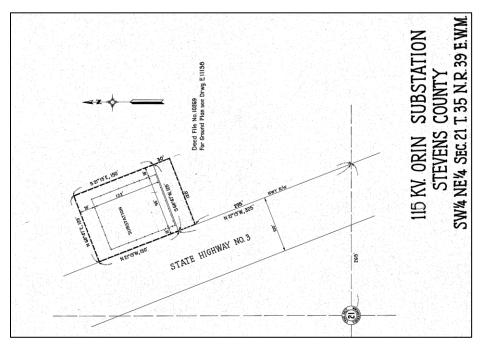
BEFORE THE WASHINGTON UTILITIES AND TRANSPORTATION COMMISSION

DOCKET UE-240006 DOCKET UG-240007

EXH. JDD-7


JOSHUA D. DILUCIANO

REPRESENTING AVISTA CORPORATION

Orin Capacity Mitigation Project

By: Distribution System Planning

Existing Orin footprint and proximity to Hwy 395

System Planning Avista Utilities PO Box 3727, MSC-16 Spokane, WA 99220 DistributionPlanning@avistacorp.com

Version	Date	Description	Author	Review
А	11/6/23	Draft for review	A Blackstock	J Gross
0	6/19/24	Released	A Blackstock	J Gross

Table of Contents

1.	Project	Overview	. 4
	1.1. Pro	blem Statement	. 5
	1.1.1.	Risks	11
	1.1.2.	Need by Date	12
	1.1.3.	Technical Prioritization	12
	1.2. Pro	ject Scope and Requirements	12
	1.2.1.	System Modifications	12
	1.2.1	.1. New Station Design	12
	1.2.1	.2. Distribution Integration Design	14
	1.2.1	.3. Transmission Integration Design	14
	1.2.1	.4. Protection Requirements	14
	1.2.1	.5. Communication Requirements	15
	1.2.1	.6. Metering Requirements	15
	1.3. Pro	ject Execution	15
	1.3.1.	Construction Schedule	15
	1.3.2.	Cost Estimate	16
	1.3.3.	Long-Lead Time Equipment	16
	1.4. Cor	ntingent Facilities	16
	1.5. Oth	er solutions considered	16
	1.5.1.	Replacing the Orin Transformer	16
	1.5.2.	Replacing Orin Station Near Existing Station	17
	1.5.3.	Alternate routing of Tiger feeders	17
2.	Technic	cal Analysis	17
	2.1. Mo	deling Assumptions and Methodology	17
	2.1.1.	Load Assumptions	17
	2.1.2.	Customer Projects and Forecasted Load	18
	2.1.3.	Projects Modeled	18
	2.2. Cas	ses and Results	18
	2.2.1.	New Station Case 1	18
	2.2.2.	New Station Case 2	21
	2.2.3.	New Station Case 3 – Proposed Solution	23
	2.2.4.	Near-Term Mitigation Options2	26
	2.3. Sho	ort Circuit Analysis	27
	2.3.1.	Available Fault Current	27

2.3.2	. Thevenin Impedance	27
2.4. R	Redlined SCADA Variable Limits	27
2.4.1	. Feeders	27
2.4.2	. Transformers	28
2.5. C	Conclusion	28
3. Stake	eholder Acknowledgement	28
4. Appe	endix	30
4.1. V	Vinter Peak data	30
4.1.1	. ARD12F1	30
4.1.2	. ARD12F2	31
4.1.3	. CLV12F1	31
4.1.4	. CLV12F2	32
4.1.5	. CLV12F3	33
4.1.6	. CLV12F4	34
4.1.7	. CLV34F1	35
4.1.8	. Orin Transformer	36
4.1.9	. ORI12F1	37
4.1.1	0. ORI12F2	38
4.1.1	1. ORI12F3	39
4.2. S	SVL Changes	39
4.2.1	. ARDEN TRANSFOMER N0. 1	39
4.2.2	Alternate Routing costs	44
4.2	2.2.1. Alternate feeder routing costs	44
4.2	2.2.2. New Orin Station costs	45

Avista

1. Project Overview

The Orin area is seeing an increase of load of the past couple years. The load increase is densest near the lakes along Highway 20. With the increase of capacity needs and future growth, the existing distribution system in the area is not adequate to support the forecasted customer load. Infrastructure additions are required to meet established performance criteria.

Orin Station is a 115kV to 13.8kV distribution station located a couple miles south of Colville on Highway 395. It has a single 10MVA transformer feeding three Avista feeders. The substation serves approximately 2200 Avista service points and is radially fed by a tap off the Addy-Kettle Falls 115kV Transmission Line.

Orin Station is situated between Highway 395 and a hill. The three feeders, ORI12F1, ORI12F2 and ORI12F3, feed South towards Arden, a small section of the South side of Colville and a very long rural feed East to several lakes.

ORI12F1 has ties to both CLV12F2 and ARD12F2. However, existing small conductor on the ARD12F2 side of the tie only allows for ORI12F1 to pickup ARD12F2. Plans to upgrade small conductor to allow bidirectional load switching is tentatively in the 2024 resource plan.

The urban Orin feeder, ORI12F2, is land locked and lightly loaded. This feeder has a feeder tie to CLV12F2.

ORI12F3 has a very long run of feeder trunk. The trunk also has portions built on a scenic byways designated by the Washington Station Department of Transportation as shown in Figure 1. This feeder has multiple stages of regulation and sections of small conductor on the feeder trunk.

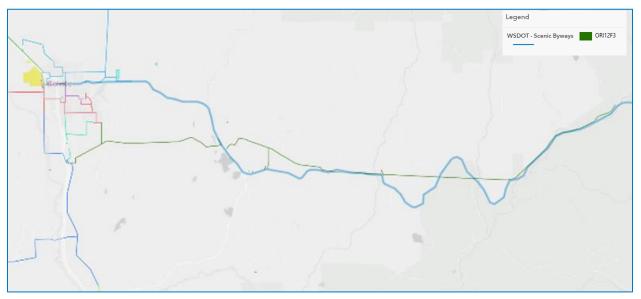


Figure 1: Scenic Byway and ORI12F3 trunk

Technical studies have been performed to analyze multiple mitigation projects to provide Orin Station acceptable system performance and mitigate, in part, specific performance issues identified over a ten-year planning horizon. The proposed project includes constructing a new distribution station located on the existing Colville Service

Center property with a 115kV tap to the Bonneville Power Administration Colville – Kettle Falls 115kV Transmission Line. The station will include a single 20MVA transformer and two distribution feeders.

1.1. Problem Statement

The electrical distribution system in the Colville area has capacity limitations identified in the System Assessment and observed operationally. The area is projected to experience moderate load growth over the next 10 years. The Orin 115/13kV Transformer 1 has exceeded the planning performance criteria in operational conditions. Anticipated load growth will exacerbate the transformer loading in the 10-year time horizon.

Table 1 shows loading data for the coldest recent day which occurred between January 13-15, 2024 at a peak high temperature of around 4°F. The Orin 115/13kV Transformer 1 exceeded its facility rating on January 13, 2024.

FDR/XFMR	2024
ARD12F1	47%
ARD12F2	54%
CLV12F1	31%
CLV12F2	51%
CLV12F3	64%
CLV12F4	68%
CLV34F1	63%
ORI12F1	32%
ORI12F2	15%
ORI12F3*	51%
ARD XFMR*	71%
CLV XFMR #1	38%
CLV XFMR #2	60%
CLV XFMR #3	59%
ORI XFMR	101%

Table 1: Percent Loading of Equipment on January 13, 2024 (PI data with AMI phase ratio)

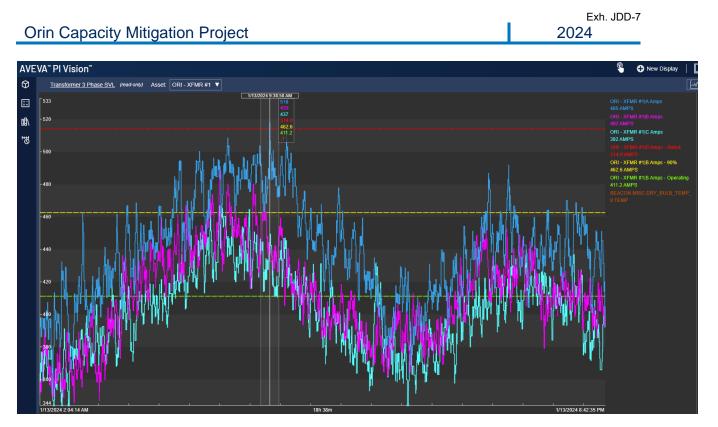


Figure 2: Orin 115/13kV Transformer 1 loading January 13, 2024

Table 2 provides the expected transformer and feeder percent of limit loading in the Colville area. This table represents peak winter conditions based on the forecasted load growth without assumed large step load increases. This table reflects both the updated facility rating for ORI12F3, nearly doubling the capacity, and the Arden transformer 65°C rating update. Measured load at temperature was used to create an assumed load at -20°F. The Orin 115313kV Transformer 1, as well as ARD12F2 and CLV12F4 will exceed performance criteria during a planning winter peak temperature within the 10-year horizon.

FDR/XFMR	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
ARD12F1 ¹	47	47	47	47	47	47	47	47	47	47	47
ARD12F2	82	82	82	82	82	82	82	82	82	82	82
CLV12F1	40	40	40	40	40	40	40	40	40	40	40
CLV12F2	67	67	68	69	70	71	73	74	75	76	77
CLV12F3 ¹	64	64	64	64	64	64	64	64	64	64	64
CLV12F4	85	85	85	85	85	85	85	85	85	85	85
CLV34F1	72	72	72	72	72	72	72	72	72	72	72
ORI12F1	41	43	44	46	48	49	51	53	55	57	59
ORI12F2	18	19	19	20	20	21	21	22	22	23	24
ORI12F3 ²	56	58	60	62	64	66	69	71	73	76	78
ARD XFMR ²	76	76	76	76	76	76	76	76	76	76	76
CLV XFMR #1	43	43	43	43	43	43	43	43	43	43	43
CLV XFMR #2	70	71	71	72	72	73	73	74	74	75	75
CLV XFMR #3	66	66	66	66	66	66	66	66	66	66	66

¹ Dedicated feeder with load not dependent on temperature therefore PI data was used vs forecasting methodology

² Data with updated facility ratings.

	Exh. JDD-7
Orin Capacity Mitigation Project	2024

ORI XFMR109113117121125130134139144149Table 2: Expected Percent Loading of Equipment without mitigation projected at -20° F Beacon
Drybulb TempDrybulb Temp

Voltage issues for customers at the end of ORI12F3 have also been observed during winter conditions. Work has been done to improve performance over the last couple years with phase balancing and some trunk conductor upgrades. The loading and voltage issues are expected to continue and will get worse as loading increases. During the 2022 winter peak, customers experienced outages due to overloaded fuses and restoring service was challenging due to cold load pickup. Some mitigation efforts were implemented to improve performance including the removal of a fuse upstream of the regulator, updating regulator settings, phase balancing and conductor upgrade.

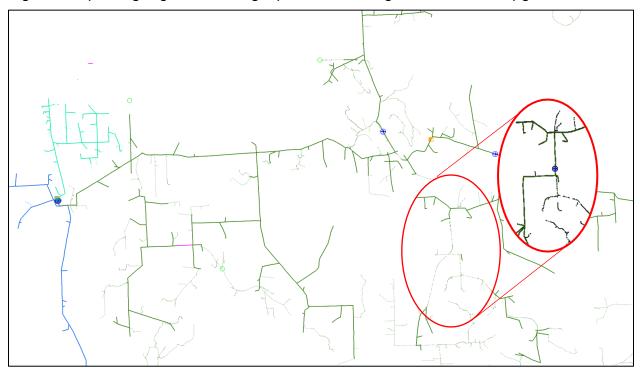


Figure 3: 2022 Winter Peak performance issue location map

The existing Orin Station is a single lineup with three feeders on a 7.5MVA transformer. The transformer has fuse protection. Installation of a circuit switcher to protect a larger transformer would require modification to a majority of the existing station including the addition of a control building. The general plan for the existing Orin Station is provided in Figure 4. The transformer is on the list of large equipment with PCB levels greater than zero.

AVISTA

151

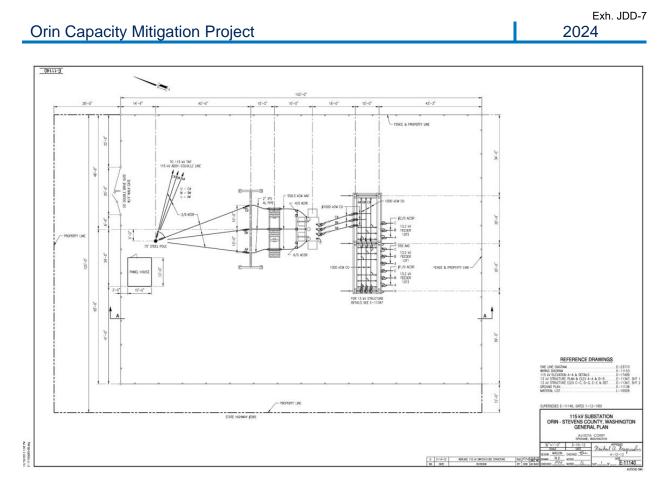


Figure 4: Existing Orin Station footprint and layout

Work was completed in Orin Station to increase the capacity of ORI12F3 via conductor size increases (see Figure 7 and Figure 8 below). This station conductor work was done as part of the feeder conductor work to help with phase balancing, voltage drop and capacity. Within the station, the transformer is the largest capacity constraint (see Figure 5). Feeder ties are available on ORI12F1 and ORI12F2 however, these ties are unable to facilitate offloading of Orin Transformer. Work is planned in 2024 to allow ORI12F1 ability to offload to ARD12F2. ORI12F2 can be offloaded to CLV12F2 and has been used in the past to relieve loading on the Orin Transformer. However, the feeder is lightly loaded, and this load transfer value is minimal.

AVISTA

		<u>ORIN - COLVIL</u>	LE, WASHIN	GTON	/ 11	15-13.	8kV)	(FMR	NO. 1	1		
		<u>(and)</u>	ASSOCIATEL) 115	& 13.	8kV E	BUSE	<u>s)</u>				
									ATURE			
Residential (75% LF)				-30	-20	-10	0	10	20	30	40	60
LOCATION	DEVICE	TYPE	RATING (Amps.)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
PRIMARY SIDE XFMR	AIR SWITCH	USCO AGCH5V-11512 (D06)	1200	1915	1843 107	1768 107	1689	1607	1520	1417	1294	1157
0.4450.00	FUSE	S&C SMD-2B 65E VERY SLOW	107	107	2099	107	107 1883	107	107 1629	107 1481	107	107
(@ 115kV)	CONDUCTOR	2" IPS AL PIPE (85°C)		2196 1039	2099	1995	1883	1762 798	1629	1481	1313 557	1114
(55°C)	XEMR	556 AAC "DAHLIA" (75°C)	46	1039	983	924	60	798	728	649 51	557	445 42
(55 C)	9375000	GE Type SL OA/PFA 118250	40	00	00	00	00	57	34	51	47	42
						AMBIE	NT TE	MPER	ATURE	(C)		
				-30	-20	-10	Q	10	20	30	40	50
LOCATION	DEVICE	ТҮРЕ	RATING (Amps.)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
PRIMARY SIDE XFMR	AIR SWITCH	USCO AGCH5V-11512 (D06)	10283	16409	15792	15150	14473	13770	13025	12142	11088	9914
	FUSE	S&C SMD-2B 65E VERY SLOW	917	917	917	917	917	917	917	917	917	917
	CONDUCTOR	2" IPS AL PIPE (85°C)		18817	17986	17095	16135	15098	13959	12690	11251	9546
referred to secondary		556 AAC "DAHLIA" (75°C)		8907	8422	7918	7378	6838	6236	5560	4777	3813
(@ 13.8 kV)												
SECONDRY SIDE XFMR	DISCONN SW	BRIDGES SE (B02)	1200	2141	2036	1926	1809	1684	1549	1401	1236	1044
(@ 13.8 kV)	CONDUCTOR	1000 MCM CU (75°C)		1861	1758	1653	1538	1424	1297	1154	987	781
		250 MCM CU (75°C)		794	751	707	660	612	559	499	431	348
		GE JKW-5 400/5 M.R.	conn 400/5 (TRF=1.5)	600	600	600	600	600	600	600	600	600
(55°C)	XFMR	GE Type SL OA/PFA *	392	514	514	514	514	490	467	435	400	357
	9375000	13800										
SYSTEM CURRENT	LIMITFOR SP	ECIFIC TEMPERATURE		514	514	514	514	490	467	435	400	348

Figure 5: SVL for Orin Transformer

The rural location and lack of natural gas as an alternate energy source for heating in the winter season are attributes contributing to performance issues. ORI12F3 is a very long feeder with large sections of small conductor trunk and multiple steps of voltage regulation. The small conductor trunk causes exaggerated voltage drop causing the furthest regulators to often reach and remain at boost 16. The recent work to improve conductor on the trunk has sometimes been costly and time consuming. Any future work along the scenic byway right of way will need to incorporate extra costs and time into the schedule. This issue will be analyzed further in a separate report. Solutions for the transformer is the more urgent priority at this time.

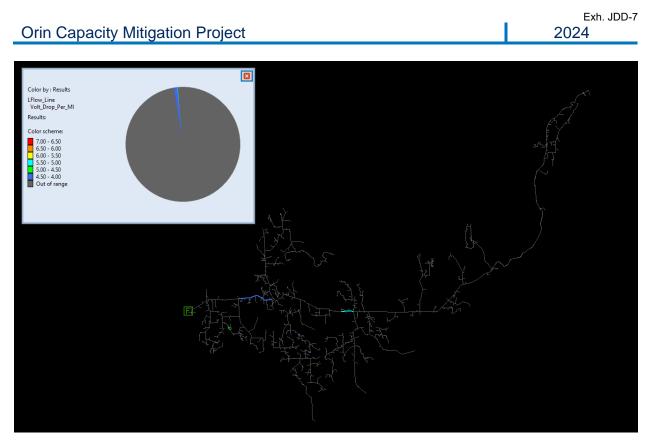


Figure 6: ORI12F3 trunk voltage drop/mi due to small conductor

		ORIN - COLVILLE, WASHINGTON - 12.5kV FDR 12F3										
		<u>onn - </u>		8kV XFMR NO.1)								
							NT TE		ATURE			
esidential(75% LF)	DEVICE	TYPF	DATING (A)	-30	-20	-10	AMDC	10	20	30	40	50
JUATION	V.C.B.	G&W VIP378ER-12S	RATING (A) 800	AMPS 800	AMP S 800	AMPS 800	AMP S 800	AMPS 800	AMPS 800	AMPS 800	AMPS 800	AMPS 729
	DISCONN, SW.	S&C SPST (BO2)	600	1070	1018	963	905	842	775	701	618	522
	DISCONN. SVV.	BRIDGES SPTT (BO2)	600	1070	1018	963	905	842	775	701	618	522
	CONDUCTOR	250 CU (75°C)	000	794	751	707	660	612	559	499	431	348
	CURRENT XFMR	1000/1 M.R.	conn. 500/1 (TRF=1.6)	800	800	800	800	800	800	800	800	800
	5% VOLT, REG.	250 KVA	525	668	668	668	668	668	643	590	512	433
	(7.5%)	MAX CURRENT =	394	561	561	561	561	522	482	443	384	325
	(10%)	668	328	467	467	467	467	435	402	369	320	271
	PROTECTION	SEL-351R (50P1P)	1500	600	600	600	600	600	600	600	600	600
		SEL-351R (51P1P)	1500	600	600	600	600	600	600	600	600	600
STRIBUTION LINE		1/0 ACSR "Raven" (80°C)		359	341	322	302	282	260	235	208	175
YSTEM CURREN	T LIMIT FOR SPECI	FIC TEMPERATURE		359	341	322	302	282	260	235	208	175

Figure 7: SVL for ORI12F3 before update

		ORIN - CO	LVILLE, WAS	HING	TON	- 12.5	kV F	DR 12	2 <u>F3</u>			
			<u>(via 115-13.</u>	8kV XFMR NO.1)								
						AMBIE						
				-30	-20			18		30	40	50
LOCATION	DEVICE V.C.R.	TYPE G&W VIP378ER-12S	RATING (A)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
	V.C.R. DISCONN_SW	G&W VIP378ER-12S S&C SPST (BO2)	800	800 1070	800 1018	800 963	800 905	800 842	800 775	800 701	800 618	729 522
	DISCONN. SW.	BRIDGES SPTT (BO2)	600	1070	1018	963	905	842	775	701	618	522
	CONDUCTOR	1000 kCM CU (75°C)	600	1862	1763	1653	1534	1420	1293	1150	983	778
	CONDUCTOR	500 kCM CU (75°C)		1222	1157	1055	1010	936	853	761	903	523
		250 kCM CU (75°C)		794	752	707	658	610	557	498	430	347
	CURRENT XEMR	1000/1 M.R.	conn. 500/1 (TRF=1.6)	800	800	800	800	800	800	800	430	800
*	5% VOLT. REG.	250 KVA	525	668	668	668	668	668	647	588	500	411
	(7.5%)	MAX CURRENT =	394	573	573	573	573	529	485	441	375	309
	(10%)	668	328	478	478	478	478	441	405	367	312	257
	PROTECTION	SEL-351R (50P1P)	1500	600	600	600	600	600	600	600	600	600
	PROTECTION	(51P1P)	1300	600	600	600	600	600	600	600	600	600
DISTRIBUTION LINE		556.5 AAC "Dahlia" (80°C)		1059	1006	948	886	825	759	685	601	502
SYSTEM CURRENT	ILIMIT FOR SPECIFIC	C TEMPERATURE		600	600	600	600	600	557	498	430	347
*NOTE		IITS, IT IS ASSUMED THAT VOLTAG F (+/-)7.5% AND (+/-)10%, HOWEV							OST. AMP	ACITY		
CREATED: 3/29/2012	Ratings reflect present cond	ditions. S.Wilson										
REVISION: 08/03/2017	Regulators replaced.											
	Relay protective device ratin											
	Ratings updated to reflect p	resent conditions. S.Wilson										
REVISION: 01/08/2024	Distribution Conductor upda											
	Distribution line conductor v	erified. Tyler Dornquast										
	Relay protective device rating	is verified. Randy Spacek										
	Ratings updated to reflect p	resent conditions. Ryan Town										

Figure 8: SVL for ORI12F3 after upgrade work completed

Technical analysis shows existing infrastructure doesn't accommodate the existing load demand during peak winter conditions and will only be exacerbated by anticipated load growth in the area. Forecasted loading already exceeds the existing transformer capacity at Orin Station. Without mitigation, the ability to reliably serve customers during peak winter conditions will become unachievable.

Data used in the technical studies correlated well with feeder and transformer concerns. However, some data incongruities did not allow for true low voltage mitigation nor effective phase balancing efforts. Further physical validation and data collection will need to take place to analyze this issue and mitigation technique. The priority issue to mitigate the Orin 115/13kV Transformer 1 loading is not impeded by the above modeling limitations and the rest of this report focuses on unloading the transformer. The solution may help with voltage concerns but can negatively or positively impact phase balance which is to be seen and further analyzed.

Existing mitigation steps are taken in each of the mitigation cases below. These efforts are to help offload the Orin 115/13kV Transformer 1 until the final project can be completed. ORI12F2 is a very minimally loaded feeder but can all be offloaded to CLV12F2. This switching transfers approximately 50A of load at peak winter conditions, decreasing the load on the Orin 1115/13kV Transformer 1 by approximately 8%. No work is necessary for this portion of the mitigation plan as the air switch for this transfer was installed recently for this purpose.

1.1.1. Risks

The risk of not constructing the proposed project by the need by date is the inability to serve customers during peak winter loading conditions. Customers have already experienced outages and very low voltages at temperatures not yet reaching our planning temperature of -20°F. Anticipated growth and lack of alternate energy sources

like natural gas in many areas will further stress this area. Load transfers to adjacent feeders can be utilized to reduce heavy loading on the equipment in the short term. The Orin 115/13kV Transformer 1 can exceed 100% loading temporarily until a major transformer alarm occurs.

1.1.2. Need by Date

Technical studies show equipment ratings are already exceeded during peak winter conditions. Existing switching can reduce capacity concerns on the Orin 115/13kV Transformer 1 by a small percentage, which does not bring the transformer below the 90% threshold. Solutions to offload this transformer are need prior to the 2024/2025 winter season.

1.1.3. Technical Prioritization

Avista's Engineering Roundtable compares projects using a scoring matrix which evaluates both the technical importance and urgency of a project. Table 3 provides the suggested scoring for the Engineer Roundtable to use. The technical importance scoring accounts for the inability to serve load without experiencing capacity issues. The urgency scoring considers the need by date stated in Section 1.1.2.

Serve Load	Capacity	Reliability	System Perfor- mance	Safety	Environ- mental	Regula- tory	Tangential Benefits	Technical Score
3	3	1	3	0	0	1	0	68
Date Flexible	Months Until	Budget	Transfor- mers	Foreign Utility	Number of Stations			Urgency Score
6	6	2	0	2	2			72

Table 3: Engineering Roundtable prioritization scoring

1.2. Project Scope and Requirements

1.2.1. System Modifications

1.2.1.1. New Station Design

The Orin Capacity Mitigation project includes constructing a new distribution station located on the existing Colville Service Center property. The station will include a new 20MVA 115/13kV transformer, two 13.2kV distribution feeders with footprint and design for a future third feeder, and associated controls, communication, yard, panelhouse, grounding and facilities equipment. Estimates, design and schedule are high-level with some assumptions made. The project diagram provided in Figure 9 summarizes the project scope.

- 115 kV portion of the yard will be constructed as a line-tap with no provisions for a future 115 kV pass-thru bus nor 115 kV breakers
- Install new 20 MVA transformer will be protected by a S&C 2030 or equivalent circuit switcher
- Install distribution line-up of a 4-bay LVDS structure with 2 regulated feeders and 1 regulated aux position

□ Fenced area and provisions will be provided to enable the installation of a mobile substation

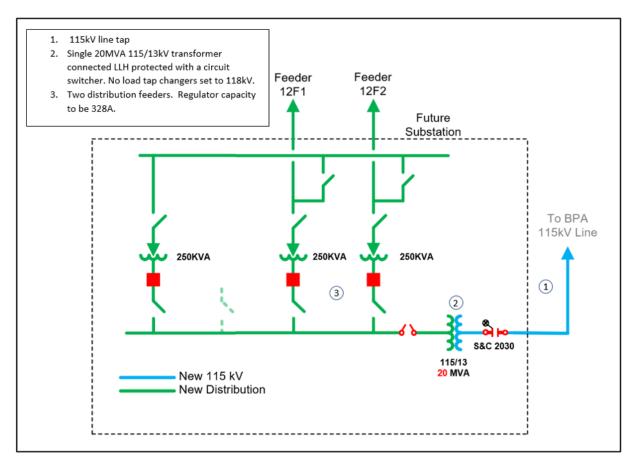


Figure 9: Orin Capacity Mitigation Project Diagram

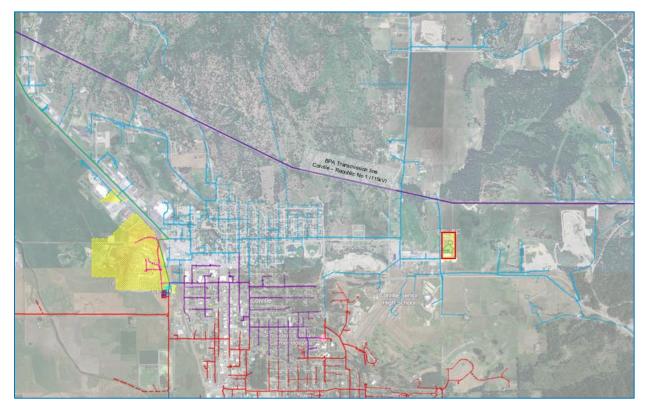


Figure 10: Proposed Station location

1.2.1.2. Distribution Integration Design

The following modification to the distribution system is necessary to integrate the new Tiger Highway feeders into the system and mitigate the identified performance issues:

- Build out both new feeders routing East along Tiger Highway. This will be double circuit for approximately 2.5 miles where one feeder will connect to a lateral on ORI12F3.
- One feeder will continue for another mile to connect to the trunk on ORI12F3. This feeder will offload ORI12F3 to the east of that connection point.
- The feeder connected to the lateral will take a small portion of ORI12F3 load but will also connect to the end of CLV12F4 with some conductor rebuilding to offload the end of that feeder.

1.2.1.3. Transmission Integration Design

Transmission integration will require requesting an interconnection to the BPA Colville – Republic 115kV Transmission Line. A radial transmission tap from the new station to BPA's transmission line will be approximately half a mile. BPA will determine the scope of work for interconnecting the transmission line. Avista will request BPA to include SCADA controlled, motor operated switches on each side of the transmission tap.

1.2.1.4. Protection Requirements

Standard transformer and feeder protection schemes will be used and coordinated with adjacent feeder protection schemes. Updates to the BPA protection scheme on the Colville – Republic 115kV Transmission Line are not anticipated.

1.2.1.5. Communication Requirements

Communication aided protection schemes for the BPA transmission line will not be in the project scope. The existing communication at the Colville Service Center can be extended to the new station to provide SCADA backhaul to the control centers.

1.2.1.6. Metering Requirements

Metering requirements will be determined during the interconnection study process with BPA.

1.3. Project Execution

1.3.1. Construction Schedule

Preliminary project schedule is as follows.

• BPA	analysis	-	-	-	-	-	-	-	Summer 2024-2026
 Subs 	tation 20								
0	Project Scoping	-	-	-	-	-	-	-	Mar 2026 - Apr 2026
0	Civil Design	-	-	-	-	-	-	-	Apr 2026 -Jun 2026
0	Integration Desig	n	-	-	-	-	-	-	Apr 2026 - Jul 2026
0	Protection Design	า -	-	-	-	-	-	-	Apr 2026 - Jul 2026
0	Site Prep and Fe	nce	-	-	-	-	-	-	Jun 2026 - Nov 2026
0	Physical and Elec	ctrica	l De	sign	-	-	-	-	Jul 2026 - Jan 2027
0	Network Design		-	-	-	-	-	-	Sep 2026 - Jan 2027
0	EIM/Outage Coo	rdina	tion	(if A	oplic	able	e)	-	Oct 2026 - Mar 2027
0	Points List Relea		-	-	-	-	-	-	Feb 2027 - Feb 2027
0	Network Design	Trans	smitt	al		-	-	-	Feb 2027 - Feb 2027
0	Integration Settin			-	-	-	-	-	Feb 2027 - Apr 2027
0	Protection Setting	gs-	-	-	-	-	-	-	Feb 2027 - Apr 2027
0	Network Procure	ment	-	-	-	-	-	-	Feb 2027 - Mar 2027
0	M/S Construction	- (-	-	-	-	-	-	Mar 2027 - Jul 2027
0	Electrical Constru	uctior	ר	-	-	-	-	-	Jul 2027 - Dec 2027
0	Relay Construction	on	-	-	-	-	-	-	Dec 2027 - Feb 2028
0	Network Constru	ction	-	-	-	-	-	-	Jan 2028 - Mar 2028
0	T&C and Energiz	e Su	bsta	tion	-	-	-	-	Feb 2028 - Apr 2028
 Distri 	bution								
0	Design	-	-	-	-	-	-	-	Fall 2025-Spring 2026
0	Easements -	-	-	-	-	-	-	-	Summer 2024-Fall 2025
0	Equipment Order	'S -	-	-	-	-	-	-	Summer 2026
0	Construction	-	-	-	-	-	-	-	Summer 2026-Mar 2028
Trans	smission								
0	Design	-	-	-	-	-	-	-	Fall 2025-Spring 2026
0	Easements -	-	-	-	-	-	-	-	Summer 2024-Fall 2025
0	Equipment Order	'S -	-	-	-	-	-	-	Summer 2026
0	Construction	-	-	-	-	-	-	-	Summer 2026-Mar 2028
	missioning	-	-	-	-	-	-	-	April 2028

1.3.2. Cost Estimate

The preliminary project budget VROM has been estimated at approximately \$9 Million. The preliminary project budget and allocations can be referenced below.

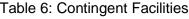
Substation	\$6,600,000
Transmission	\$850,000
Distribution	\$1,500,000
Total	\$8,950,000

Table 4: Project cost estimate

1.3.3. Long-Lead Time Equipment

Any electric system expansion may be delayed by long-lead time requirements, such as equipment, land acquisition, permitting and/or outage windows. Known schedule constraints that may impact the proposed project schedule are detailed in Table 5.

Potential Constraint	Historical Procurement	Extended Procurement	Impact
Communications equipment	3 months	6 months	No
Custom transmission structures	6 months	9 months	No
Main-grid auto-transformers	16 months	48 months	No
Main-grid circuit breakers	6 months	36 months	No
Main-grid capacitor/reactor	6 months	24 months	No
Main-grid station property siting, 20+ acres	24 months	36 months	No
Sub-transmission station property siting, 4+ acres	12 months	24 months	No
Sub-transmission transformers	9 months	18 months	No
Transmission right of way	24 months	60 months	No
Distribution station transformers	9 months	36 months	Yes
Distribution station circuit breaker	6 months	24 months	Yes


Table 5: Long-Lead Time Constraints

1.4. Contingent Facilities

Contingent facilities are unbuilt facilities which if delayed or not built could cause a need for restudying the proposed project.

The following contingent facilities were identified.

Initiative	ERT #	Project Name	Scope	Targeted Date of Operation	Status					
N/A										
Table 6: Contingent Facilities										

1.5. Other solutions considered

1.5.1. Replacing the Orin Transformer

This option is not possible in the existing station footprint and inability to expand.

1.5.2. Replacing Orin Station Near Existing Station

This option was considered but ultimately only resolves the capacity concerns on the Orin transformer. Capacity concerns at other locations, additional feeder ties for reliability, potential voltage improvement on ORI12F3 would not be resolved with this solution. Cost reduction due to decreased distribution needs would be negated by land costs for the new station and future work needed to resolve the issues listed above. This also decreases the overall feeder count and transformation capacity by replacing a station rather than adding a station.

1.5.3. Alternate routing of Tiger feeders

Routing of at least a single feeder would require buildout along Tiger Highway. This will be a difficult build however the addition of a double circuit along this route does not heavily impact cost or time. Routing the second feeder along a different route adds no value to the system performance but would add significant cost and potential time delays. These other routes were analyzed below but ultimately the double circuit solution was selected as the proposed plan.

2. Technical Analysis

2.1. Modeling Assumptions and Methodology

2.1.1. Load Assumptions

This analysis uses a projected winter loading scenario at -20°F. A linear load forecast was created using the most recent load to temperature data and then extrapolated out to estimate the system load to a one-in-ten year peak winter scenario. AMI data was used and then loaded in the model to match the forecast analysis. Load growth up to 3%, based on historical growth for each feeder, is factored in successive years. The base year load can be seen in Table 7.

Input	A Phase (A)	B Phase (A)	C Phase (A)	Average
ARD12F1	188	189	188	188
ARD12F2	252	284	223	253
CLV12F1	249	231	266	250
CLV12F2	380	358	442	390
CLV12F3	262	260	262	261
CLV12F4	558	457	447	487
CLV34F1	143	137	139	140
ORI12F1	231	176	154	187
ORI12F2	62	54	56	57
ORI12F3	341	342	355	346

Table 7: Projected Feeder Amps at -20°F

2.1.2. Customer Projects and Forecasted Load

This area, and Orin feeders specifically, are very rural feeders with lots of residential customers and limited natural gas service. Growth forecast, based on historical trends, was used for this analysis vs large step loads.

Feeder	Growth
CLV12F2	1.44%
ORI12F1	3.01%
ORI12F2	2.24%
ORI12F3	3.01%

Table 8: Non-zero growth rate feeders

2.1.3. Projects Modeled

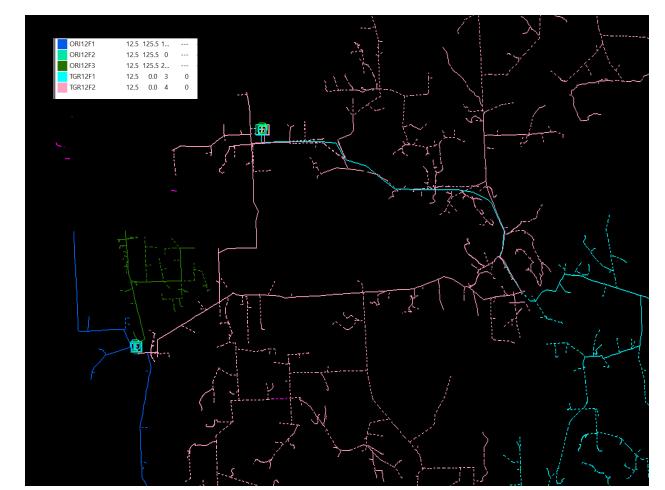
Projects modeled are the Avista projects assumed to be completed and modeled within the distribution system models used for technical analysis.

No other projects were modeled within the technical study for Orin capacity mitigation. However, to analyze load transfer ability, switches were dummied in but conductor may or may not reflect accurate replacement. Conductor at this location was not analyzed for capacity within this project.

2.2. Cases and Results

Four cases are reviewed in this section. The first three cases consider installation of a new station at Tiger Highway with differing feeder routes and load transfers. These will have different costs associated with feeder buildout which can be a significant portion of the project cost. These cases also have differing values to other feeders in the area and overall load transferability and thus system reliability. The fourth case looks at replacement of the entire Orin sub with build out near the existing sub and no installation of the station at Tiger Highway. All solutions involve increasing transformation capacity in the area.

2.2.1. New Station Case 1

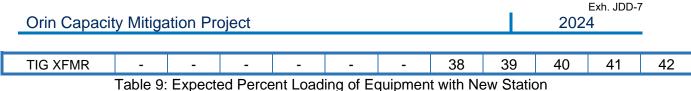

For this case the new Tiger Highway Station is installed near the Colville main campus. This station is fed via tap from the BPA transmission line and has a 20MVA transformer with two feeders. In this case the feeders route in different directions. One feeder routes through the city and interconnects near the existing Orin Station at the trunk. The other feeder routes down Tiger Highway and connects to ORI12F3 further along the trunk. This setup allows ORI12F3 to be split between the new feeders, offloading the existing Orin 115/13kV Transformer 1 and decreasing the voltage drop at the end of ORI12F3 via improved/upsized conductor from the new station to the existing trunk. The new station and distribution buildout can be seen in Figure 11 and the final feeder layout for both the Orin and Tiber Highway stations can be seen in Figure 12.

The multi-year analysis provides simulated expected equipment loading based on the assumptions stated above. The Orin Capacity Mitigation project is assumed to be completed before the summer of 2030. Table 9 and Table 10 includes the multi-year analysis results. Based on the analysis results, this case solution provides adequate

capacity mitigation in the outer years but does not resolve near-term loading concerns nor does this imply voltage resolution.

Figure 11: Station and Distribution Buildout Case 1

Orin Capacity Mitigation Project


Figure 12: Final Orin and Tiger Highway Feeder Layout Case 1

Note: feeders and transformers are highlighted below when exceeding 80%, 90% and 100%

FDR/XFMR	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
ARD12F1	47	47	47	47	47	47	47	47	47	47	47
ARD12F2	82	82	82	82	82	82	82	82	82	82	82
CLV12F1	40	40	40	40	40	40	40	40	40	40	40
CLV12F2	75	76	78	79	80	81	72	73	74	75	77
CLV12F3	64	64	64	64	64	64	64	64	64	64	64
CLV12F4	85	85	85	85	85	85	63	63	63	63	63
CLV34F1	72	72	72	72	72	72	72	72	72	72	72
ORI12F1	41	42	44	46	47	49	48	50	52	54	55
ORI12F2	-	-	-	-	-	-	-	-	-	-	-
ORI12F3*	56	58	60	62	64	66	12	12	12	12	13
TGR12F1	-	-	-	-	-	-	44	49	47	49	51
TGR12F2	-	-	-	-	-	-	41	42	42	43	44
ARD XFMR*	76	76	76	76	76	76	76	76	76	76	76
CLV XFMR #1	43	43	43	43	43	43	43	43	43	43	43
CLV XFMR #2	75	76	76	77	78	78	65	66	66	67	67
CLV XFMR #3	66	66	66	66	66	66	66	66	66	66	66
ORI XFMR	98	101	105	109	113	117	54	56	58	60	62

Exh. JDD-7

2024

Table 9:	Expected	Percent	Loading	OI	Equipment	with ine	ew :	Siai

FDR/XFMR	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
ARD12F1	187	187	187	187	187	187	187	187	187	187	187
ARD12F2	283	283	283	283	283	283	283	283	283	283	283
CLV12F1	266	266	266	266	266	266	266	266	266	266	266
CLV12F2	505	513	520	528	536	544	483	493	500	507	514
CLV12F3	255	255	255	255	255	255	255	255	255	255	255
CLV12F4	563	563	563	563	563	564	414	414	414	414	414
CLV34F1	144	144	144	144	144	144	144	144	144	144	144
ORI12F1	228	238	247	256	266	276	273	282	291	301	310
ORI12F2	-	-	-	-	-	-	-	-	-	-	-
ORI12F3*	337	348	360	371	384	398	69	71	72	74	76
TGR12F1	-	-	-	-	-	-	265	275	284	293	304
TGR12F2	-	-	-	-	-	-	247	250	254	258	264

Note: feeders exceeding 100% are highlighted below

Table 10: Expected Peak Amps with New Station

2.2.2. New Station Case 2

For this case the new Tiger Highway station is installed as in the previous case. One feeder routes the same as the above case to the southwest through the city and interconnects near the existing Orin Station at the trunk. The other feeder also routes the same as the case above, down Tiger highway but connects to ORI12F3 at a nearer lateral. This setup allows ORI12F3 to be almost completely offloaded to one of the new feeders, while the other feeder offloads a single lateral from ORI12F3 and a portion of CLV12F4 (another heavily loaded feeder in the area). The new station and distribution buildout can be seen in Figure 13 and the final feeder layout for both the Orin and Tiger Highway stations can be seen in Figure 14.

The multi-year analysis provides simulated expected equipment loading based on the assumptions stated above. The Orin Capacity Mitigation project is assumed to be completed before the summer of 2030. Table 11 and Table 12 includes the multi-year analysis results. Based on the analysis results, this case solution provides adequate capacity mitigation in the outer years but does not resolve near-term loading concerns nor does this imply voltage resolution.

Figure 13: Station and Distribution Buildout Case 2

Figure 14: Final Orin and Tiger Highway Feeder Layout Case 2

Note: feeders and transformers are highlighted below when exceeding 80%, 90% and 100%

Orin Capacity	Mitigation	Project
----------------------	------------	---------

FDR/XFMR	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
ARD12F1	47	47	47	47	47	47	47	47	47	47	47
ARD12F2	82	82	82	82	82	82	82	82	82	82	82
CLV12F1	40	40	40	40	40	40	40	40	40	40	40
CLV12F2	75	76	78	79	80	81	72	73	74	75	77
CLV12F3	64	64	64	64	64	64	64	64	64	64	64
CLV12F4	85	85	85	85	85	85	63	63	63	63	63
CLV34F1	72	72	72	72	72	72	72	72	72	72	72
ORI12F1	41	42	44	46	47	49	48	50	52	54	55
ORI12F2	0	0	0	0	0	0	20	21	21	22	22
ORI12F3*	56	58	60	61	64	66	-	-	-	-	-
TGR12F1	-	-	-	-	-	-	35	35	36	36	37
TGR12F2	-	-	-	-	-	-	60	62	64	66	68
ARD XFMR*	76	76	76	76	76	76	76	76	76	76	76
CLV XFMR #1	43	43	43	43	43	43	43	43	43	43	43
CLV XFMR #2	75	76	76	77	78	78	65	66	66	67	67
CLV XFMR #3	66	66	66	66	66	66	66	66	66	66	66
ORI XFMR	98	102	105	109	113	117	55	56	58	60	62
TIG XFMR	-	-	-	-	-	-	38	39	40	41	42

Table 11: Expected Percent Loading of Equipment with New Station

Note: feeders exceeding 100% are highlighted below

FDR/XFMR	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
ARD12F1	187	187	187	187	187	187	187	187	187	187	187
ARD12F2	282	282	282	282	282	282	282	282	282	282	282
CLV12F1	266	266	266	266	266	266	266	266	266	266	266
CLV12F2	503	510	518	526	534	542	481	487	497	504	511
CLV12F3	255	255	255	255	255	255	255	255	255	255	255
CLV12F4	561	561	561	561	561	561	413	413	413	413	413
CLV34F1	143	143	143	143	143	143	143	143	143	143	143
ORI12F1	229	238	247	256	265	274	271	281	290	300	309
ORI12F2	0	0	0	0	0	0	69	71	73	74	76
ORI12F3*	337	348	360	371	384	398	-	-	-	-	-
TGR12F1	-	-	-	-	-	-	212	214	218	221	224
TGR12F2	-	-	-	-	-	-	361	373	384	396	410

Table 12: Expected Peak Amps with Tiger Highway Station Expansion

2.2.3. New Station Case 3 – Proposed Solution

For this case the new Tiger Highway station is installed as in the previous two cases. For this solution both feeders run as a double circuit east on Tiger Highway for approximately 2.5 miles where one feeder connects with a lateral off ORI12F3. The other feeder continues for another mile to connect to the trunk of ORI12F3. The second feeder will eventually feed the ORI12F3 feeder from the connection eastward. The first feeder takes a smaller portion off ORI12F3 which allows more of the CLV12F4 feeder to

	Exh. JDD-7
Orin Capacity Mitigation Project	2024

be offloaded. A small portion of load is left on the ORI12F3 feeder. This setup offloads a significant amount of ORI12F3, offloading the existing Orin 115/13kV Transformer 1 and decreasing the voltage drop at the end of CLV12F4 and ORI12F3 via shorter routing and improved/upsized conductor from the new station to the existing trunk. The new station and distribution buildout can be seen in Figure 15 and the final feeder layout for both the Orin and Tiger Highway stations can be seen in Figure 16.

The multi-year analysis provides simulated expected equipment loading based on the assumptions stated above. The Orin Capacity Mitigation project is assumed to be completed before the summer of 2030. Table 13 and Table 14 includes the multi-year analysis results. Based on the analysis results, this case solution provides adequate capacity mitigation in the outer years but does not resolve near-term loading concerns nor does this imply voltage resolution.

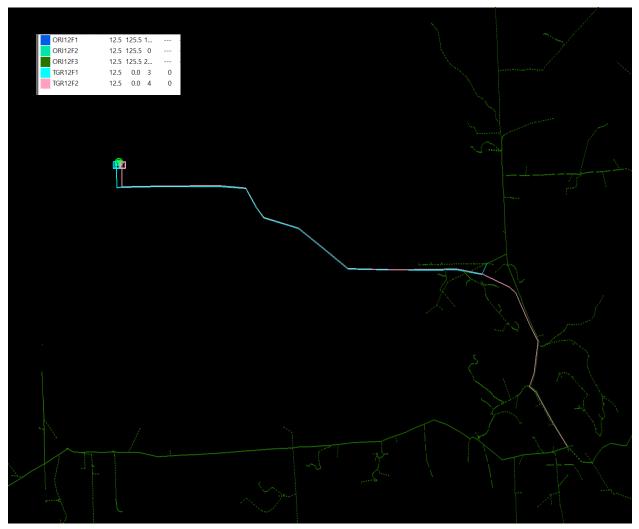


Figure 15: Station and Distribution Buildout Case 3

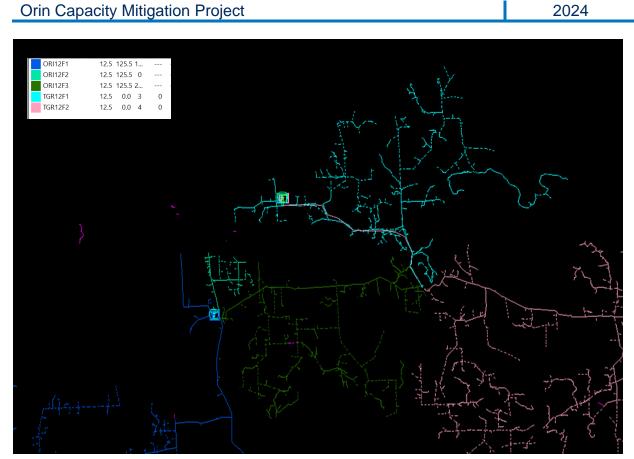


Figure 16: Final Orin and Tiger Highway Feeder Layout Case 3

Note: feeders and transformers are highlighted below when exceeding 80%, 90% and 100%

FDR/XFMR	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
ARD12F1	47	47	47	47	47	47	47	47	47	47	47
ARD12F2	82	82	82	82	82	82	82	82	82	82	82
CLV12F1	40	40	40	40	40	40	44	44	44	44	44
CLV12F2	76	77	78	79	80	81	69	70	71	72	73
CLV12F3	64	64	64	64	64	64	64	64	64	64	64
CLV12F4	85	85	86	86	86	86	63	63	63	63	63
CLV34F1	72	72	72	72	72	72	72	72	72	72	72
ORI12F1	39	41	42	44	45	47	49	50	52	54	55
ORI12F2	-	-	-	-	-	-	20	21	21	22	22
ORI12F3*	56	58	60	62	64	66	16	16	17	17	18
TGR12F1	-	-	-	-	-	-	34	35	35	36	36
TGR12F2	-	-	-	-	-	-	43	44	46	47	48
ARD XFMR*	76	76	76	76	76	76	76	76	76	76	76
CLV XFMR #1	43	43	43	43	43	43	45	45	45	45	45
CLV XFMR #2	75	76	77	77	78	79	63	64	64	65	65
CLV XFMR #3	66	66	66	66	66	66	66	66	66	66	66
ORI XFMR	98	101	105	109	113	117	68	70	73	75	77
TIG XFMR	-	-	-	-	-	-	35	36	37	38	39

Table 13: Expected Percent Loading of Equipment with New Station

Avista

Exh. JDD-7

FDR/XFMR	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
ARD12F1	187	187	187	187	187	187	187	187	187	187	187
ARD12F2	283	283	283	283	283	283	283	283	283	283	283
CLV12F1	266	266	266	266	266	266	289	290	290	290	291
CLV12F2	505	513	520	528	536	544	460	466	473	479	486
CLV12F3	255	255	255	255	255	255	255	255	255	255	255
CLV12F4	563	563	563	563	563	564	414	414	414	414	414
CLV34F1	144	144	144	144	144	144	144	144	144	144	144
ORI12F1	228	238	247	256	266	276	273	282	290	301	310
ORI12F2	-	-	-	-	-	-	69	71	73	74	76
ORI12F3*	337	348	360	371	384	398	93	96	99	102	106
TGR12F1	-	-	-	-	-	-	206	210	213	215	218
TGR12F2	-	-	-	-	-	-	258	266	274	282	291

Note: feeders exceeding 100% are highlighted below

Table 14: Expected Peak Amps with Tiger Highway Station Expansion

2.2.4. Near-Term Mitigation Options

Peak shaving to mitigate capacity concerns until a long-term solution can be installed is necessary. The Orin 115/13kV Transformer 1 exceeded 90% for 4 hours during the latest cold spell. Batteries could help shave this peak. The overnight lows at this time did drop below 80% of capacity which would allow the batteries to recharge for consecutive days of high demand. An existing project to purchase mobile batteries is under development but not finalized and selection of locations to use the batteries has not been determined. Purchasing a battery for this solution would add a cost up to \$4 million to the project.

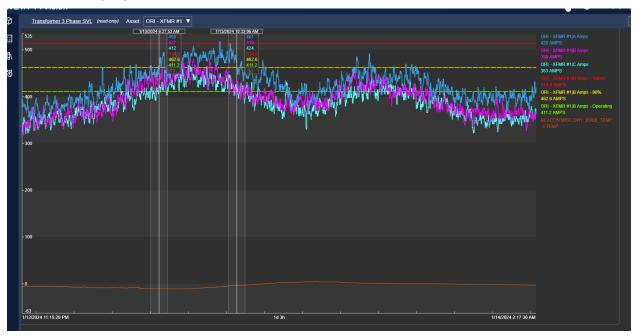


Figure 17: Orin 115/13kV Transformer 1 loading January 13, 2024

	Exh. JDD-7
Orin Capacity Mitigation Project	2024

Alternatively, the transformer could be offloaded via mobile transformer prior to forecasted cold temperatures. However, this would likely cause an outage of the same duration as a load shedding event. The outage would also impact nearly all the customers on the Orin Station as only small portions could be offloaded to other nearby stations. This solution is also not a guaranteed solution as the mobile may not fit within the small Orin Station footprint.

The final proposed solution would require more analysis to get a program started.

2.3. Short Circuit Analysis

A short circuit analysis was conducted by Distribution Planning to determine an order of magnitude available fault current and Thevenin impedance at the new Tiger Highway station.

2.3.1. Available Fault Current

The estimated three phase and single line to ground fault current at the new Tiger Highway station following the completion of the project is provided in Table 15. These values are assumed based on the Thevenin data in Table 16, proposed conductor installation and, generic transformer and equipment.

Location	Three Phase Fault	Single Line to Ground Fault
115kV Bus	5,189 A	4,595 A
13kV Bus 1	4,940 A	5,156 A

Table 15: Available fault current

2.3.2. Thevenin Impedance

The estimated Thevenin equivalent positive sequence impedance at the new Tiger Highway Station is provided in Table 16. These values are assumed based off bus 40607 (Kettle Falls Tap) that also taps off the Colville-Republic No 1 BPA transmission line.

Location	Thevenin Impedance (pu)
115kV Bus	1.8788+j12.6560

Table 16: Thevenin impedance

2.4. Redlined SCADA Variable Limits

Preliminary SCADA Variable Limits are prepared with the intent of identifying constraints along modified or new equipment.

2.4.1. Feeders

The new feeders at Tiger Highway station are expected to have a minimum 600A rating at 40°C ambient temperature. The limiting element should be the main feeder trunk conductor of 556 AAC. This will allow load transfers to occur and improve overall system resiliency and reliability. Winter feeder limits for the all cases is assumed to be ~600A.

2.4.2. Transformers

The new transformer at Tiger Highway station is expected to have a minimum 22MVA (20MVA nominal) at 40°C ambient temperature. The limiting element should be the transformer. Winter transformer limits for all cases is assumed to be ~1200A.

						AMBIE	NT TE	MPER/	ATURE	(C)		
Residential (75% LF)				-30	-20	-10	Q	10	20	30	40	50
LOCATION	DEVICE	TYPE	RATING (Amps.)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
PRIMARY SIDE XFMR	AIR SWITCH	PASCOR TYPE CBSC	1200	2141	2036	1926	1809	1684	1549	1401	1236	1044
(@ 115 kV)	CKT. SWR.	S&C 2030	1200	1200	1200	1200	1200	1200	1200	1200	1200	1044
	CONDUCTOR	795 AAC		1304	1232	1158	1079	999	910	810	694	552
		3" Al. Pipe (85'C)		3591	3432	3262	3079	2879	2659	2414	2133	1799
		2" Al. Pipe (85'C)		2196	2099	1995	1883	1762	1629	1481	1313	1114
	BUSH. C.T.(/5)	1200/5 M.R.	600	600	600	600	600	600	600	600	600	600
(55/65°C)	TRANSFMR	WEST. OA/FA/FOA	115	150	150	150	150	143	136	127	117	104
	22400000	112750										
								MPER	THOP	101		
				-30	-26		1811 I.C. G		20	· 1947 30	46	50
LOCATION	DEVICE	TYPE	RATING (Amps.)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
PRIMARY SIDE XFMR	AIR SWITCH	PASCOR TYPE CBSC	9804	17493	16635	15736	14780	13759	12656	11447	10098	8530
referred to secondary	CKT. SWR.	S&C 2030	9804	9804	9804	9804	9804	9804	9804	9804	9804	8534
(@ 13kV)	CONDUCTOR	795 AAC		10654	10066	9461	8816	8162	7435	6618	5670	4510
		3" Al. Pipe (85'C)		29340	28040	26651	25156	23522	21725	19723	17427	14698
		2" Al. Pipe (85'C)		17942	17149	16300	15385	14396	13309	12100	10728	9102
	BUSH. C.T.(/5)	1200/5 M.R.	4902	4902	4902	4902	4902	4902	4902	4902	4902	4902
SECONDRY SIDE XFMR	DISCONN SW	BRIDGES "SE"	1200	2141	2036	1926	1809	1684	1549	1401	1236	1044
(@ 13kV)	CONDUCTOR	1000 MCM CU		1853	1751	1646	1532	1418	1291	1149	983	854
		2" IPS CU PIPE		2841	2677	2511	2329	2151	1952	1725	1457	1117
	BUSH. C.T.(/5)	2000/5 M.R.	1200	1214	1214	1214	1214	1200	1200	1200	1200	1200
(55/65°C)	TRANSFMR	WEST. OA/FA/FOA	937	1228	1228	1228	1228	1171	1115	1040	956	853
	22400000	13800										
		SPECIFIC TEMPERA		1214	1214	1214	1214	1171	1115	1040	956	853

2.5. Conclusion

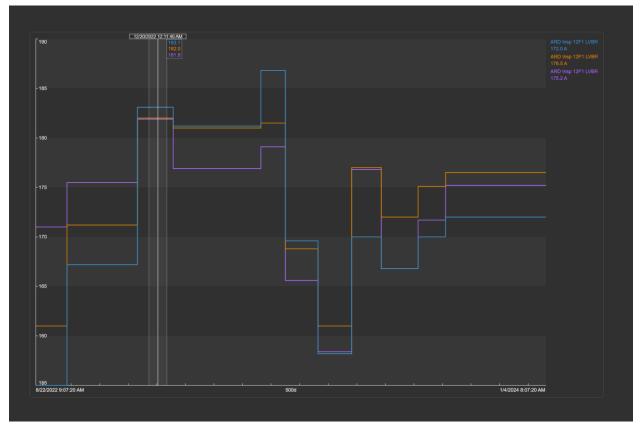
The Colville area has limited load transferability and smaller, older equipment. Existing stations were not built to allow for the growing demand in the area. Many of the longer rural feeders do not have natural gas as a power source and thus demand for future load is only going to increase. Mitigation efforts have been underway to help capacity concerns via phase balancing and conductor work but a large-scale solution is needed now. The proposed solution improves reliability through feeder ties, helps voltage concerns on feeders in the area, brings in a new transmission source adding redundancy, adds transformation capacity and most importantly reduces the load on the existing Orin 115/13kV Transformer 1 to below capacity concerns.

3. Stakeholder Acknowledgement

The Avista stakeholders listed in Table 17 have acknowledged they were informed and consulted during the development of the proposed project.

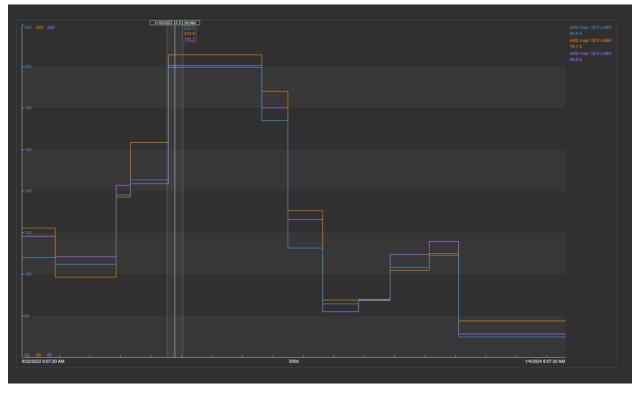
Function	Name	Date
Substation Engineering	Brian Chain	6/13/24
Transmission Engineering	Ken Sweigart	6/18/24
Distribution Engineering	Cesar Godinez	6/18/24
Protection Engineering	Kevin Damron	4/30/24
Project Delivery	Katie Prugh	5/13/24
SCADA/EMS		
Transmission Operations	Rich Hydzik	6/18/24

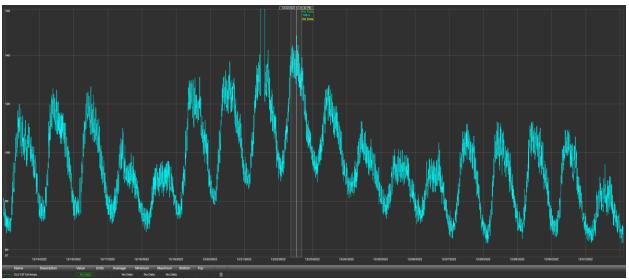
Network Engineering


Table 17: Avista stakeholder acknowledgement

4. Appendix

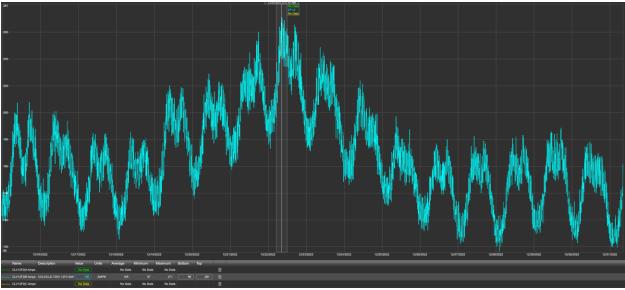
4.1. Winter Peak data


4.1.1. ARD12F1


Inspection winter peak of ~182A for all phases during December of 2022.

4.1.2. ARD12F2

Inspection winter peak of 200/224/182A for the first inspection after December of 2022.

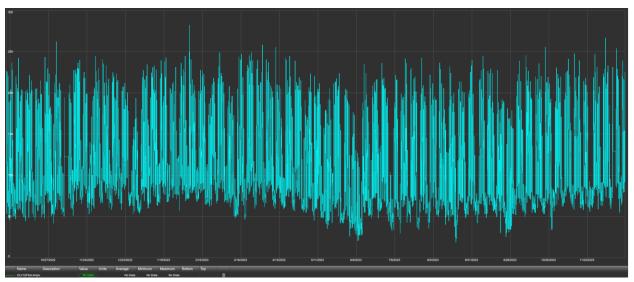

4.1.3. CLV12F1

B-phase winter peak of 128A at 4:30pm on Dec 22, 2022

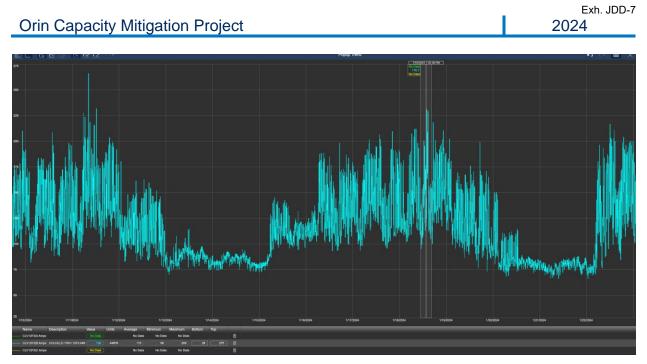


B-phase winter peak of 181A at 11:40am on Jan 15, 2023

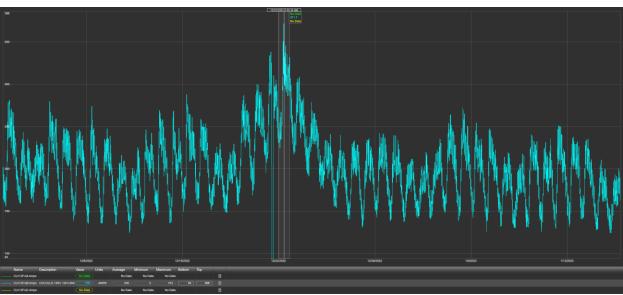
4.1.4. CLV12F2



B-phase winter peak of 271A at 8:30am on Dec 22, 2022

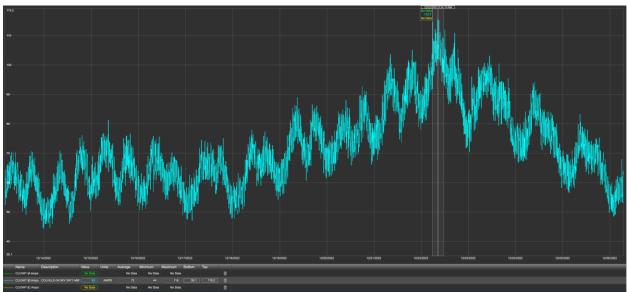

B-phase winter peak of 286A at 8:26am on Jan 15, 2023

4.1.5. CLV12F3

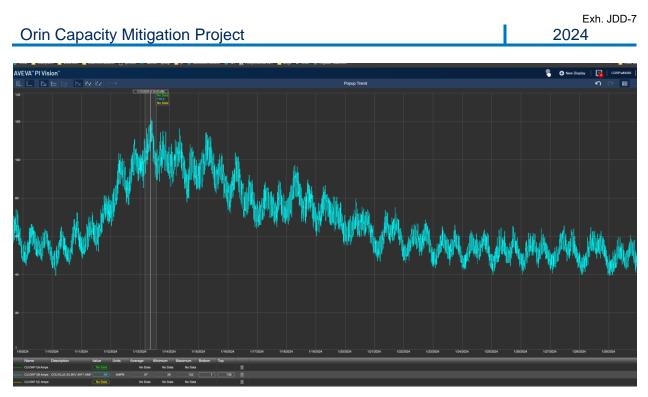

Peak did not occur on Dec 22, 2022 however the load is fairly steady with approx. 200-250A as the peak. Date used Dec 7, 2022 at 10:00pm

Exh. JDD-7

B-phase winter peak of 266A at 8:26am on Jan 18, 2023



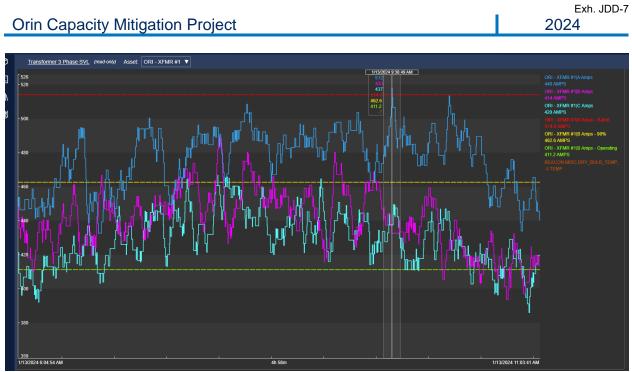
B-phase winter peak of 372A at 8:45am on Dec 22, 2022



B-phase winter peak of 366A at 9:05am on Jan 15, 2023

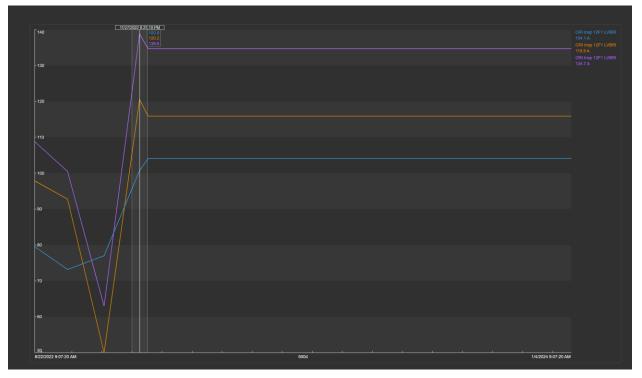
4.1.7. CLV34F1

B-phase winter peak of 114A at 8:30am on Dec 22, 2022

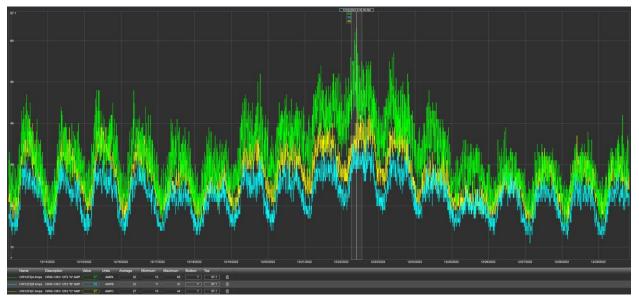


B-phase winter peak of 122A at 8:34am on Jan 15, 2023

4.1.8. Orin Transformer



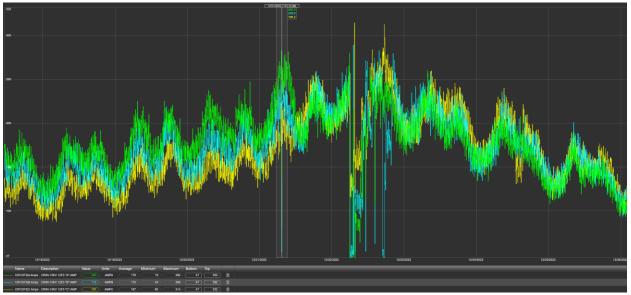
Right before ORI12F3 tripped, 430A/427A/470A and the not quite rebounded peak 390A/334A/523A~ assuming at the time the loading was similar in phasing as before the trip but with a C ph value of 523A.


518A/433A/437A on January 13, 2024

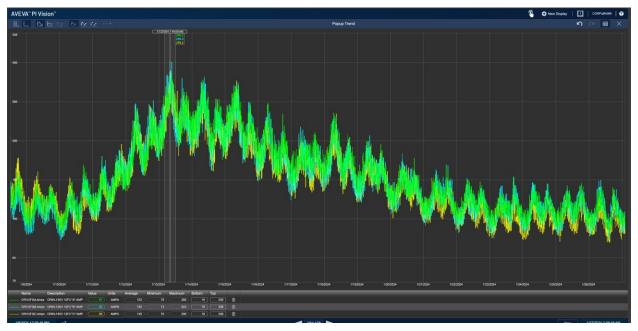
4.1.9. ORI12F1

The most recent winter seemingly accurate inspection data comes from November of 2022 with a peak of 100/120/139A

4.1.10. ORI12F2



A-phase winter peak of 63A at 9:45am on Dec 22, 2022



Winter peak of 49/51/47A at 7:49am on Jan 13, 2023

4.1.11.ORI12F3

Load shedding due to capacity constraints on Dec 22 thus the lower capacity demands from Dec 21, 2022 were used with A phase winter peak of 282A at 7:25am

Winter peak of 285/303/290A at 7:49am on Jan 13, 2023

4.2. SVL Changes

4.2.1. ARDEN TRANSFOMER NO. 1

Old and new SVL and Synergi information for the Arden transformer and ORI12F3 feeder.

		<u>(and</u>	ASSOCIATED	0 115	<u>& 13.</u>	8kV E	BUSE	<u>s)</u>					
						AMBIE	INT TE	MPER	ATURE	: (C)			
Residential (75% LF)				-30	-20	-10	0	10	20	30	40	50	
LOCATION	DEVICE	ТҮРЕ	RATING (Amps.)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	
PRIMARY SIDE XFMR	AIR SWITCH	AC Type TA-1C (BO2)	600	1070	1018	963	905	842	775	701	618	522	
	FUSE	SS HPA 115kV	100	100	100	100	100	100	100	100	100	100	
(@ 115kV)	CONDUCTOR	2/0 ACSR "Quail" (80°C)		412	392	370	346	323	297	269	238	200	
		1" IPS CU Pipe (75°C)		1607	1527	1440	1345	1240	1122	986	824	614	
		#2/0 CU (75°C)		531	503	473	441	409	374	335	290	236	
(55°C)	XFMR	HK Porter OA/FA	47	61	61	61	61	59	56	52	48	43	
	9375000	115500											
							NT TE		ATURE	: (C)			
				-30	-20	-10	0	10	20	30	40	50	
OCATION	DEVICE	ТҮРЕ	RATING (Amps.)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	
PRIMARY SIDE XFMR	AIR SWITCH	AC Type TA-1C (BO2)		8955	8520	8060	7574	7047	6486	5867	5172	4369	
		SS HPA 115kV		837	837	837	837	837	837	837	837	837	
eferred to secondary		2/0 ACSR "Quail" (80°C)		3448	3281	3097	2896	2703	2486	2251	1992	1674	
(@ 13.8kV)		1" IPS CU Pipe (75°C)		13450	12780	12052	11257	10378	9391	8252	6897	5139	
		#2/0 CU (75°C)		4441	4207	3959	3691	3423	3130	2804	2427	1975	
SECONDARY SIDE XFMF		500 MCM CU (75°C)		1222	1157	1087	1010	936	853	761	654	523	
(@ 13.8kV)		GE JKW-5 600/5 S.R. HK Porter OA/FA	conn. 600/5 (TRF=1.5)	900 514	900	900 514	900 514	900 490	900 467	900 435	900	900	
(55°C)	XFMR 9375000	13800	392	514	514	514	514	490	467	433	400	357	
55'C)	9375000	13800											
	LIMIT FOR SP	ECIFIC TEMPERATURE		514	514	514	514	490	467	435	400	357	
SYSTEM CURRENT													
	Delessestertion	evice ratings verified. R.Spacek.											

atings	Git general transformer type properties		
ps / Tertiary	Transformer type: ARD - Transformer #1 Description: Last edited Derek Hansen 06/22/20 - Adde	□ Verified ☑ Unique use	
	Name plate ratings Rated kVA (OA Rating): Impedance (% Z): 7.700 Resistance (% R): 0.430 No load losses: 14.86 kw 0.00 kvar	Factory unit Single phase 3 Phase Three phase note: Enter the Rated KVA for a three-phase unit. Define the connections to be used in primary and substation transformer instances.	Summer kVA ratings Continuous: 9562 Emergency: 9562 Winter kVA ratings Continuous: 12281 Emergency: 12281
	High-side settings KV (kVLL): 115.50 Connection: Delta ~ Low-side settings	Distribution transformer This is a distribution tran Center tapped secondary Is a default dist tran Typical service conductor:	Emergency: 12281 Structure O Enclosed Open
	KV (kVLL): 13.800 Connection: Wye-Gnd ~ Optional nominal voltage (kVLL): 12.500	Unknown Typical service (Ft): 0.0 Typical customer cnt:	Ref link:

		ARDEN - ARDE	N, WASHING	TON	1	15-13.	8kV)	XFMR	NO.	1		
		(and	ASSOCIATE	D 115	& 13	8kV F	BUSE	S)				
		Internet	///////////////////////////////////////		<u>a 10</u>			<u>-</u> /				
						AMBIE						
Residential (75% LF)	051405	THOS		-30	-20	-10	0	10	20	30	40	50
LOCATION	DEVICE	ТҮРЕ	RATING (Amps.)		AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
PRIMARY SIDE XFMR	AIR SWITCH	AC Type TA-1C (BO2)	600		1018	963	905	842	775	701	618	522
	FUSE	SS HPA 115kV	100		100	100	100	100	100	100	100	100
(@ 115kV)	CONDUCTOR	2/0 ACSR "Quail" (80°C)		412	392	370	346	323	297	269	238	200
		1" IPS CU Pipe (75°C)		1607	1527	1440	1345	1240	1122	986	824	614
		#2/0 CU (75°C)		531	503	473	441	409	374	335	290	236
(55/65°C)	XFMR	HK Porter OA/FA	52	69	69	69	69	66	62	58	54	48
	10500000	115500										
						AMBIE	NT TE	MPER	ATURI	E (C)		
				-30	-20	-10	0	10	20	30	40	60
LOCATION	DEVICE	TYPE	RATING (Amps.)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
PRIMARY SIDE XFMR	AIR SWITCH	AC Type TA-1C (BO2)		8955	8520	8060	7574	7047	6486	5867	5172	4369
	FUSE	SS HPA 115kV		837	837	837	837	837	837	837	837	837
referred to secondary	CONDUCTOR	2/0 ACSR "Quail" (80°C)		3448	3281	3097	2896	2703	2486	2251	1992	1674
(@ 13.8kV)		1" IPS CU Pipe (75°C)		13450	12780	12052	11257	10378	9391	8252	6897	5139
		#2/0 CU (75°C)		4441	4207	3959	3691	3423	3130	2804	2427	1975
SECONDARY SIDE XFMF	CONDUCTOR	500 MCM CU (75°C)		1222	1157	1087	1010	936	853	761	654	523
(@ 13.8kV)	CURRENT XFMR	GE JKW-5 800/5 S.R.	conn. 800/5 (TRF=1.5)	1200	1200	1200	1200	1200	1200	1200	1200	1200
	XFMR	HK Porter OA/FA	439	575	575	575	575	549	523	488	448	400
(55/65°C)	10500000	13800										
SYSTEM CURRENT	LIMIT FOR SP	ECIFIC TEMPERATURE		575	575	575	575	549	523	488	448	400
CREATED: 12/24/2018	Relay protective d	levice ratings verified. R.Spacek.										
UNEATED. 12/24/2010		o reflect present conditions. S.Wilso	n									
REVISION: 01/08/2024	Updated transform	ner rating to reflect 65 C transformer										
			f									
	Ratings updated t	o reflect present conditions. S. Koef	f									

Transformer type: ARD	- Transformer #1		? ×
Ratings	C Edit general transformer type properties		↑ 7
	Transformer type: ARD - Transformer #1 Description: Last edited Derek Hansen 06/22/20 - Adde	☐ Verified	
	Name plate ratings Rated kVA (OA Rating): 7500.0	Factory unit O Single phase 3 Phase	Summer kVA ratings Continuous: 10710 Emergency: 10710
	Impedance (% Z): 7.700 Resistance (% R): 0.430 No load losses: 14.86 kW 0.00 kvar	Three phase note: Enter the Rated KVA for a three-phase unit. Define the connections to be used in primary and substation transformer instances.	Winter kVA ratings Continuous: 13755
	High-side settings KV (kVLL): 115.50 Connection: Delta	Distribution transformer This is a distribution tran Center tapped secondary Is a default dist tran	Emergency: 13759 Structure O Enclosed © Open
	Low-side settings KV (kVLL): 13.800 Connection: Wye-Gnd Optional nominal voltage (kVLL): 12.500	Typical service conductor: Unknown 0.0 Typical service (Ft): 0.0 Typical customer cnt: 0.0	Ref link:
			Apply X Cancel

Exh. JDD-7 2024

Feeder: ORI12F3		11. II.		? ×
<u>૧</u> ≪ = > લ				↑ ₽
Feeder	Edit general fee	eder properties		
Volts / Ohms				Connection
Node	Feeder id:	ORI12F3	fi b	Nominal kV (kVLL): 13.200
Rates	Region:	West	~	Connection: Wye-Gnd V
Info	Planning area:	Colville	~	
Log Results	Substation:	Orin 115_13 kV	~	Ratings Summer Winter
nesales	Note: ZIP code:	22750-1		Cont. amp: 208.0 302.0
			~	Emer. amp: 208.0 302.0
	Last saved:	04:55PM on October 10, 2023 Erik		Growth
	Saved by: Built :	спк 05:17PM on September 26, 2023		Growth curve:
	Properties This is a hardened f This is a CVR feeder Display on load Color:	PV distributed generation	0.0	Multiplier Distributed load 0.00 Generation 0.00 Large customer 0.00 Spot load 0.00
				Apply Cancel

					Exh. JDD-7
Orin Capacity N	/litigation Proje	ct			2024
Feeder: ORI12F3 Feeder: Q Feeder Volts / Ohms Node	Edit general f			Connection	? × • ¤
Rates		West			
Info	Region:	Colvi		Connection:	Wye-Gnd 🗸
Log	Planning area:		115_13 kV	Ratings	
Results	Substation:	22750		<u> </u>	Summer Winter
	Note:	22750)-	Cont. amp:	431.0 600.0
	ZIP code:			Emer. amp:	431.0 600.0
	Last saved:	12:27P	M on January 04, 2024	Growth	
	Saved by:	Blacks	tock	Growth cu	irve: 2
	Built :	05:17P	M on September 26, 2023	Unknown	\sim
	Properties		PV distributed generation	Multiplier	
	This is a hardened		Feeder is saturated	Distributed	load 0.00
	This is a CVR feed	ler	Hosting cap MW: 0	0.0 Generation	
	Display on load	_	Remaining MW:).0 Large cust	
	Color:	\sim		Spot load	0.00
	L-G fault Ohms (R):	0.0	Loaded as adjacent feede Climate zone: Urban	r	
					Apply X Cancel

		<u>ORIN</u> - CO	OLVILLE, WAS	HING	TON	- 12.5	kV F	DR 12	2 <u>F3</u>			
			(via 115-13.8kV XFMR NO.1)									
Residential(75% LF)				-30	-20		NT TE	MPER 10		: (C) 30	40	50
LOCATION	DEVICE	TYPE	RATING (A)	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS	AMPS
	V.C.B.	G&W VIP378ER-12S	800	800	800	800	800	800	800	800	800	729
	DISCONN. SW.	S&C SPST (BO2)	600	1070	1018	963	905	842	775	701	618	522
		BRIDGES SPTT (BO2)	600	1070	1018	963	905	842	775	701	618	522
	CONDUCTOR	250 CU (75°C)		794	751	707	660	612	559	499	431	348
	CURRENT XFMR	1000/1 M.R.	conn. 500/1 (TRF=1.6)	800	800	800	800	800	800	800	800	800
	5% VOLT. REG.	250 KVA	525	668	668	668	668	668	643	590	512	433
	(7.5%)	MAX CURRENT =	394	561	561	561	561	522	482	443	384	325
	(10%)	668	328	467	467	467	467	435	402	369	320	271
	PROTECTION	SEL-351R (50P1P)	1500	600	600	600	600	600	600	600	600	600
		SEL-351R (51P1P)	1500	600	600	600	600	600	600	600	600	600
ISTRIBUTION LINE		1/0 ACSR "Raven" (80°C)		359	341	322	302	282	260	235	208	175
YSTEM CURREI	NT LIMIT FOR SPECI	FIC TEMPERATURE		359	341	322	302	282	260	235	208	175

	A	B	C	D	E	F	G	н		J	к	L	М
			<u>ORIN - C</u>	<u>OLVILLE, WAS</u>	HING	TON	- 12.5	<u>kV F</u>	<u>DR 1</u> 2	2 <u>F3</u>			
				<u>(via 115-13.</u>	BkV X	FMR	NO.1	<u>)</u>					
							AMBIE						
LOCA	TION	DEVICE	ТҮРЕ	RATING (A)	AMPS	20 AMPS	AMPS	AMPS	AMPS	20 AMPS	30 AMPS	40 AMPS	50 AMPS
LUCA	TION .	V.C.R.	G&W VIP378ER-12S	800	800	800	800	800	800	800	800	800	729
		DISCONN. SW.	S&C SPST (BO2)	600	1070	1018	963	905	842	775	701	618	522
			BRIDGES SPTT (BO2)	600	1070	1018	963	905	842	775	701	618	522
		CONDUCTOR	1000 kCM CU (75°C)		1862	1763	1653	1534	1420	1293	1150	983	778
			500 kCM CU (75°C)		1222	1157	1087	1010	936	853	761	654	523
			250 kCM CU (75°C)		794	752	707	658	610	557	498	430	347
		CURRENT XFMR	1000/1 M.R.	conn. 500/1 (TRF=1.6)	800	800	800	800	800	800	800	800	800
*		5% VOLT. REG.	250 KVA	525	668	668	668	668	668	647	588	500	411
		(7.5%)	MAX CURRENT =	394	573	573	573	573	529	485	441	375	309
		(10%)	668	328	478	478	478	478	441	404	367	312	257
		PROTECTION	SEL-351R (50P1P)	1500	600	600	600	600	600	600	600	600	600
			(51P1P)		600	600	600	600	600	600	600	600	600
DISTRI	BUTION LINE		556.5 AAC "Dahlia" (80°C)		1059	1006	948	886	825	759	685	601	502
SY 51	TEM CURREN	T LIMIT FOR SPECIFIC	TEMPERATURE		600	600	600	600	600	557	498	430	347
	more						105.05.5			0.07. 4115	10m/		
	NUTE		TS, IT IS ASSUMED THAT VOLTA (+/-)7.5% AND (+/-)10%, HOWE							UST. AMP	ACITY		
		LIMITSTOR THE RANGES OF	(+-)1.3% AND (+-)10%, HOWE	VER, HAVE ALSO BEEN EIS	LU TO AL	ACTUAL	OFLICATIO	IG DECISI	UND.				
CREAT	ED: 3/29/2012	Ratings reflect present cond	itions. S.Wilson										
REVISI	ON: 08/03/2017	Regulators replaced.											
		Relay protective device ratings verified. E.Andrews											
		Ratings updated to reflect pr	esent conditions. S.Wilson										
REVISI	ON: 01/08/2024	Distribution Conductor update	ed										
ALVIOI	011. 01100/2024	Distribution line conductor ve											
		Relay protective device ratings											
			esent conditions. Ryan Town										

Project models

- Base Case PI data
- <u>Base Case STF neg20</u> forecasted load at -20
- New sub 1 new sub with ORI12F3 load split plan
- <u>New sub 2</u> new sub with limited build on scenic byway and offload of most of ORI12F3 to a single new feeder
- <u>New sub 2</u> new sub with limited build on scenic byway and offload of most of ORI12F3 to a single new feeder
- <u>New sub transfer</u> demonstration that offloading of a transformer is now possible in this area

4.2.2. Alternate Routing costs

4.2.2.1. Alternate feeder routing costs

The major difference in cost for either alternate route and the selected option is the distribution build out. Separating the feeders at the station increases the costs. The preliminary project budget VROM is below.

Substation	\$6,600,000
Transmission	\$850,000
Distribution	\$2,100,000
Total	\$9,550,000

Table 18: Project cost estimate

4.2.2.2. New Orin Station costs

The major difference in cost for replacing vs adding a station is in the distribution and transmission cost reduction. This reduction would depend on where the proximity of the new station to its predecessor. Land would need to be purchased. This adds approximately \$700k and would take anywhere from 3-36 months. The preliminary project budget VROM is below. This cost does not include any future costs to help with loading on other feeders or voltage concerns at the end of feeders.

Substation	\$7,300,000					
Transmission	\$100,000					
Distribution	\$100,000					
Total	\$7,500,000					

Table 19: Project cost estimate