cost structure of the telecommunications network." In the Matter of the Pricing Proceeding for Interconnection, Unbundled Elements, Transport and Termination, and Resale, Docket Nos. UT-960369 et al., Eighth Supplemental Order, at 5 (Aug. 30, 1999). Staff recommends the Commission adopt the port charges that include a flat-rated usage charge. In addition, as can be seen from the rate spread between zones, there are material differences in costs between zones. Therefore, I also propose that the combined port and switching rate element be deaveraged into five zones. The supporting calculations are found in file Vz_calcs_rev.xls under tab "port_sw_cost" in the staff workpapers CD-ROM.

Q. What rates do you propose for the NID?

A. The monthly rate for the NID is $\$.40$ for Verizon. The supporting calculations are found in file Vz_calcs_rev.xls under tab "NID" in the staff workpapers CD-ROM.

Q. Is Staff also propesing additional wirecenter deaveraging?

A. Yes, Staff is proposing that certain wirecenters exhibiting a strong core-fringe eost relationship be further deaveraged into a core and fringe zone scheme rather than the entire wirecenter being assigned to a single zone. The genesis for this

Exhibit T- \qquad (TLS 6T)

Docket No. UT-023003
proposal is a Petition that was filed with the WUTC by Fairpoint Communications on September 4, 2001 (UT-011220-P) petitioning the Commission to change the zone classifications for certain wirecenters. The petition identified nine-Qwest wirecenters that were characterized as large, exceeding 100 square miles, with dense urban cores having sufficient access lines to qualify for inclusion in a less costly density zone. The wirecenters identified in the petition are Aberdeen, Bellingham, Lacey, Moses Lake, Olympia, Pasee, Port Angeles, Walla Walla, and Yakima. While the petition was withdrawn shortly after it was filed and Fairpoint has since ceased doing business in Washington, the issue raised in the petition is important for competition in Washington and the Commission should consider it in this proceeding.

Q. What was the issue raised by Fairpoint's petition?

A. CLECs that operate in areas outside the high-density Seattle-Tacoma
metropolitan area pay higher umbundled loop rates because the wirecenters are elassified in higher cost density zones. There are a number of wirecenters serving mid-size cities like Olympia, Paseo, and Port Angeles where the population size and density are such that loop costs should be low enough to allow the CLEC to compete in the city. However, the service area of the

SUPPLEMENTAL DRIECT TESTIMONY
OF THOMAS SPINKS
Docket No. UT-023003
Page 18

Exhibit T- \qquad
Revised April 2, 2004
Second Revised April 20, 2004
wirecenters serving these cities also serves a large rural area such that the average loop cost in the wirecenter results in a zone 4 or 5 classification, which are the two highest cost zones in the state. This makes it uneconomic for the ELEC to operate in the lower cost, denser areas in the cities. Staff is concerned with the inability of CLECs to compete in areas where population size and density should allow them to operate economically because meaningful competition will not oceur in these areas of the state where market entry is justified econemically. In order to address this coneern, Staff is propeses that eertain wirecenters be disaggregated into core and fringe zones.

Q. How do you propose the Commission determine the core and fringe zone

 beundaries?A. The Commission should determine the core area as the area defined by the city limits of the city contained in the wirecenter and the fringe area as the area eutside the city limits but within the wirecenter serving area.
Q. How did you separate wirecenter costs into the core and fringe zones?
A. The HAI model produce cost ouput disaggregated to the cluster level. The eluster data represent serving areas for groups of eustomer locations, and the

SUPPLEMENTAL DRIECT TESTIMONY
OF THOMAS SPINKS
Docket No. UT-023003
Page 19

Exhibit T- \qquad
Revised April 2, 2004
Second Revised April 20, 2004
elusters are identified by the census block groups (CBGs) in which they are located. The loop cost outputs by clusters are first identified from the HAI 5.2()$^{+}$ model workfile. The cluster loop cost data are then separated between clusters entained inside, outside, and spanning the city limits, then reagoregated to develop loop costs for serving within the city limits versus outside the city limits. The core and fringe area costs were then determine for Qwest and Verizon wirecenters, and Staff selected wirecenters that exhibited a strong difference between core and fringe area costs for disaggregation. For Qwest, 15 wireeenters eovering 13 cities qualified for inclusion while Verizon had none. The Qwest wirecenters that qualified for further deaveraging were placed into the appropriate zones by separately induding the core and fringe costs and lines in the staff's zone optimizer program. Further testimeny on the core-fringe deaveraging proposal will be provided on February 7, 2004.

Q. How did you identify the location of the loop cost cluster data relative to the eity limits?

[^0]SUPPLEMENTAL DRIECT TESTIMONY
OF THOMAS SPINKS
Docket No. UT-023003
Page 20

Exhibit T- \qquad
Revised April 2, 2004
Second Revised April 20, 2004
A. Staff used the ArcView 3.2a-GIS software program along with Bureau of Census data for census block groups (CBGs) and Washington State Department of Transportation data on city boundaries and roads to accurately locate city limits, eensus block groups and cluster data relative to one another. The CBG data layer is overlaid with the city boundary data layer to identify CBGs relative to the city limits. The eluster data centroids and cluster areas are projected and overlaid on the city and CBG data to determine whether they are correctly located and to visually determine whether clusters are contained whelly or partially within city limits. The software, files and data used for the analysis are provided on the Staff Workpapers CD-ROM. Maps showing the city limits, CBGs and cluster eentroids for the selected wirecenters are shown in the file "MAPS.pdf" in the Staff workpapers.

Q. Were any of the cluster data you examined found to be incorrectly located?

A. Yes. Each data cluster position is located by its bearing and distance from the wirecenter. After determining the necessary adjustments to properly project the elusters, the location of the cluster centroid was checked to see if it was located in the CBG it is assigned to. For each wirecenter where core fringe deaveraging is being proposed, I checked the cluster locations to see if they were located within

SUPPLEMENTAL DRIECT TESTIMONY
OF THOMAS SPINKS
Docket No. UT-023003
Page 21

Exhibit T- \qquad
Revised April 2, 2004
Second Revised April 20, 2004
its assigned CBG. I found two kinds of location errors associated with data clusters that were not correctly located. The first is rotation error. Retation errors are noted when a cluster is not correctly located but it can be moved to its proper location by changing only the bearing angle. This type of errer does net eause any change in cost if it is corrected. The second type of error occurs when the cluster cannet be properly located unless the radial distance between the wirecenter and the cluster is changed. If the radial distance of a cluster needs to be changed to properly locate the eluster, the cost of the cluster will also be higher or lower depending on whether the correct radial distance is closer or farther from the wirecenter. With the exception of the Aberdeen wirecenter, there were very few errors in the elusters involving changes to radial distance. The Aberdeen wirecenter had 16 clusters that were incorrectly located such that the radial distance had to be adjusted. In order to correct the radial distance measurement, I used the software program measuring tool to measure the eorrect distance between the wirecenter and the CBG associated with the cluster. The cluster data base file was then updated with the revised radial distances to ealculate corrected cost estimates.

Exhibit T- \qquad

Docket No. UT-023003

Revised April 2, 2004
Second Revised April 20, 2004

3
Q. Do you have any further testimony at this time?
A. No.

Exhibit T(TLS 6T)

[^0]: ${ }^{1}$ The HAI 5.3 does not include an updated cluster module for determining cluster loop costs so cluster investment values were calculated using HAI 5.2 cluster module. The calculations are shown in Exhibit TLS-3, the Staff Workpapers.

