

Capacity Needs in the Pacific Northwest and California

December 2019

+ Project Background

+ Key Takeaways

+ Pacific Northwest Analysis

- Key policy drivers and resource adequacy approach
- Near-term view
- Mid-term view

+ California Analysis

- Key policy drivers and resource adequacy approach
- Near-term view
- Forecasted oversupply available for storage charging

+ Key Terms & Abbreviations

Project Background

National Grid hired E3 to analyze and summarize a fundamentals-based view of the Pacific Northwest (PacNW) and California capacity need

- + Study Approach
 - Top down view: Compares regional level studies on capacity need, which included updating a previous E3 study based on latest public information and comparing it against other regional studies
 - Bottom up view: Aggregates capacity need and planned additions from utility integrated resource plans (IRPs) across the region
 - The PacNW study region is defined as the "Greater NW," consisting of the US portion of the Northwest Power Pool, excluding Nevada
 - Other studies of regional need utilizing smaller regions are noted
- The views contained herein are solely those of the authors and based on public information as well as E3's analysis for its own study

Key Takeaways

- + Near-term (today-2025): both regions face capacity shortfalls
- + Mid-term (2025-2030): PacNW need grows while CA need reduced by policy/economic-driven storage additions
- + Long-term (2030-2050): both regions need to maintain and even increase firm dispatchable capacity to address deeply decarbonized energy sufficiency challenges

		Near-term (today-2025)	Mid-term (2025-2030)	Long-term (2030-2050)
	Capacity Need	Immediate capacity shortfall of 0- 1.2 GW, rising to 3-7 GW by 2025	Growing capacity shortfall of ~10 GW in 2030 (higher if more coal retires than currently planned for)	Capacity shortfall grows to ~20 GW by 2050, possibly even higher under high electrification scenarios
Pacific Northwest	Key Drivers	 Increasing winter and summer peak demand Coal retirements w/ few firm replacements Consideration of a regional RA program 	 Continued load growth and coal retirements Renewable and storage additions with diminishing capacity benefit Additional capacity additions needed 	 Energy sufficiency-based reliability planning challenge Decarbonization policies further drive renewables/ storage; do not avoid need for firm capacity Electrification loads could drive even higher winter peak
	Capacity Need	Capacity shortfall by 2021-23 of 2-3 GW	Capacity balance or slight-surplus driven by maintaining existing gas fleet + policy/economic-driven storage additions	High renewable/storage capacity added, but system capacity need driven by maintaining existing dispatchable gas fleet
California	Key Drivers	 Policy-driven (once-through cooling) and economic gas + nuclear retirements Storage begins to replace new and existing gas capacity 	 Relatively stable loads High storage additions driven by RPS/GHG policy and arbitrage economics 	 Energy sufficiency-based reliability planning challenge Decarbonization policies further increase renewables/storage; do not avoid need for firm capacity Electrification loads may increase winter and summer peak

 Multiple regional assessments point to a near-term shortfall of winter-peaking physical capacity in the Northwest region

Shortfall grows to ~5,000-10,000 MW over next 10 years

- Key differences are driven by PRM requirements, capacity counting methodologies, and resource additions (see appendix for comparison of key assumptions).
- E3 and NWPCC are truly "top-down" stochastic views, while PNUCC and BPA are closer to regional "bottom-up" analyses of utility IRPs.
- E3 study based on 2018 and 2030 RECAP LOLE modeling, shaped between those years based on forecasted coal-retirement schedules. This study updated previous analysis to include coal retirements from PacifiCorp's 2019 Draft IRP. E3's need does not incorporate any planned additions.

PacNW Near to Mid-Term Capacity Need Bottom-Up Capacity Need vs. Planned Additions

- + Through their IRPs, individual utilities have identified their capacity needs over a 20-year horizon
 - Aggregate "bottom-up" need reaches ~10,000 MW by 2030
 - IRP planned additions do not adequately address full capacity need, leaving ~3,000 MW of additional need

Summary of Utility IRP-based Capacity Needs

*E3 also considered Grant, Chelan, and Douglas Counties but they do not report a shortage in capacity

PacNW Capacity Need vs. Planned Additions

Note: E3 top-down assessment utilizes RECAP modeling results from E3's 2019 study <u>Resource Adequacy in the Pacific Northwest</u>. This study further shapes the annual capacity need based on the latest proposed coal retirements schedules (as of Oct 2019). E3's capacity deficit does not include any planned additions.

Pacific Northwest Analysis

PacNW Key Policy Drivers

+ Coal retirements are driven by policy, planning, and politics

- 4.5 GW by 2030
- + Clean energy legislation and voluntary goals are expanding
 - WA/OR coal prohibitions
 - WA 100% carbon-free by 2045 -OR may follow
 - Idaho Power voluntary goal of 100% clean energy by 2045

Economy-wide GHG reductions will drive additional impacts

 Electrification of transportation and building loads may significantly increase peak loads

PacNW Resource Adequacy Approach

+ The Northwest has no existing regional RA program

• There are independent regional RA assessments (BPA, PNUCC, etc.), but no regulatory program to coordinate RA planning and procurement

+ Reliability planning done through utility IRPs

- Lack of consistency in assumptions (e.g. load growth, capacity contributions)
- Lack of consistency in reliability standards (e.g. PRM vs. LOLE vs. other reliability metrics)

+ Top-down view of regional need may not match the bottom-up (IRP-based) view

- Reliance in IRPs on market purchases (aka frontoffice transactions) may lead to double counting
- The region (led by the Northwest Power Pool) is considering developing a regional RA program

Source: PNUCC 2019 Northwest Regional Forecast

PacNW Existing Resources 2018

Load + Resource Balar	nce (Greater NW =	• wA, OR, ID, par	ts of UI, WY)
Load			Load GW
Peak Load			42.1
Firm Exports			1.1
PRM (12%)			5.2
Total Requirement			48.4
Resources	Nameplate GW	Effective %	Effective GW
Coal	10.9	100%	10.9
Gas	12.2	100%	12.2
Biomass & Geothermal	0.6	100%	0.6
Nuclear	1.2	100%	1.2
Demand Response	0.6	50%	0.3
Hydro	35.2	53%	18.7
Wind	7.1	7%	0.5
Solar	1.6	12%	0.2
Storage	0	-	0
Total Internal Generation	69.1		44.7
Firm Imports	3.4	74%	2.5
Total Supply	72.5		47.2
Surplus/Deficit			
Capacity Surplus/Deficit			-1.2

Source: E3 Resource Adequacy in the Pacific Northwest, 2019

Note: other top-down analyses (e.g. NWPCC) suggest need starting in the 2020-2021 timeframe.

Effective GW

PacNW Near-Term Capacity Need Key Drivers

- A combination of departing industrial loads, generation additions, and sustained attention to energy efficiency left the Northwest with excess capacity for nearly two decades
- Two key drivers of the Northwest's capacity challenges have been identified in recent studies:
 - 1. Thermal (largely coal) resource retirements
 - 2. Peak load growth
- Both trends are expected to continue across the West as states and provinces continue to pursue decarbonization of both the economy and the electric supply

WECC Coal Retirement Scenarios (cumulative)

PacNW Near-Term Capacity Need Winter vs. Summer Needs

+ PacNW is a winter peaking region*

- Summer peak is significant and continues to climb ("dual peaking")
- Hydro resources and imports are generally less available in summer

The region faces both winter and summer load-resource balance deficits

* NOTE: various definitions are used for the Northwest Region. The Northwest Power Pool ("Greater Northwest" region) exhibits a dual winter/summer peak, while the PNUCC region shown here has a stronger winter peak.

PNUCC Summer vs. Winter Peak Demand

PNUCC Summer vs. Winter Need Forecast

B PacNW Near-Term Capacity Need Winter vs. Summer Needs

 Reducing the winter peak in the NW is challenging due to its multi-day duration & daily dual-peak nature coupled with inconsistent wind and solar availability

Summer Peak Load

Renewables Summer Profile

Renewables Winter Profile

Winter Peak Load

PacNW Near to Mid-Term Capacity Need 2019 E3 Study Details

+ E3 2019 RA study considered Greater NW capacity needs under changing resource portfolios

- The study region consists of the U.S. portion of the Northwest Power Pool (excluding Nevada)
- Did NOT consider high electrification loads, which may further increase capacity needs

Peak Demand (+ firm exports + PRM)	48 GW	53 GW	53 GW	By 2030, load
Coal Capacity	11 GW	6 GW	0 GW	retirements lead to a 10-16
Capacity Shortfall	1.2 GW	10 GW	16 GW	GW capacity need
Annual Additions ('18-'30)	additions n/a ~600 MW/yr		~1,300 MW/yr	

Energy+Environmental Economics

Note: utilizes RECAP modeling results from E3's 2019 study <u>Resource Adequacy in the Pacific Northwest</u>, but includes the latest proposed coal retirements schedules (as of Oct 2019).

+ Planned capacity additions reach over 13,000 MW by 2030

- Most new additions are wind and solar
- Little new firm capacity online before 2025
- Over-reliance on "market purchases" may stress the region's available physical capacity

* Estimate of effective capacity estimated using marginal ELCCs from E3's RECAP Study of 25% for solar, 40% for wind, 98% for storage Note: storage's ELCC quickly declines after the first tranche of additions

+ Multiple utilities are planning large capacity additions to address their needs

- Utilities subject to strong clean energy policies may seek or require non-emitting new capacity
- PacifiCorp has the majority of the regional capacity need / planned additions, after their planned coal retirements
- + A PacNW regional RA program may further facilitate utility coordination needed for new large infrastructure investments in new resource adequacy capacity

	Planned Addition By Utilit	y (Nameplate MW)			
	2020	2025	2030		
Portland General Electric	0	805	805		 Significant need by
Idaho	0	276	967		2025 for utilities w/
Puget Sound Energy	126	430	1170		mandatory or
Avista	15	15	360		voluntary clean
Pacificorp	247	6153	9198		energy policies
NorthWestern Energy	0	735	798		 Market opportunity
Bonneville Power Administration	0	0	0		for non-emitting
Municipal Utilities	0	0	0		capacity, though
Total Planned Additional Capacity (MW)	388	8413	13298	_	some gas may be
	*Does not include	EE and DSM			reliability

PacNW Near to Mid-term Capacity Need Top-Down Sensitivities vs. Planned Additions

+ Top-down sensitivity scenarios were considered based on E3 study 2030 baseline

- Key drivers are level of coal retirements and load growth (0.4 1.1% / yr considered)
- Shortfall, before planned additions, ranges from 7.4 to 15.8 GW assuming firm imports of 2.5 GW
- Even with all planned additions from latest IRP filings, region is still ~3 GW short in 2030

					Capa	city Defi	cit Drive	rs					
	Scenario	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
_ c	Low Peak Growth (relative to base)	+196	+394	+594	+797	+1,002	+1,209	+1,418	+1,629	+1,843	+2,059	+2,277	+2,498
-oad rivel	Base Peak Growth	-1,503	-1,808	-2,116	-2,427	-2,741	-3,058	-3,377	-3,699	-4,024	-4,353	-4,684	-5,018
	High Peak Growth (relative to base)	-142	-287	-435	-585	-738	-893	-1,052	-1,213	-1,377	-1,544	-1,713	-1,886
en el	Base Schedule	-602	-1,770	-1,894	-1,894	-2,251	-2,251	-3,389	-3,389	-4,136	-4,492	-4,492	-4,492
C 00 drive	No Coal by 2030 (relative to base)	0	0	0	0	0	-884	-1,767	-2,651	-3,534	-4,418	-5,302	-6,185

California Analysis

CA Key Policy Drivers

+ Clean energy policy dominates future electric loads and generation trends

- SB 100 mandates 100% RPS and zero-carbon (as % of retail sales) by 2045
- GHG targets likely to drive increasing building and transportation electric loads

+ Retail market fragmentation continues to challenge reliability planning

- IOUs generally long on system and flexible RA
- Increasing CCA and DA loads so far have not been signing long-term PPAs for stand-alone capacity resources, though renewable (i.e. solar+storage) PPAs have been signed

+ Gas plant retirements are impacting the state's capacity needs

- Driven by once-through cooling policy, declining energy market revenues, and increasing competitiveness of battery storage
- While not officially disallowed, recent gas plant approvals have been revoked prior to construction
 - E.g. <u>LADWP OTC repowering</u>, <u>NRG's Puente</u> and Calpine's Mission Rock plants

California GHG Emissions Reduction Targets

Source: E3 PATHWAYS analysis for 80% GHG reduction by 2050. (Note: both SB100 and GHG goals may allow small levels of emissions to remain in the electric sector by 2050.)

Source: E3 PATHWAYS analysis, High Electrification Scenario.

CA Near-term Capacity Need CPUC IRP Proceeding View

- + The CPUC's IRP proceeding has identified a tightening of the near-term CAISO capacity balance
- November 2019 CPUC Decision (D.19-11-016) includes a 3,300 MW capacity procurement order
 - Also includes a delay of once-through cooling coastal plant retirements
 - New procurement via all-source solicitations; 50% online by Aug. 2021, 75% by Aug. 2022, 100% by Aug. 2023

System RA Supply (Sept. NQC with revised ELCC)

Source: CPUC, Assigned Commissioner and Administrative Law Judge's Ruling Initiating Procurement Track and Seeking Comment on Potential Reliability Issues, June 20, 2019 (R.16-02-007)

CA Near-term Capacity Need CPUC IRP Filings

- + Given California's centralized market and regulatory structure, it does not have the same distinction between top-down vs. bottom-up as the Northwest
- + CAISO reliability needs are coordinated and planned through the CPUC's RA and IRP processes
 - CAISO ~80% of CA load
 - All CPUC-jurisdictional LSEs and CAISO IPPs are captured through the CPUC's view of nearterm capacity need
 - Municipal utilities reliability planning is coordinated with their governing boards
- LSEs submitted IRPs through the 2018 CPUC IRP process, but IRPs did not address RA needs

Capacity ne	eed per 2018 LS	E IRP Filings
LSE	Need Year	Need Volume (MW)
PG&E	2026	n/a
SCE	n/a	n/a
SDG&E	n/a	n/a
CCAs	n/a	n/a
ESPs	n/a	n/a
IRP fil information	ings contain m on LSEs' capa	ninimal acity need

% of existing CAIS	O capacity include	d in 20	18 LSE	IRPs
General Type	Resource subcategory	2020	2025	2030
	CC	47%	32%	32%
	СТ	62%	24%	18%
Thermal	Cogen	87%	20%	11%
	ICE	77%	77%	77%
	Steam	3%	16%	0%
Geothermal	Geothermal	70%	51%	49%
Biomass	Biomass	27%	27%	27%

Source: CPUC analysis of 2018 LSE IRP filings

CPUC analysis shows LSE IRPs do not include capacity procurement (LSEs will rely on RA market + generators will be subject to merchant status and potential retirement)

CA Near-term Capacity Need

+ LADWP (~10% of CA-wide load)

- Last IRP (called the <u>Strategic Long-term Resource Plan</u>) released in 2017
 - ~5,000 MW capacity shortfall by 2030 driven by coal retirements + LA basin thermal retirements

Table 4-2. RESOURCES RECOMMENDED FOR RESOURCE ADEQUACY BY CALENDAR YEAR

Capacity (MW)	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	Proposed Additio	<u>ns</u>
Energy Efficiency	72	143	215	281	376	417	565	665	778	897	637	636	638	1084		
Demand Response	68	88	125	175	225	275	325	375	425	475	500	500	500	500	renewables	
New Renewable	14	94	159	201	314	205	364	511	489	546	378	386	455	796		
IPP Replacement CC	0	0	0	0	0	0	0	0	553	553	553	553	553	553	Fossil	
Re-Powered In- Basin Thermal	0	0	0	0	0	0	0	0	310	619	619	619	929	1137	I USS TEPSWEI	
Storage	0	0	0	0	0	147	147	147	147	147	147	147	147	147	Storage	
Capacity Surplus/(Shortfall)	(660)	(59)	(54)	(49)	113	260	257	113	(163)	(272)	(144)	(188)	(520)	(528)		
Total Replacement	814	383	554	706	915	1044	1401	1698	2865	3510	2978	3030	3743	4746		

- Big changes since last IRP...
 - SB 100 + LA Mayor's even more aggressive Green New Deal (100% RPS by 2045)
 - LA Mayor's decision to NOT repower in-basin thermal (creates additional ~1,500 MW need)
 - Next IRP cycle on hold until LA completes "LA100" 100% feasibility study

CA Oversupply (2025)

+ E3's modeling shows midday oversupply in winter + spring months in 2025

• Excess energy will be either a) exported, b) stored, or c) curtailed

	Oversupply in California in 2025													
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annua														
Avg Hours/Day	6	5	7	8	8	5	0	0	0	0	3	0	4	
Avg Oversupply GWh/day	23	8	40	37	56	8	0	0	0	0	5	0	15	
Total GWh/month	725	236	1,245	1,101	1,722	247	0	0	0	0	146	0	5,421	

Source: E3's Internal Price Forecasting Model

CA Oversupply (2030)

+ E3's modeling shows consistent midday oversupply conditions by 2030

- On average, CA has excess generation for multiple hours per day, every month of the year
- Energy arbitrage value drives increasing levels of storage

	Oversupply in California in 2030													
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Anne														
Avg Hours/Day	8	8	9	9	10	9	8	7	7	7	7	6	8	
Avg Oversupply GWh/day	104	70	152	133	181	100	80	66	66	49	62	28	91	
Total GWh/month	3,237	1,962	4,715	3,977	5,612	3,014	2,485	2,042	1,968	1,513	1,854	864	33,243	

Source: E3's Internal Price Forecasting Model

CA Oversupply (2035)

+ E3's modeling shows consistent midday oversupply conditions by 2030

- On average, CA has excess generation for multiple hours per day, every month of the year
- Storage build reaches almost 30 GW

	Oversupply in California in 2035													
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annu														
Avg Hours/Day	8	8	9	10	10	10	10	9	9	8	8	6	9	
Avg Oversupply GWh/day	185	132	250	224	290	191	177	155	149	115	126	69	172	
Total GWh/month	5,721	3,687	7,764	6,705	8,991	5,720	5,487	4,803	4,482	3,568	3,770	2,145	62,845	

Source: E3's Internal Price Forecasting Model

Key Terms & Abbreviations

Key Terms & Abbreviations

- BPA: Bonneville Power Administration
- CAGR: Compound Annual Growth Rate
- CC: Combined Cycle Power Plant
- CCA: Community Choice Aggregator
- CP: Coincident Peak
- DER: Distributed Energy Resource
- ELCC: Effective Load Carrying Capability
- LOLE: Loss of Load Expectation
- LOLP: Loss of Load Probability
- MIC: Maximum Import Capability
- NCP: Non-Coincident Peak
- NWE: NorthWestern Energy
- NWPCC: Northwest Power and Conservation Council
- PNUCC: Pacific Northwest Utilities Conference Committee
- PRM: Planning Reserve Margin
- RECAP: E3's Renewable Energy Capacity Planning Tool (<u>www.ethree.com/recap</u>)
- SCC: Social Cost of Carbon

Thank You

Energy and Environmental Economics, Inc. (E3)

44 Montgomery St., Suite 1500

San Francisco, CA 94104

(415) 391-5100

ethree.com

Arne Olson, Sr. Partner (arne@ethree.com)

Kush Patel, Partner (kush@ethree.com)

Aaron Burdick, Sr. Consultant (aaron.burdick@ethree.com)