1_5 1613 CS5 20F1107, Description: 1613 CS5 20F1107

20.50

21.00

21.50

22.00

22.50

23.00

23.50

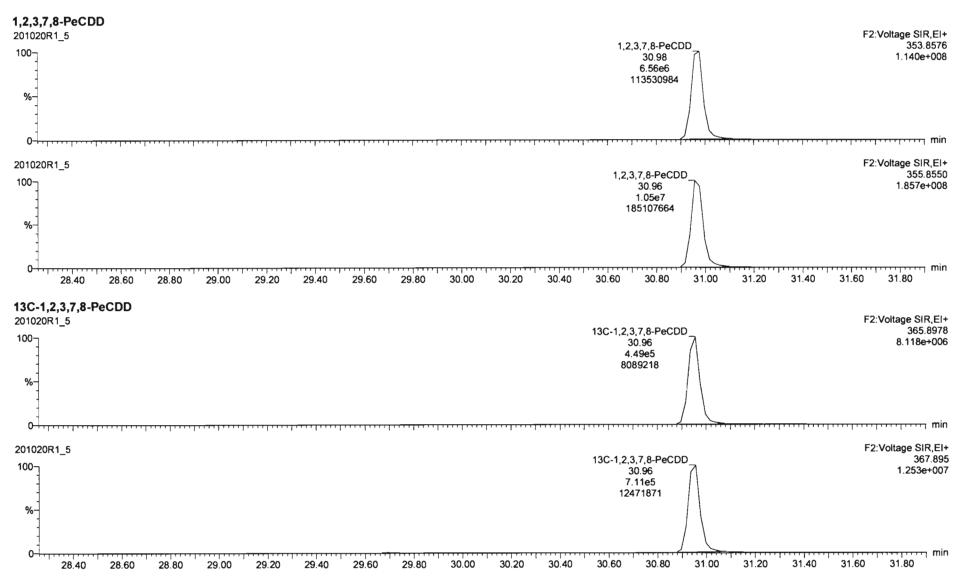
24.00

24.50

25.00

25.50

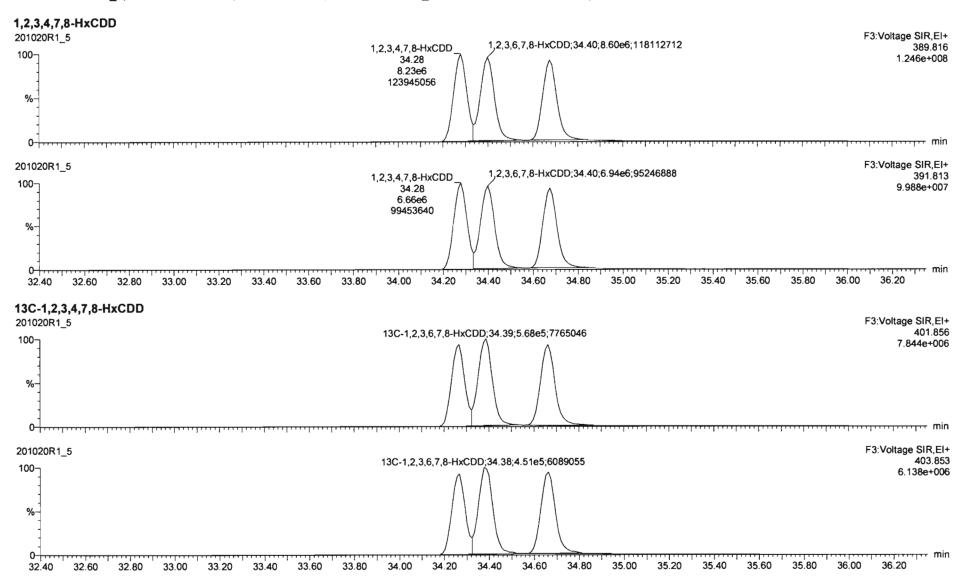
20.00

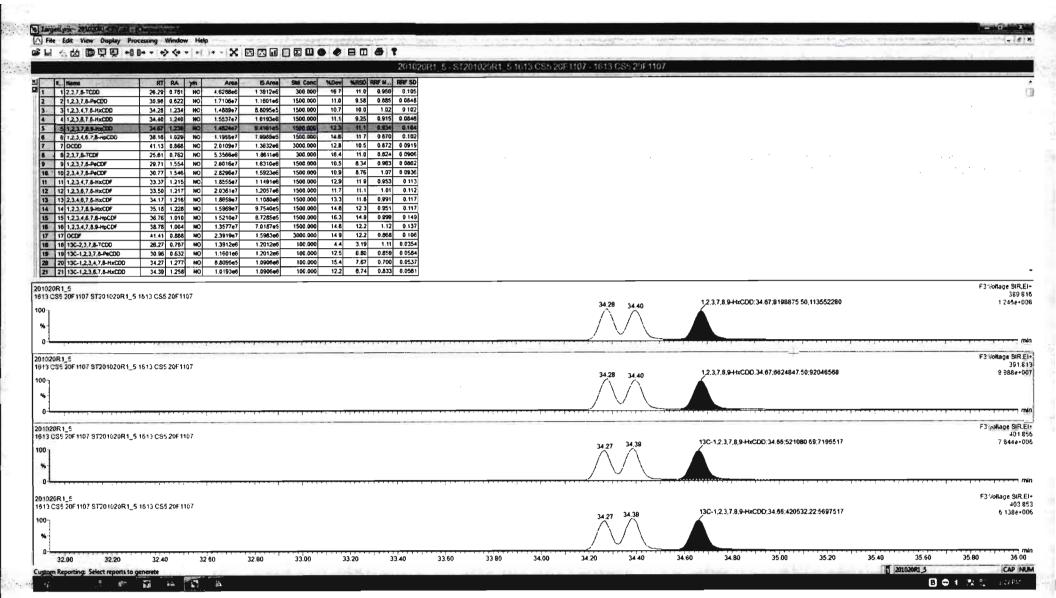

27.50

🕂 min

28.00

Untitled

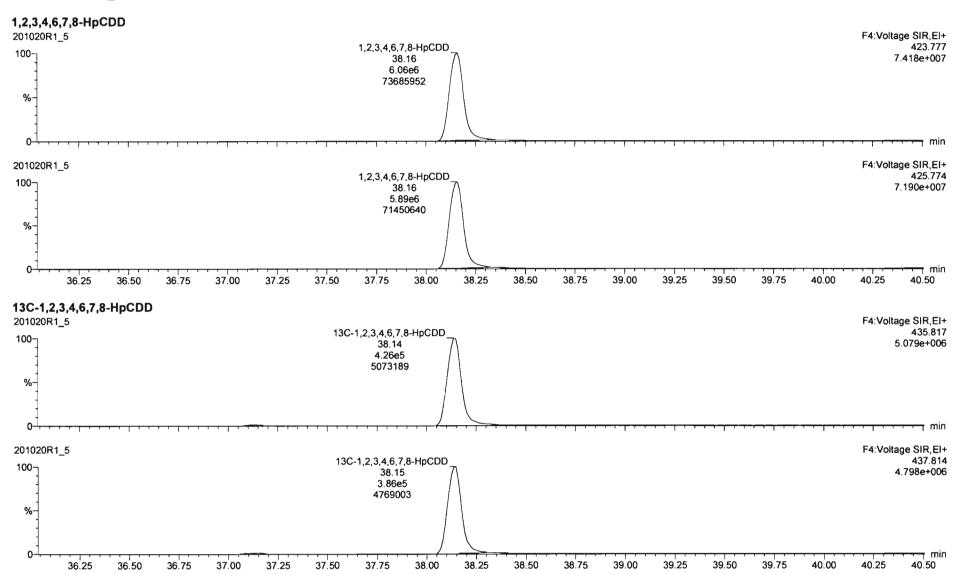

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

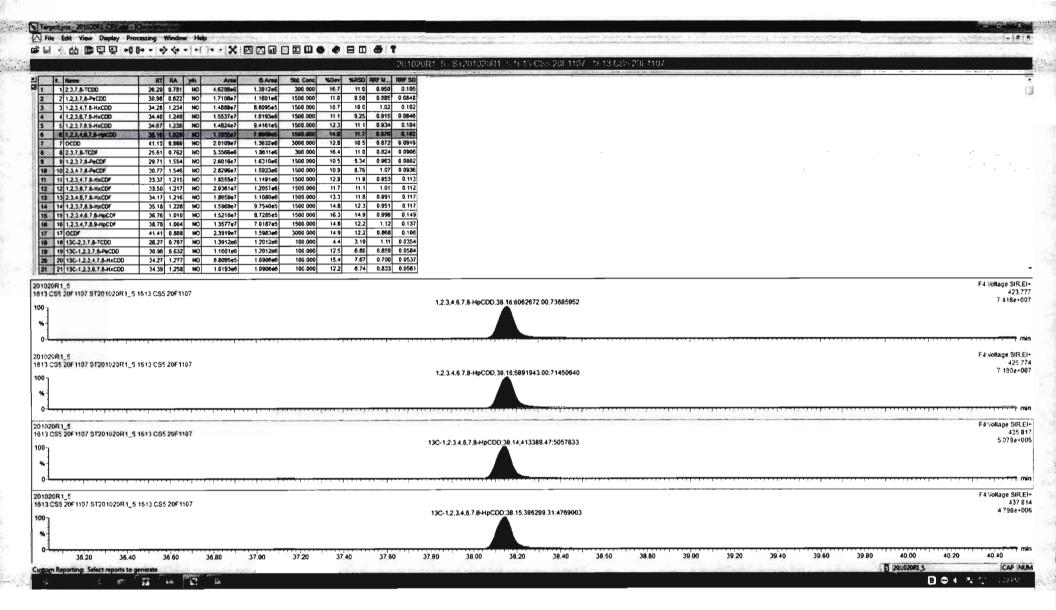


Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

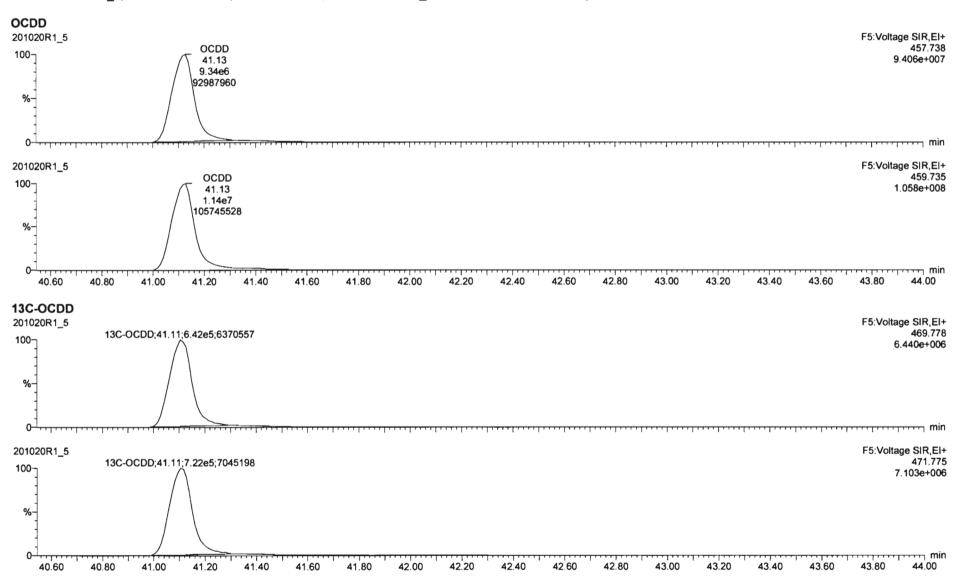


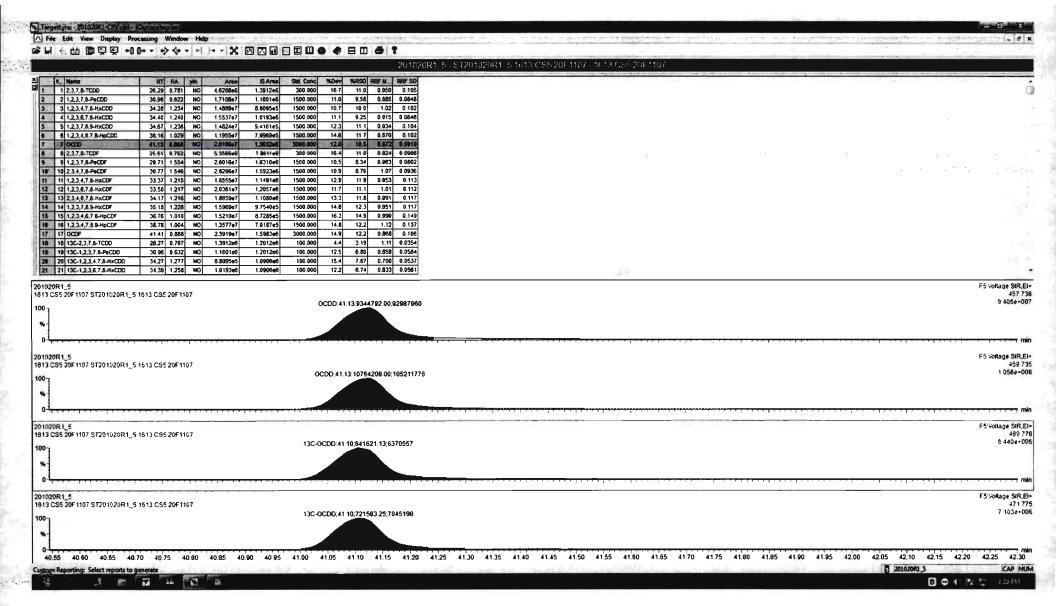

Work Order 2002358 Page 319 of 353

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

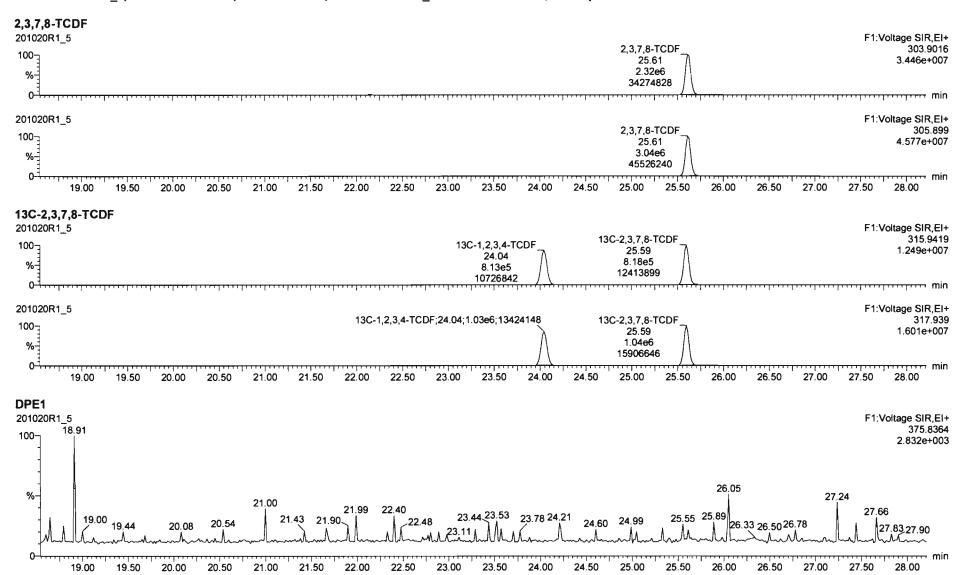



Work Order 2002358 Page 321 of 353

Untitled

Last Altered: Printed:

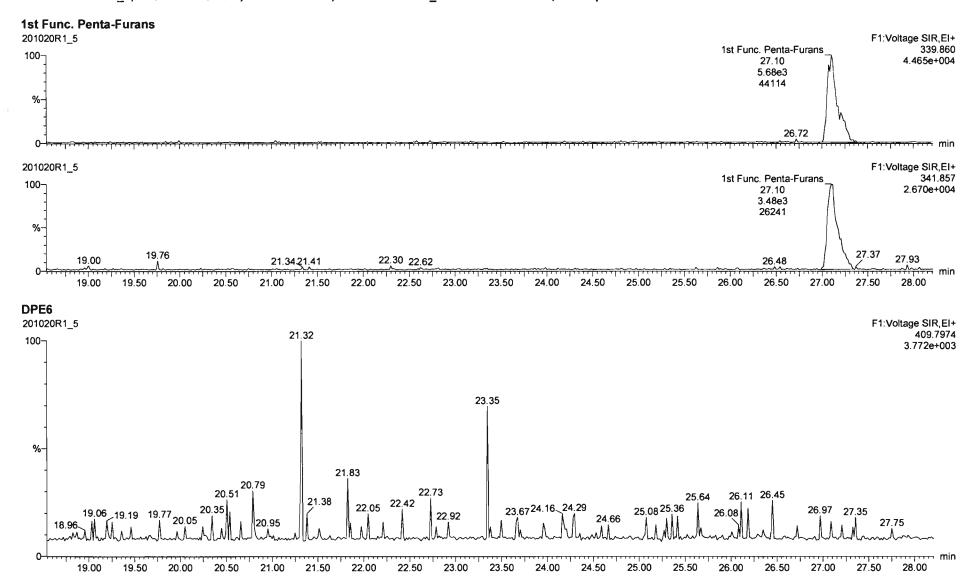
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time



Work Order 2002358 Page 323 of 353

Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

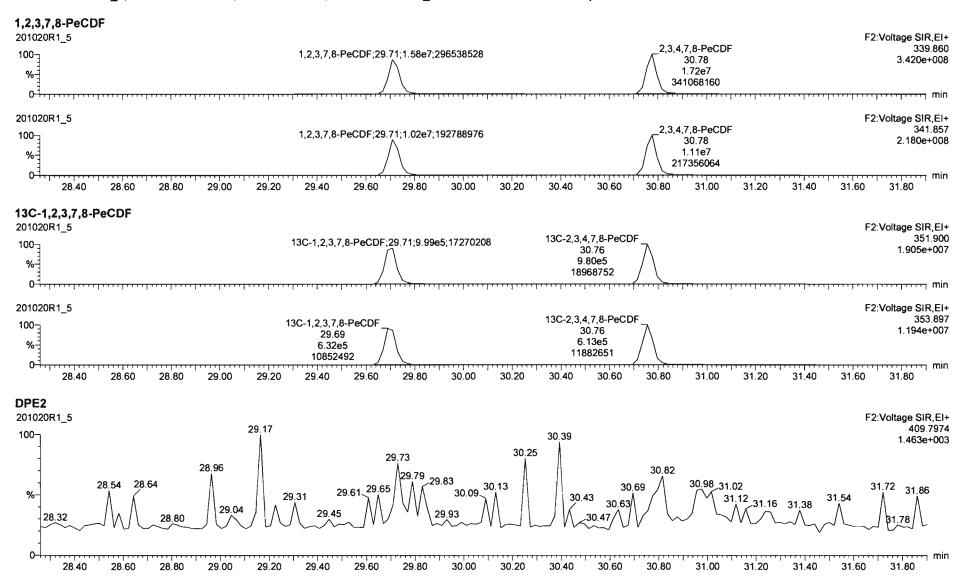


Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1 5, Date: 20-Oct-2020, Time: 12:16:56, ID: ST201020R1_5 1613 CS5 20F1107, Description: 1613 CS5 20F1107

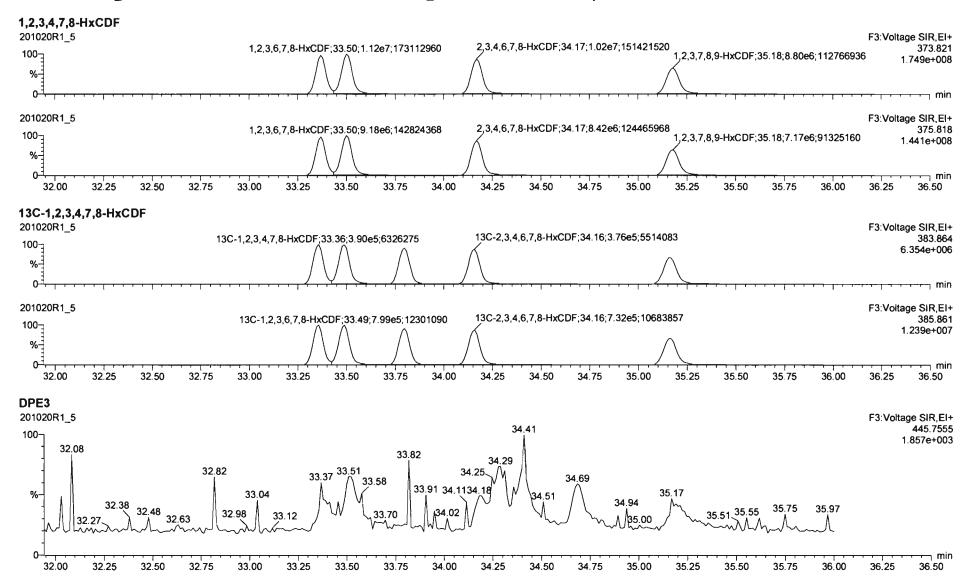

Control to Select the selection of a continue of the selection of the sele

Dataset:

Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_5, Date: 20-Oct-2020, Time: 12:16:56, ID: ST201020R1_5 1613 CS5 20F1107, Description: 1613 CS5 20F1107



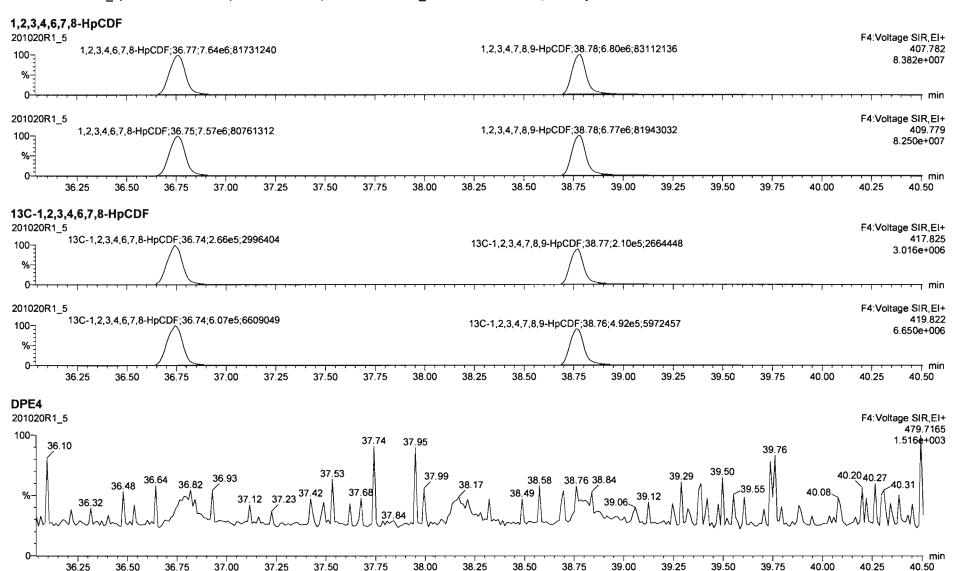
Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1_5, Date: 20-Oct-2020, Time: 12:16:56, ID: ST201020R1_5 1613 CS5 20F1107, Description: 1613 CS5 20F1107

Printed:


Untitled

Last Altered:

Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time

Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

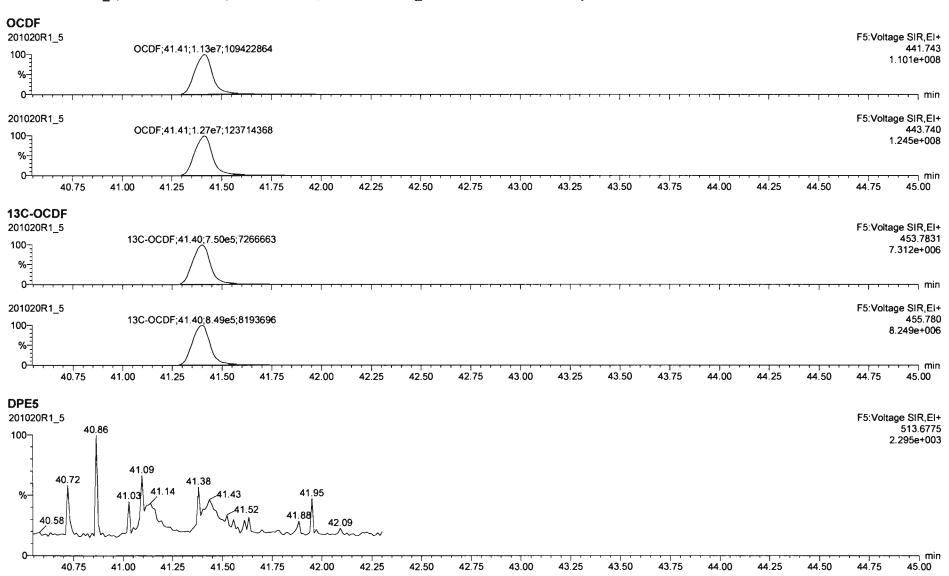
Name: 201020R1 5, Date: 20-Oct-2020, Time: 12:16:56, ID: ST201020R1 5 1613 CS5 20F1107, Description: 1613 CS5 20F1107

Quantify Sample Report

Vista Analytical Laboratory

Dataset:

Untitled


Last Altered: Printed:

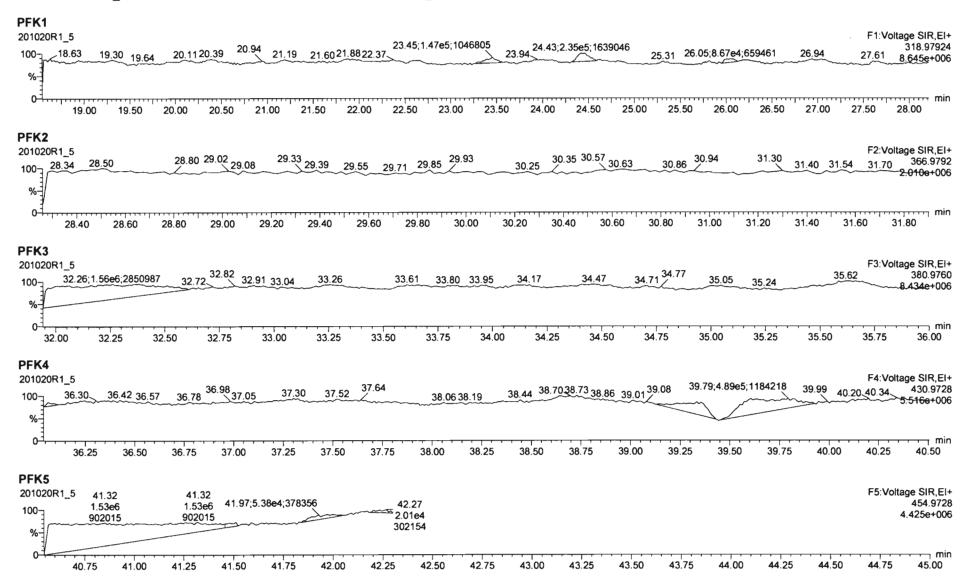
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time

MassLynx 4.1 SCN815

Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time

Name: 201020R1 5, Date: 20-Oct-2020, Time: 12:16:56, ID: ST201020R1_5 1613 CS5 20F1107, Description: 1613 CS5 20F1107

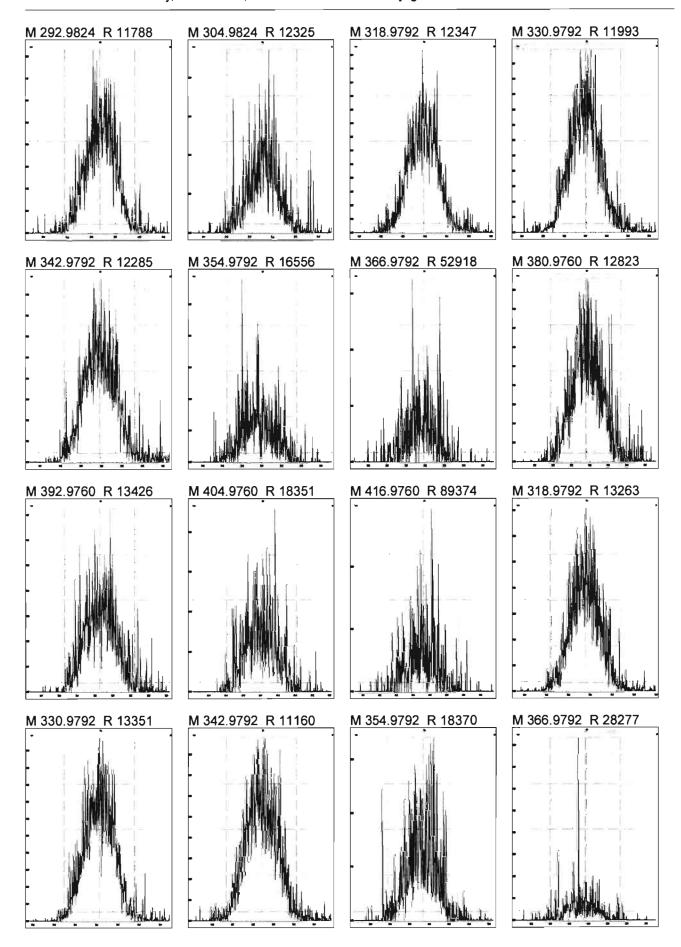
the state of the s


Dataset:

Untitled

Last Altered: Printed:

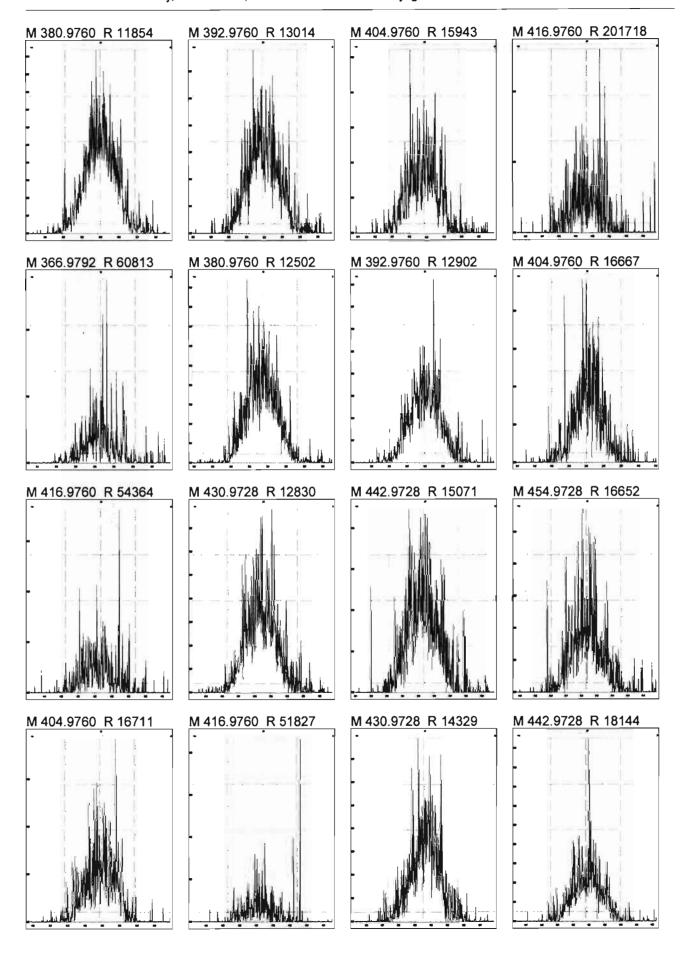
Tuesday, October 20, 2020 15:17:40 Pacific Daylight Time Tuesday, October 20, 2020 15:18:47 Pacific Daylight Time


Name: 201020R1_5, Date: 20-Oct-2020, Time: 12:16:56, ID: ST201020R1_5 1613 CS5 20F1107, Description: 1613 CS5 20F1107

Page 1 of 3

Printed:

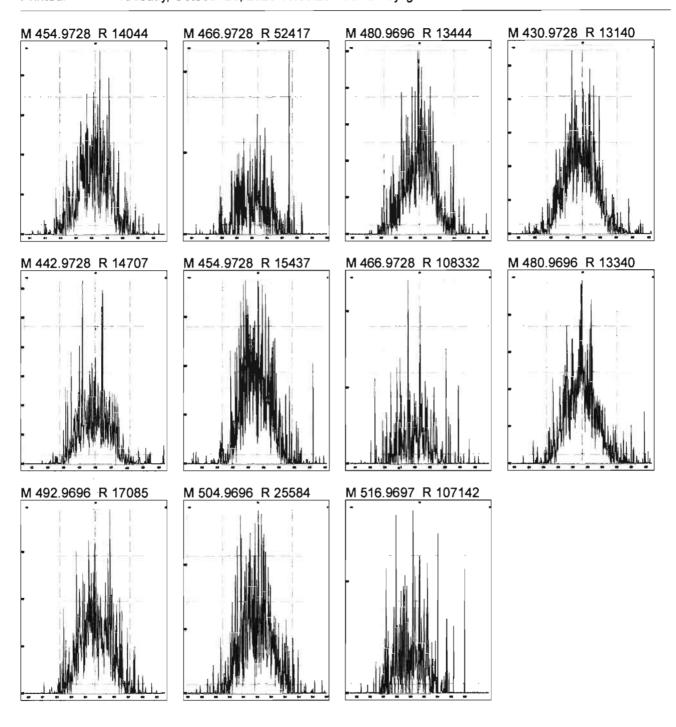
Tuesday, October 20, 2020 16:06:25 Pacific Daylight Time



Work Order 2002358 Page 331 of 353

Page 2 of 3

Printed:


Tuesday, October 20, 2020 16:06:25 Pacific Daylight Time

Work Order 2002358 Page 332 of 353

Printed:

Tuesday, October 20, 2020 16:06:25 Pacific Daylight Time

Work Order 2002358 Page 333 of 353

Page 1 of 2

Dataset:

U:\VG12.PR0\Results\201020R1\201020R1-8.qld

Last Altered: Printed:

Tuesday, October 20, 2020 15:15:37 Pacific Daylight Time Tuesday, October 20, 2020 15:16:22 Pacific Daylight Time

Tuesday, October 20, 2020 10.10.22 Tacino Dayiigiti Time

GRB 10/20/2020

Method: U:\VG12.PRO\MethDB\1613rrt-10-20-20.mdb 20 Oct 2020 10:47:39

Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN_1613vg12-10-20-20.cdb 20 Oct 2020 14:36:10

Name: 201020R1_8, Date: 20-Oct-2020, Time: 14:29:33, ID: SS201020R1_1 1613 SSS 20F1108, Description: 1613 SSS 20F1108

P P P P P P P P P P P P P P P P P P P	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	,STD out
1143	1 2,3,7,8-TCDD	1.37e5	1.40e6	0.74	NO	0.950	26.30	26.30	NO	1.001	1.001	10.363	1045	NO NO
2	2 1,2,3,7,8-PeCDD	4.97e5	1.07e6	0.62	NO	0.885	30.97	30.96	NO	1.000	1.000	52.349	105	NO
3	3 1,2,3,4,7,8-HxCDD	4.14e5	7.58e5	1.30	NO	1.02	34.31	34.29	NO	1.001	1.000	53.693	107	NO
4	4 1,2,3,6,7,8-HxCDD	4.51e5	8.90e5	1.21	NO	0.915	34.40	34.41	NO	1.000	1.001	55.421	111	NO
5	5 1,2,3,7,8,9-HxCDD	4.02e5	8.09e5	1.25	NO	0.934	34.67	34.69	NO	1.000	1.001	53.130	106	NO
6	6 1,2,3,4,6,7,8-HpCDD	3.08e5	6.75e5	1.02	NO	0.870	38.15	38.17	NO	1.000	1.001	52.362	105	NO
7	7 OCDD	5.24e5	1.11e6	0.87	NO	0.872	41.11	41.12	NO	1.000	1.000	108.80	109	NO
8	8 2,3,7,8-TCDF	1.63e5	1.90e6	0.75	NO	0.824	25.60	25.62	NO	1.000	1.001	10.438	104	NO
9	9 1,2,3,7,8-PeCDF	7.63e5	1.57e6	1.57	NO	0.963	29.70	29.71	NO	1.000	1.001	50.613	101	NO
10	10 2,3,4,7,8-PeCDF	8.90e5	1.52e6	1.58	NO	1.07	30.76	30.78	NO	1.000	1.001	54.945	110	NO
11	11 1,2,3,4,7,8-HxCDF	5.48e5	1.04e6	1.22	NO	0.953	33.36	33.38	NO	1.000	1.001	55.545	111	NO
12	12 1,2,3,6,7,8-HxCDF	6.04e5	1.08e6	1.22	NO	1.01	33.50	33.51	NO	1.000	1.000	55.330	111	NO
13	13 2,3,4,6,7,8-HxCDF	5.48e5	1.01e6	1.23	NO	0.991	34.16	34.18	NO	1.000	1.001	54.856	110	NO
14	14 1,2,3,7,8,9-HxCDF	4.44e5	8.60e5	1.23	NO	0.951	35.17	35.18	NO	1.000	1.000	54.262	109	NO
15	15 1,2,3,4,6,7,8-HpCDF	4.29e5	7.84e5	1.01	NO	0.999	36.76	36.77	NO	1.000	1.000	54.767	110	NO
16	16 1,2,3,4,7,8,9-HpCDF	3.47e5	6.01e5	1.01	NO	1.12	38.77	38.78	NO	1.000	1.000	51.464	103	NO
17	17 OCDF	6.03e5	1.28e6	88.0	NO	0.868	41.41	41.41	NO	1.000	1.000	108.21	108 🗸	NO
18	18 13C-2,3,7,8-TCDD	1.40e6	1.26e6	0.78	NO	1.11	26.27	26.27	NO	1.029	1.030	100.10	100	NO
19	19 13C-1,2,3,7,8-PeCDD	1.07e6	1.26e6	0.62	NO	0.859	30.91	30.96	NO	1.211	1.213	99.348	99.3	NO
20	20 13C-1,2,3,4,7,8-HxCDD	7.58e5	1.11e6	1.28	NO	0.700	34.26	34.28	NO	1.013	1.014	97.536	97.5	NO
21	21 13C-1,2,3,6,7,8-HxCDD	8.90e5	1.11e6	1.26	NO	0.833	34.39	34.39	NO	1.017	1.017	96.285	96.3	NO
22	22 13C-1,2,3,7,8,9-HxCDD	8.09e5	1.11e6	1.26	NO	0:762	34.66	34.66	NO	1.025	1.025	95.612	95.6	NO
23	23 13C-1,2,3,4,6,7,8-HpCDD	6.75e5	1.11e6	1.05	NO	0.650	38.10	38.15	NO	1.127	1.128	93.625	93.6	NO
24	24 13C-OCDD	1.11e6	1.1 1e6	0.89	NO	0.539	41.04	41.11	NO	1.214	1.216	184.54	92.3	NO
25	25 13C-2,3,7,8-TCDF	1.90e6	1.96e6	0.78	NO	0.981	25.60	25.59	NO	1.003	1.003	98.983	99.0	NO
26	26 13C-1,2,3,7,8-PeCDF	1.57e6	1.96e6	1.60	NO	0.792	29.66	29.69	NO	1.162	1.163	101.15	101	NO
27	27 13C-2,3,4,7,8-PeCDF	1.52e6	1.96e6	1.59	NO	0.778	30.72	30.76	NO	1.204	1.205	99.698	99.7	NO
28	28 13C-1,2,3,4,7,8-HxCDF	1.04e6	1.11e6	0.50	NO	0.954	33.36	33.36	NO	0.987	0.987	97.788	97.8	NO
29	29 13C-1,2,3,6,7,8-HxCDF	1.08e6	1.11e6	0.50	NO	1.01	33.50	3 3.50	NO	0.991	0.991	96.967	97.0	NO
30	30 13C-2,3,4,6,7,8-HxCDF	1.01e6	1.11e6	0.52	NO	0.921	34.16	34.16	NO	1.010	1.010	98.529	98.5	NO
31	31 13C-1,2,3,7,8,9-HxCDF	8.60e5	1.11e6	0.51	NO	0.803	35.16	3 5.17	NO	1.040	1.040	96.452	96.5	NO

Work Order 2002358 Page 334 of 353

MassLynx 4.1 SCN815

Page 2 of 2

Dataset:

U:\VG12.PRO\Results\201020R1\201020R1-8.qld

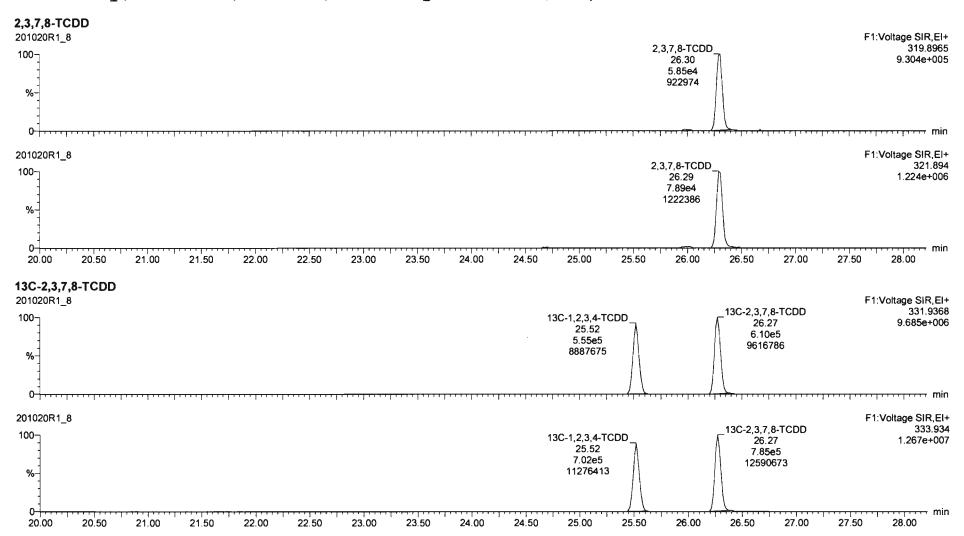
Last Altered: Printed:

Tuesday, October 20, 2020 15:15:37 Pacific Daylight Time Tuesday, October 20, 2020 15:16:22 Pacific Daylight Time

Name: 201020R1_8, Date: 20-Oct-2020, Time: 14:29:33, ID: SS201020R1_1 1613 SSS 20F1108, Description: 1613 SSS 20F1108

In charles	# Name	Resp	IS Resp	RA	n/y	RRF	Pred.RT	RT	RT Flag	Pred.RRT	RRT	Conc.	%Rec	STD out
32	32 13C-1,2,3,4,6,7,8-HpCDF	7.84e5	1.11e6	0.44	NO	0.735	36.72	36.75	NO	1.086	1.087	96.055	96.1	NO
33	33 13C-1,2,3,4,7,8,9-HpCDF	6.01e5	1.11 e 6	0.42	NO	0.568	38.71	38.77	NO	1.145	1.147	95.309	95.3	NO
34	34 13C-OCDF	1.28e6	1.11 e 6	0.89	NO	0.629	41.33	41.40	NO	1.222	1.225	183.63	91.8	NO
35	35 37CI-2,3,7,8-TCDD	1.45e5	1.26e6			1.09	26.29	26.29	NO	1.030	1.030	10.596	106	NO
36	36 13C-1,2,3,4-TCDD	1.26e6	1.26e6	0.79	NO	1.00	25.59	25.52	NO	1.000	1.000	100.00	100	NO
37	37 13C-1,2,3,4-TCDF	1.96e6	1.96e6	0.80	NO	1.00	24.13	24.06	NO	1.000	1.000	100.00	100	NO
38	38 13C-1,2,3,4,6,9-HxCDF	1.11e6	1.11e6	0.51	NO	1.00	33.84	33.81	NO	1.000	1.000	100.00	100	YESOK

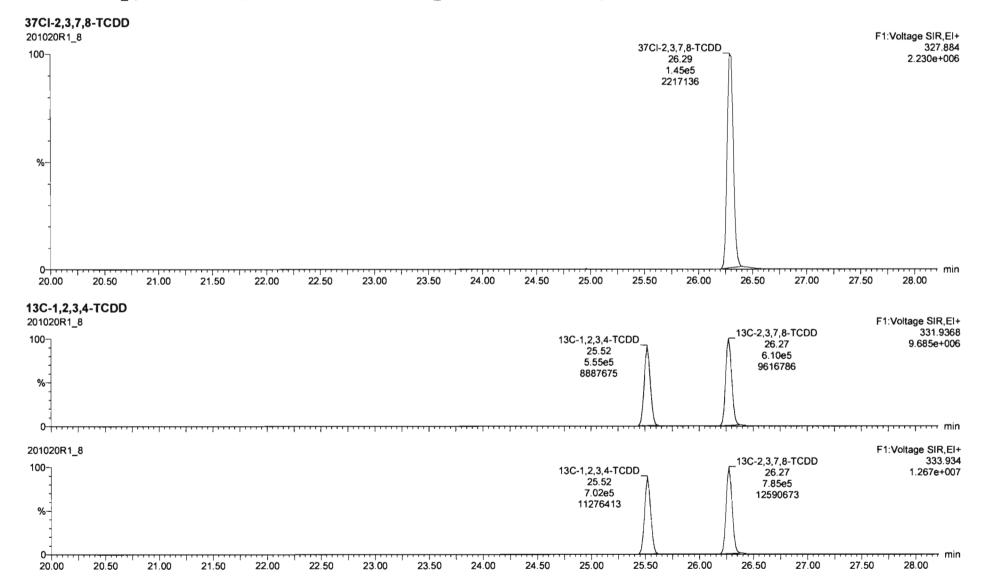
Work Order 2002358 Page 335 of 353


Untitled

Last Altered: Printed:

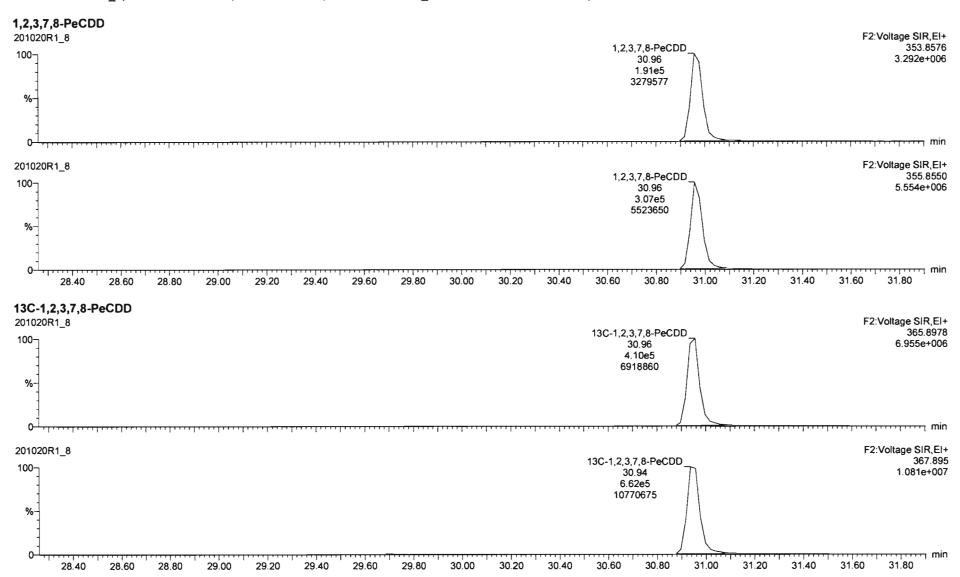
Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

Method: U:\VG12.PRO\MethDB\1613rrt-10-20-20.mdb 20 Oct 2020 10:47:39


Calibration: U:\VG12.PRO\CurveDB\dbDIOXIN 1613vg12-10-20-20.cdb 20 Oct 2020 14:36:10

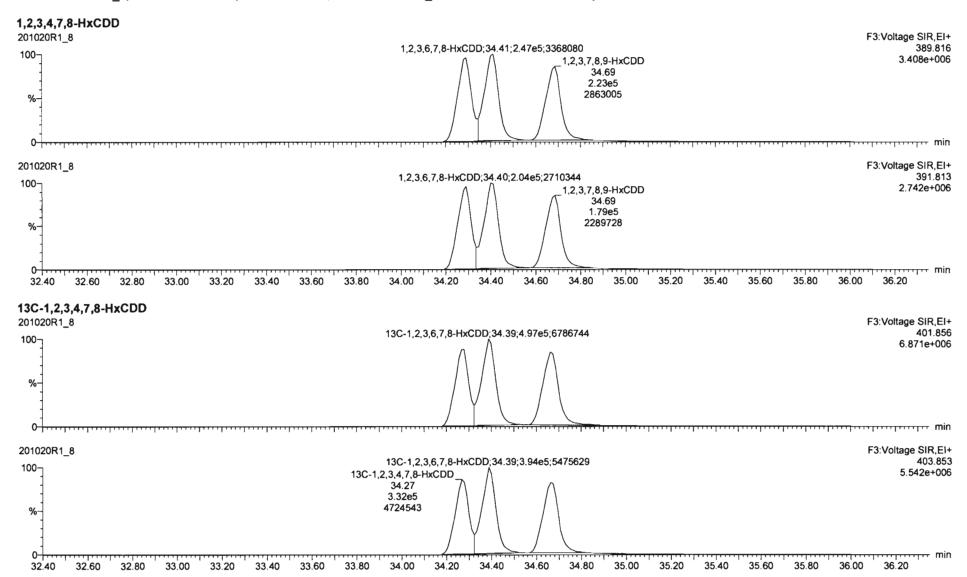
Untitled

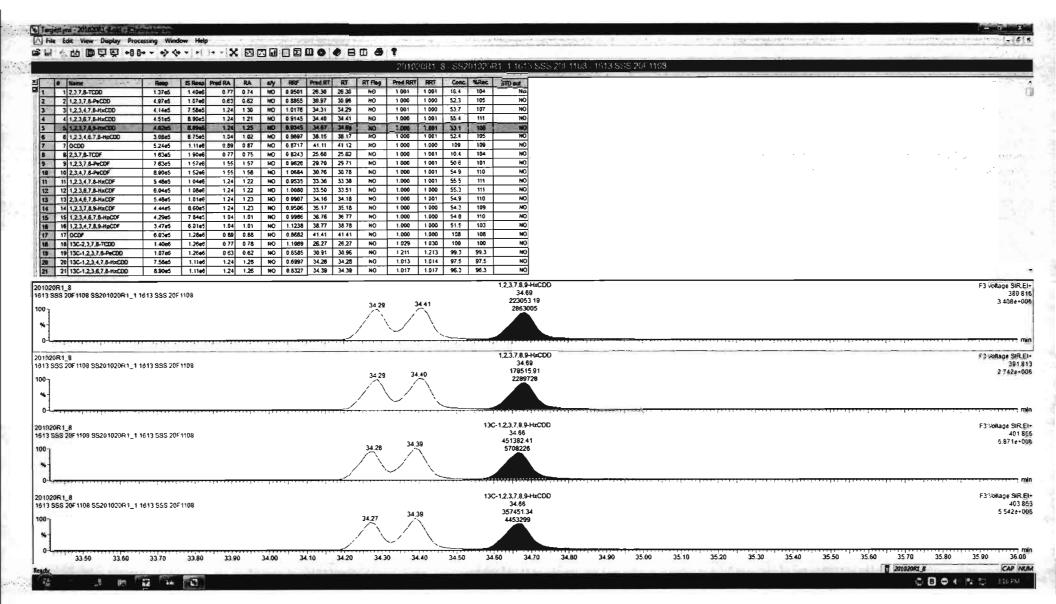
Last Altered: Printed:


Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

Untitled

Last Altered: Printed:


Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

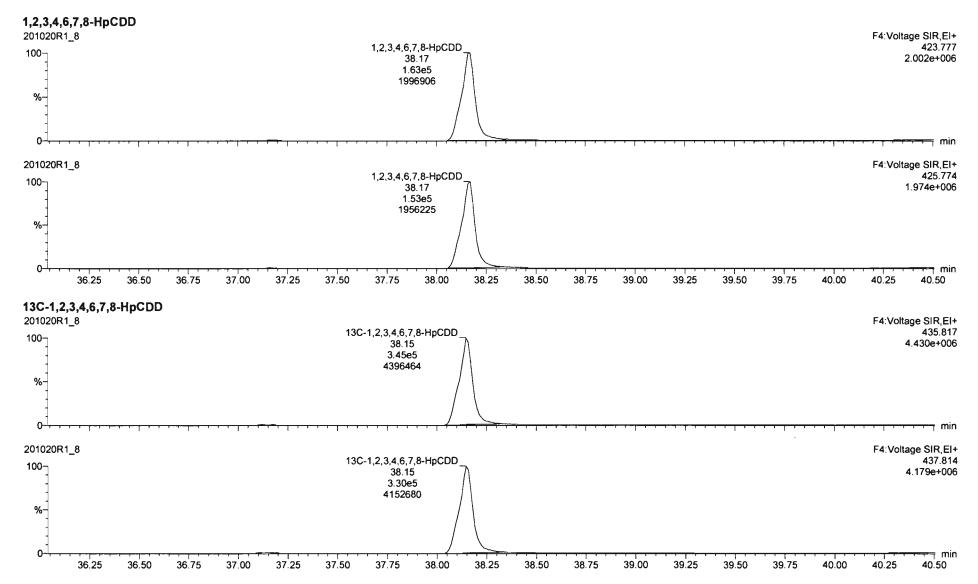


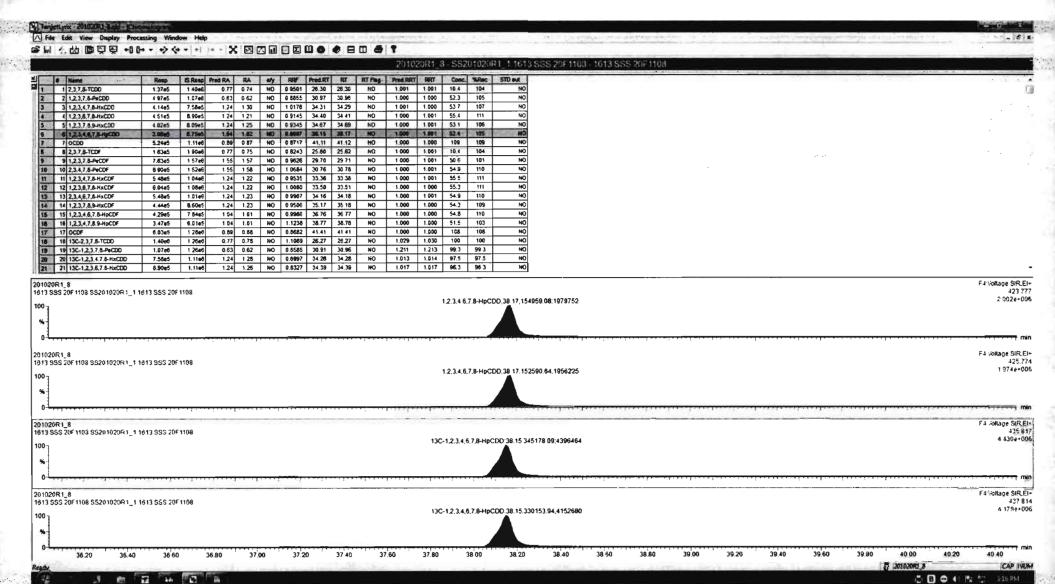
Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

Work Order 2002358 Page 340 of 353

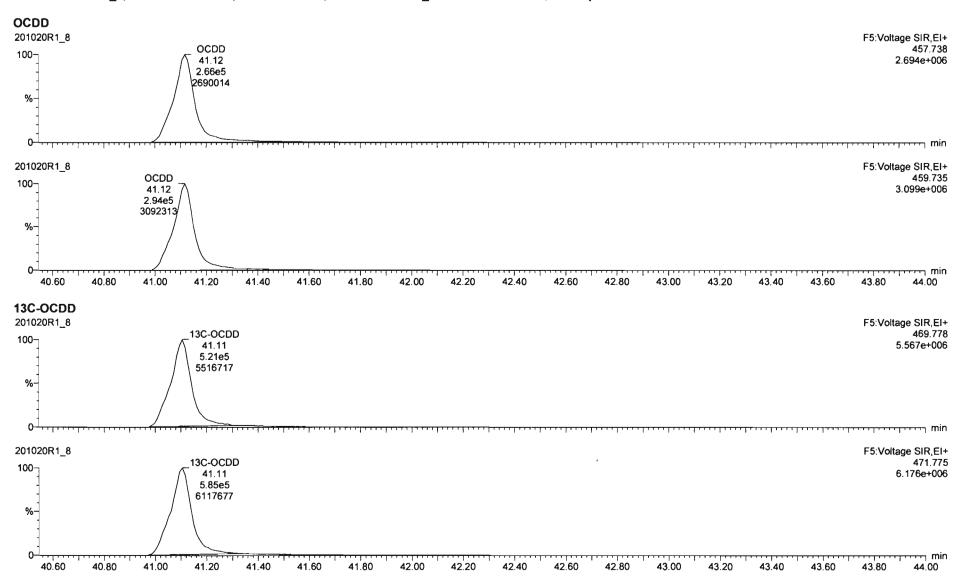

Page 5 of 13

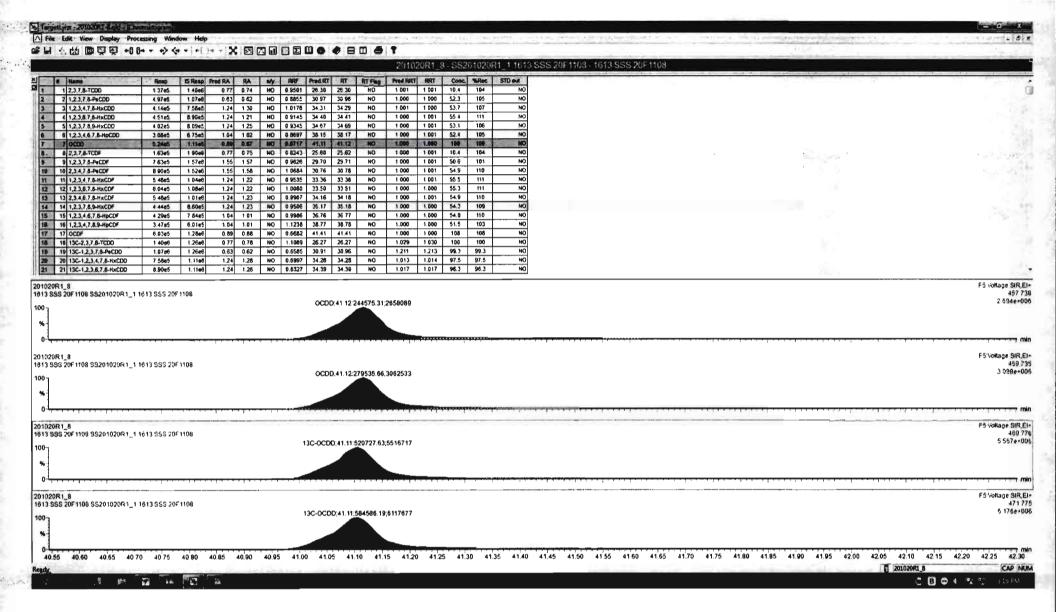

Dataset:

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

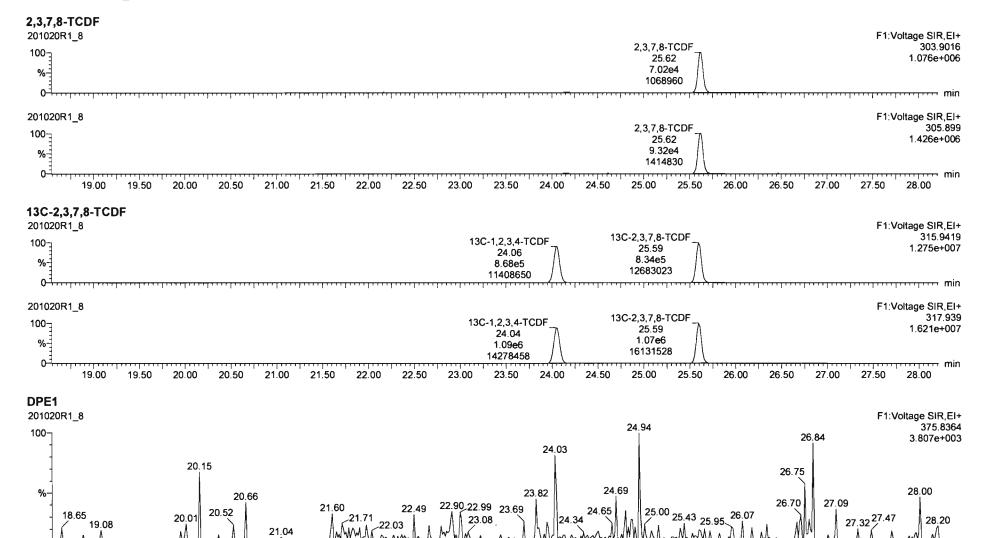



Work Order 2002358 Page 342 of 353

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time



Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

Name: 201020R1_8, Date: 20-Oct-2020, Time: 14:29:33, ID: SS201020R1_1 1613 SSS 20F1108, Description: 1613 SSS 20F1108

19.00

19.50

20.00

20.50

21.00

21.50

22.50

22.00

23.00

23.50

24.00

24.50

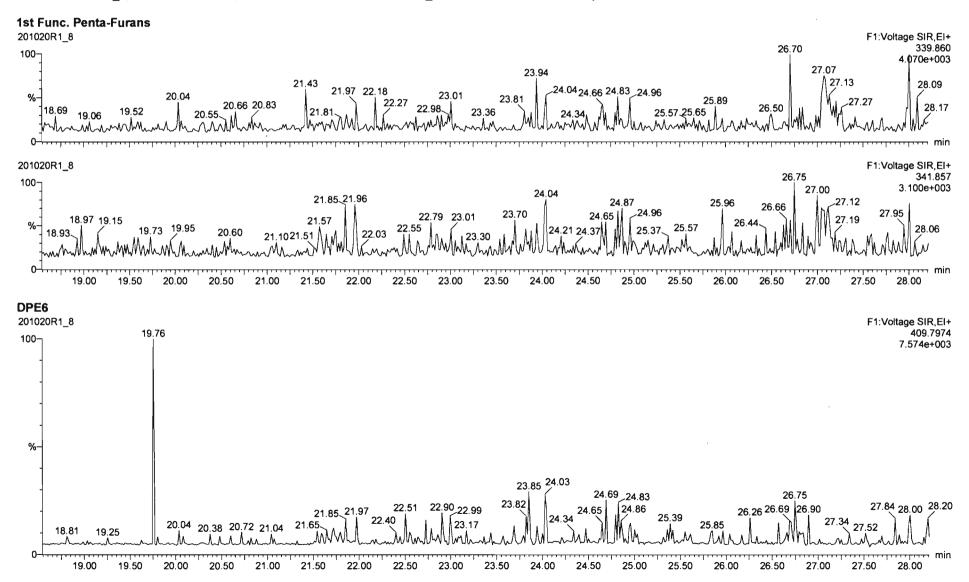
25.00

25.50

26.00

26.50

27.00

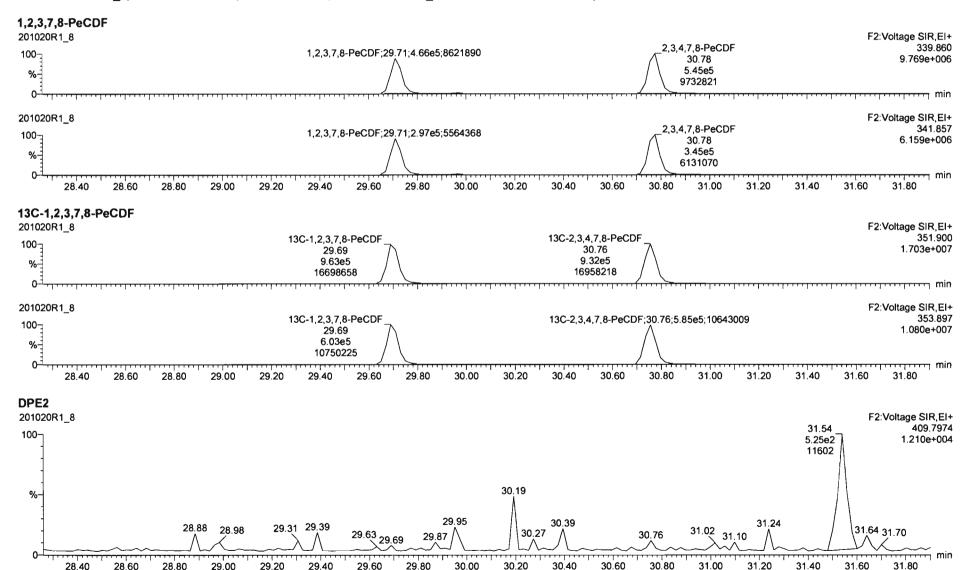

28.00

27.50

Untitled

Last Altered: Printed:

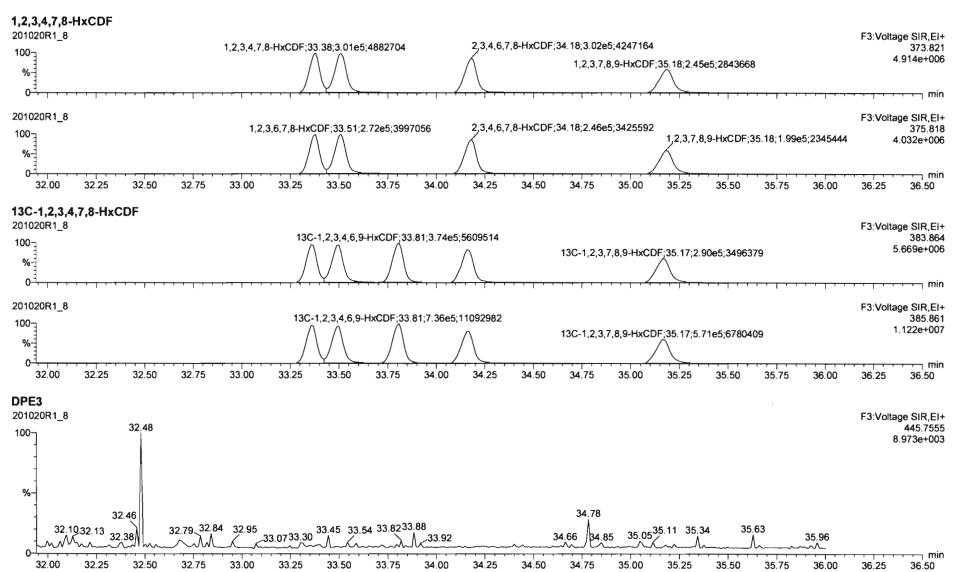
Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time



Untitled

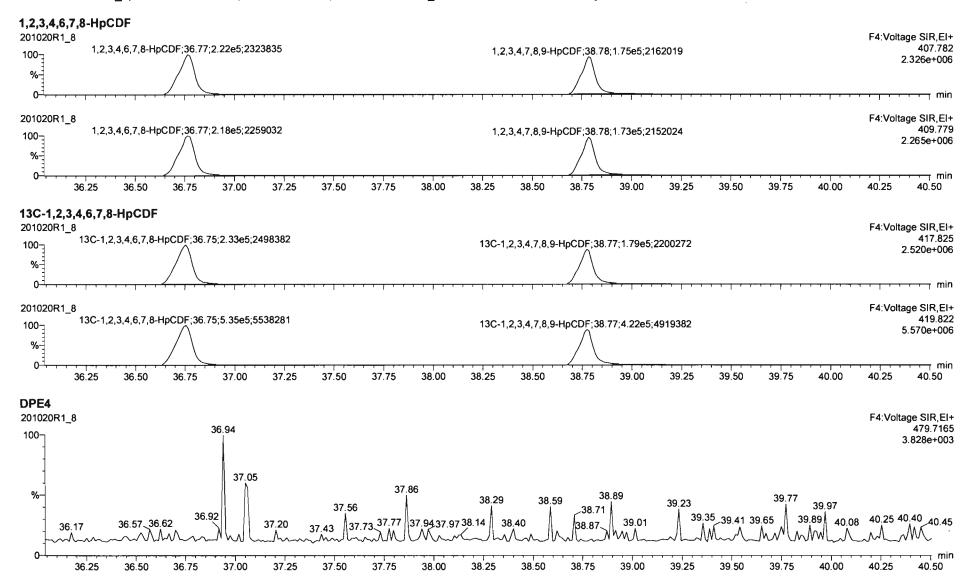
Last Altered:

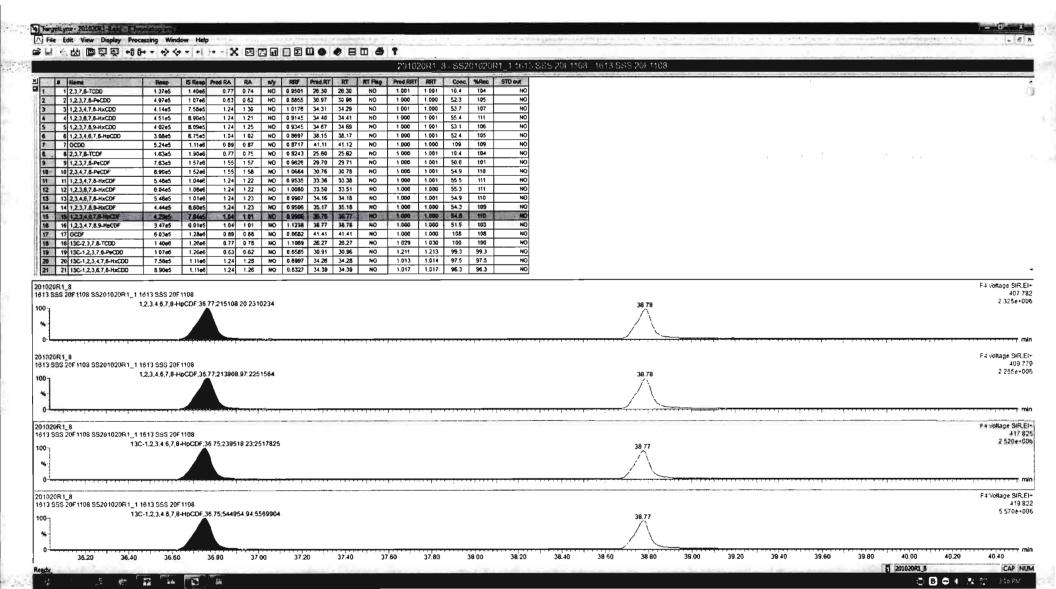
Printed:


Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

Untitled

Last Altered: Printed:

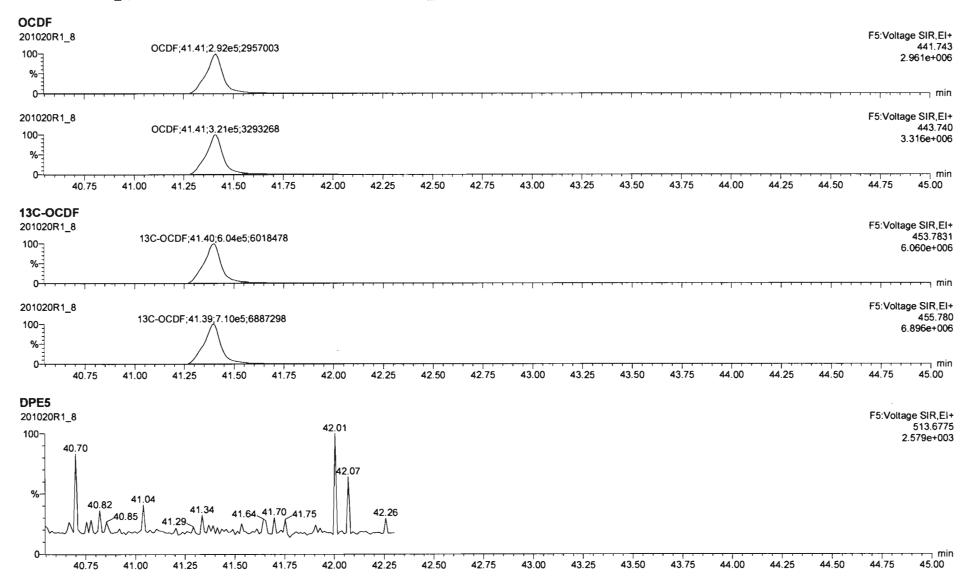

Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

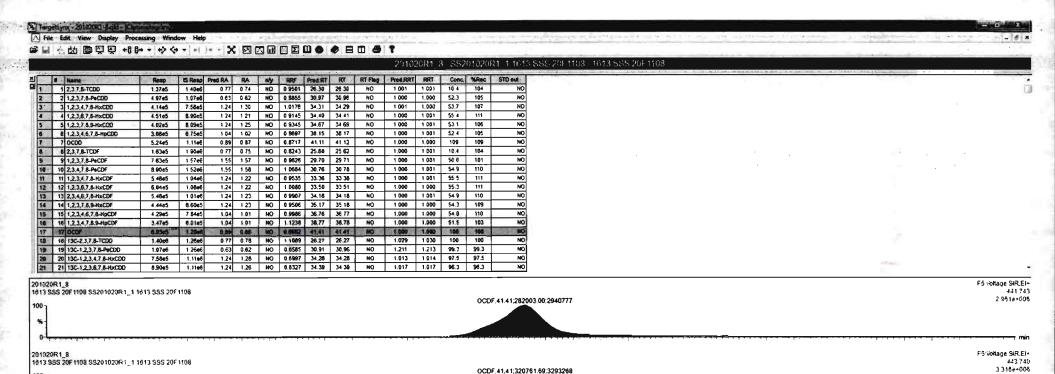


Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time





Work Order 2002358 Page 350 of 353

Untitled

Last Altered: Printed: Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

13C-OCDF,41.40;603505.31;6018478

13C-OCDF,41 39;679607.56;6844626

40.60 40.65 40.70 40.75 40.80 40.85 40.90 40.95 41.80 41.85 41.90 41.95 42.00

201020R1 8

20102081-8

%

100

1613 95S 20F 1108 SS201020R1_1 1613 SSS 20F 1108

1813 SSS 20F1108 SS201020R1_1 1813 SSS 20F1108

-

72 to 75

Custom Reporting: Select reports to generate

F5 Vollage SIR,EI+

F5 Wollage SIR El+

42.05 42.10 42.15 42.20 42.25 42.30

□B• 4 5 77

1 201020R1 8

453 7831

455.780 6.896e+808

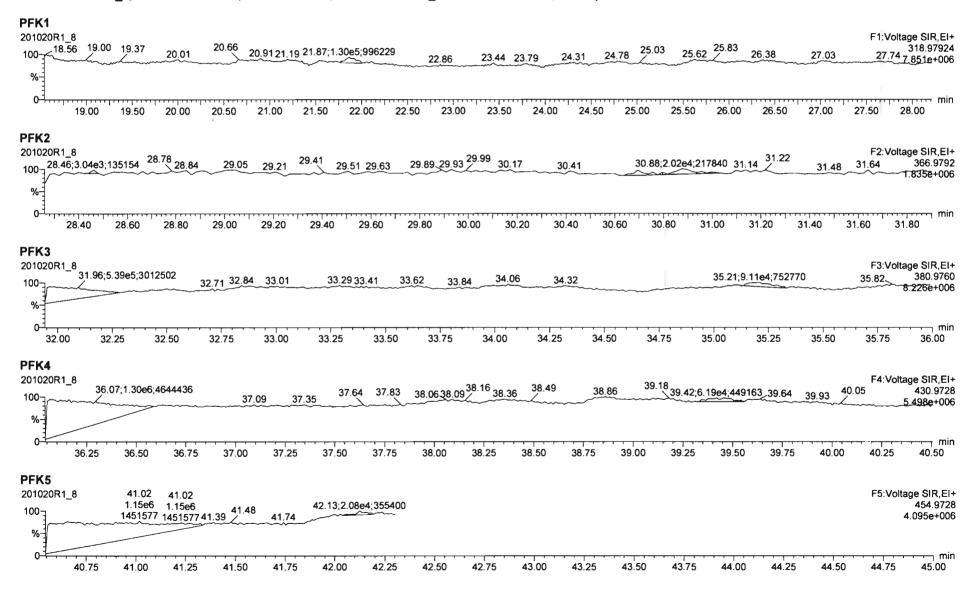
CAP NUM

6 060++006

Work Order 2002358 Page 352 of 353

E-chine II

Quantify Sample Report Vista Analytical Laboratory


Dataset:

Untitled

Last Altered: Printed:

Tuesday, October 20, 2020 15:17:24 Pacific Daylight Time Tuesday, October 20, 2020 15:17:27 Pacific Daylight Time

Name: 201020R1_8, Date: 20-Oct-2020, Time: 14:29:33, ID: SS201020R1_1 1613 SSS 20F1108, Description: 1613 SSS 20F1108

Company of the second of the s