

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, August 25, 2022
Chip Byrd
Sevenson Environmental Services, Inc.
2749 Lockport Road
Niagara Falls, NY 14305

RE: A2G0558 - Gasco -- Filtercake - 111323

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2G0558, which was received by the laboratory on 7/20/2022 at 12:10:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 3.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFOR	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FC-071922-1952	A2G0558-01	Solid	07/19/22 04:15	07/20/22 12:10

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: <u>G</u>

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocarb	ons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FC-071922-1952 (A2G0558-01)				Matrix: Solid Batch: 22G0729				
Diesel	19400000	1730000	3460000	ug/kg dry	40	07/23/22 00:48	NWTPH-Dx	F-13
Oil	ND	3460000	6920000	ug/kg dry	40	07/23/22 00:48	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Red	covery: %	Limits: 50-150 9	% 40	07/23/22 00:48	NWTPH-Dx	S-01

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project:

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

Gasco -- Filtercake

Gasol	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
FC-071922-1952 (A2G0558-01RE1)				Matrix: Solid Batch: 22G0857				V-15			
Gasoline Range Organics	245000	20600	41300	ug/kg dry	50	07/27/22 02:42	NWTPH-Gx (MS)				
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ry: 104 % 101 %	Limits: 50-150 % 50-150 %		07/27/22 02:42 07/27/22 02:42	NWTPH-Gx (MS) NWTPH-Gx (MS)				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FC-071922-1952 (A2G0558-01RE1)				Matrix: Soli	id	Batch:	22G0857	V-15
Acetone	ND	8250	8250	ug/kg dry	50	07/27/22 02:42	5035A/8260D	ICV-02
Acrylonitrile	ND	413	825	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Benzene	128	41.3	82.5	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Bromobenzene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Bromochloromethane	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Bromodichloromethane	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Bromoform	ND	825	825	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Bromomethane	ND	4130	4130	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
2-Butanone (MEK)	ND	4130	4130	ug/kg dry	50	07/27/22 02:42	5035A/8260D	ICV-02
n-Butylbenzene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
sec-Butylbenzene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
tert-Butylbenzene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Carbon disulfide	ND	2060	4130	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Carbon tetrachloride	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Chlorobenzene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Chloroethane	ND	2060	4130	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Chloroform	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Chloromethane	ND	2060	2060	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
2-Chlorotoluene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
4-Chlorotoluene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Dibromochloromethane	ND	413	825	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	2060	2060	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Dibromomethane	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2-Dichlorobenzene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,3-Dichlorobenzene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,4-Dichlorobenzene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Dichlorodifluoromethane	ND	413	825	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
,1-Dichloroethane	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,1-Dichloroethene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
vis-1,2-Dichloroethene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
rans-1,2-Dichloroethene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	ic Compound	ds by EPA 82	:60D			
	Sample	Detection	Reporting		_ _	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FC-071922-1952 (A2G0558-01RE1)				Matrix: Soli	id	Batch:	22G0857	V-15
1,2-Dichloropropane	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,3-Dichloropropane	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
2,2-Dichloropropane	ND	413	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	Q-30
1,1-Dichloropropene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
cis-1,3-Dichloropropene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
trans-1,3-Dichloropropene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Ethylbenzene	569	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Hexachlorobutadiene	ND	413	825	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
2-Hexanone	ND	4130	4130	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Isopropylbenzene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
4-Isopropyltoluene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Methylene chloride	ND	2060	4130	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	2060	4130	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Naphthalene	23100	413	825	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
n-Propylbenzene	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Styrene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Tetrachloroethene (PCE)	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Toluene	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2,3-Trichlorobenzene	ND	1030	2060	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2,4-Trichlorobenzene	ND	1030	2060	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,1,1-Trichloroethane	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,1,2-Trichloroethane	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Trichloroethene (TCE)	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
Trichlorofluoromethane	ND	413	825	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2,3-Trichloropropane	ND	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,2,4-Trimethylbenzene	1110	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
1,3,5-Trimethylbenzene	380	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	J
Vinyl chloride	ND	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	
m,p-Xylene	342	206	413	ug/kg dry	50	07/27/22 02:42	5035A/8260D	J
o-Xylene	309	103	206	ug/kg dry	50	07/27/22 02:42	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	U	nits	Dilution	Date Analyzed	Method Ref.	Notes	
FC-071922-1952 (A2G0558-01RE1)				Mat	rix: Soli	d	Batch:	22G0857	V-15	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits:	80-120 %	6 I	07/27/22 02:42	5035A/8260D		
Toluene-d8 (Surr)			96 %		80-120 %	6 I	07/27/22 02:42	5035A/8260D		
4-Bromofluorobenzene (Surr)			95 %		79-120 %	6 I	07/27/22 02:42	5035A/8260D		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Kesuit	Liiiit	Limit	Uillis	Dilution	Anaryzeu	wiemou Kei.	
FC-071922-1952 (A2G0558-01)					t l	Batch: 2	22G0954	TCLP
Benzene	ND	6.25	12.5	ug/L	50	07/28/22 15:30	1311/8260D	
2-Butanone (MEK)	ND	250	500	ug/L	50	07/28/22 15:30	1311/8260D	
Carbon tetrachloride	ND	25.0	50.0	ug/L	50	07/28/22 15:30	1311/8260D	
Chlorobenzene	ND	12.5	25.0	ug/L	50	07/28/22 15:30	1311/8260D	
Chloroform	ND	25.0	50.0	ug/L	50	07/28/22 15:30	1311/8260D	
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50	07/28/22 15:30	1311/8260D	
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50	07/28/22 15:30	1311/8260D	
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50	07/28/22 15:30	1311/8260D	
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50	07/28/22 15:30	1311/8260D	
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50	07/28/22 15:30	1311/8260D	
Vinyl chloride	ND	12.5	25.0	ug/L	50	07/28/22 15:30	1311/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107%	Limits: 80-120 %	1	07/28/22 15:30	1311/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	07/28/22 15:30	1311/8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	07/28/22 15:30	1311/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compou	ınds by EPA	8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FC-071922-1952 (A2G0558-01)				Matrix: Soli	id	Batch: 2	22H0028	
Acenaphthene	146000	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Acenaphthylene	ND	12500	12500	ug/kg dry	200	08/01/22 18:31	EPA 8270E	R-02
Anthracene	111000	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Benz(a)anthracene	61300	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Benzo(a)pyrene	69400	2500	4990	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Benzo(b)fluoranthene	55300	2500	4990	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Benzo(k)fluoranthene	16800	2500	4990	ug/kg dry	200	08/01/22 18:31	EPA 8270E	M-05
Benzo(g,h,i)perylene	44200	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Chrysene	79100	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Dibenz(a,h)anthracene	4450	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Fluoranthene	274000	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Fluorene	93000	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Indeno(1,2,3-cd)pyrene	37900	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
1-Methylnaphthalene	52400	3330	6650	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2-Methylnaphthalene	59200	3330	6650	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Naphthalene	7360	3330	6650	ug/kg dry	200	08/01/22 18:31	EPA 8270E	Q-42
Phenanthrene	540000	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Pyrene	326000	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Carbazole	4340	2500	4990	ug/kg dry	200	08/01/22 18:31	EPA 8270E	J, Q-37
Dibenzofuran	11200	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2-Chlorophenol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
4-Chloro-3-methylphenol	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2,4-Dichlorophenol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2,4-Dimethylphenol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2,4-Dinitrophenol	ND	41500	83200	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	41500	83200	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2-Methylphenol	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
3+4-Methylphenol(s)	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2-Nitrophenol	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
4-Nitrophenol	ND	33300	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Pentachlorophenol (PCP)	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Phenol	ND	3330	6650	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project:

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

Gasco -- Filtercake

Analyta	Sample Result	Detection Limit	Reporting Limit	Heita	Dibotic	Date Analyzed	Mathad D-f	N T 4
Analyte	Kesuit	Limit	Limit	Units	Dilution	-	Method Ref.	Note
FC-071922-1952 (A2G0558-01)				Matrix: Sol	id	Batch: 22H0028		
2,3,5,6-Tetrachlorophenol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2,4,5-Trichlorophenol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Nitrobenzene	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2,4,6-Trichlorophenol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	25000	49900	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Butyl benzyl phthalate	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Diethylphthalate	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Dimethylphthalate	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Di-n-butylphthalate	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Di-n-octyl phthalate	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
N-Nitrosodimethylamine	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
N-Nitrosodiphenylamine	ND	13100	13100	ug/kg dry	200	08/01/22 18:31	EPA 8270E	R-02
Bis(2-Chloroethoxy) methane	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Hexachlorobenzene	ND	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Hexachlorobutadiene	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Hexachlorocyclopentadiene	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Hexachloroethane	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2-Chloronaphthalene	ND	1660	3330	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
,2,4-Trichlorobenzene	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
l-Bromophenyl phenyl ether	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
l-Chlorophenyl phenyl ether	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Aniline	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
l-Chloroaniline	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
2-Nitroaniline	ND	33300	66500	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
-Nitroaniline	ND	33300	66500	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
-Nitroaniline	ND	33300	66500	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
,4-Dinitrotoluene	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
,6-Dinitrotoluene	ND	16600	33300	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Benzoic acid	ND	208000	415000	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Benzyl alcohol	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
FC-071922-1952 (A2G0558-01)				Matrix: Solid	d	Batch:	22H0028	
Isophorone	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Azobenzene (1,2-DPH)	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	41500	83200	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
3,3'-Dichlorobenzidine	ND	33300	66500	ug/kg dry	200	08/01/22 18:31	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	41500	83200	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
1,3-Dinitrobenzene	ND	41500	83200	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
1,4-Dinitrobenzene	ND	41500	83200	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Pyridine	ND	8320	16600	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
1,2-Dichlorobenzene	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
1,3-Dichlorobenzene	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
1,4-Dichlorobenzene	ND	4150	8320	ug/kg dry	200	08/01/22 18:31	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recon	very: 77 %	Limits: 37-122 %	6 200	08/01/22 18:31	EPA 8270E	S-03
2-Fluorobiphenyl (Surr)			94 %	44-120 %	5 200	08/01/22 18:31	EPA 8270E	S-0.
Phenol-d6 (Surr)			95 %	33-122 %		08/01/22 18:31	EPA 8270E	S-0.
p-Terphenyl-d14 (Surr)			97 %	54-127 %	5 200	08/01/22 18:31	EPA 8270E	S-0
2-Fluorophenol (Surr)			59 %	35-120 %	5 200	08/01/22 18:31	EPA 8270E	S-0
2,4,6-Tribromophenol (Surr)			33 %	39-132 %	6 200	08/01/22 18:31	EPA 8270E	S-03

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting			Date									
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes							
FC-071922-1952 (A2G0558-01)		Matrix: Solid													
Batch: 22G0896															
Arsenic	8540	2340	4690	ug/kg dry	10	07/27/22 15:25	EPA 6020B								
Barium	179000	2340	4690	ug/kg dry	10	07/27/22 15:25	EPA 6020B								
Cadmium	ND	469	937	ug/kg dry	10	07/27/22 15:25	EPA 6020B								
Chromium	ND	2340	4690	ug/kg dry	10	07/27/22 15:25	EPA 6020B								
Lead	ND	469	937	ug/kg dry	10	07/27/22 15:25	EPA 6020B								
Mercury	ND	187	375	ug/kg dry	10	07/27/22 15:25	EPA 6020B								
Selenium	ND	2340	4690	ug/kg dry	10	07/27/22 15:25	EPA 6020B								
Silver	ND	469	937	ug/kg dry	10	07/27/22 15:25	EPA 6020B								

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

	TCLP Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
FC-071922-1952 (A2G0558-01)		Matrix: Solid										
Batch: 22H0098												
Arsenic	ND		0.100	mg/L	10	08/02/22 22:34	1311/6020B					
Barium	ND		5.00	mg/L	10	08/02/22 22:34	1311/6020B					
Cadmium	ND		0.100	mg/L	10	08/02/22 22:34	1311/6020B					
Chromium	ND		0.100	mg/L	10	08/02/22 22:34	1311/6020B					
Lead	ND		0.0500	mg/L	10	08/02/22 22:34	1311/6020B					
Mercury	ND		0.00700	mg/L	10	08/02/22 22:34	1311/6020B					
Selenium	ND		0.100	mg/L	10	08/02/22 22:34	1311/6020B					
Silver	ND		0.100	mg/L	10	08/02/22 22:34	1311/6020B					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Project Number: 111323
Niagara Falls, NY 14305 Project Manager: Chip Byrd

Gasco -- Filtercake

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

Project:

	Soluble Cyanide	by UV Dige	stion/Gas Dif	fusion/Ampe	rometric I	Detection		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FC-071922-1952 (A2G0558-01)				Matrix: Solid Batch: 22G0718				
Total Cyanide	5420	429	858	ug/kg dry	2	07/22/22 12:33	D7511-12	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
FC-071922-1952 (A2G0558-01)				Matrix: So	olid	Batch:	22G0677					
% Solids	22.6		1.00	%	1	07/22/22 07:21	EPA 8000D					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

ANALYTICAL SAMPLE RESULTS

TCLP Extraction by EPA 1311													
Sample Detection Reporting Date													
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
FC-071922-1952 (A2G0558-01)				Matrix: Solid Batch: 22H0052									
TCLP Extraction	PREP			N/A	1	08/01/22 17:09	EPA 1311						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	esel and/o	r Oil Hyd	rocarbor	s by NW	ГРН-Dx						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Not	tes
Batch 22G0729 - EPA 3546 (F	uels)						Sol	id					
Blank (22G0729-BLK1)			Prepared	: 07/22/22 1	0:00 Ana	lyzed: 07/22	/22 23:06						
NWTPH-Dx													
Diesel	ND	9090	18200	ug/kg we									
Oil	ND	18200	36400	ug/kg we	t 1								
Surr: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-	150 %	Dili	ution: 1x						
LCS (22G0729-BS1)			Prepared	: 07/22/22 1	0:00 Ana	lyzed: 07/22	/22 23:26						
NWTPH-Dx													
Diesel	114000	10000	20000	ug/kg we	t 1	125000		91	38-132%				
Surr: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-	150 %	Dili	ution: 1x						
Duplicate (22G0729-DUP1)			Prepared	: 07/22/22 1	0:00 Ana	lyzed: 07/23	/22 00:07						
QC Source Sample: Non-SDG (A	2G0306-01)												
Diesel	5760000	386000	773000	ug/kg we	t 40		8230000			35	30%		Q-1
Oil	3690000	773000	1550000	ug/kg we	t 40		3910000			6	30%		
Surr: o-Terphenyl (Surr)		_	covery: %	Limits: 50-			ution: 40x					S-01	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: G

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ns (Ben	zene thro	igh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0745 - EPA 5035A							Soi	il				
Blank (22G0745-BLK1)			Prepared	: 07/22/22	08:00 Ana	yzed: 07/22	/22 15:22					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	1670	3330	ug/kg w	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	5	0-150 %		"					
LCS (22G0745-BS2)			Prepared	: 07/22/22	08:00 Ana	yzed: 07/22	/22 14:55					
NWTPH-Gx (MS)												
Gasoline Range Organics	25800	2500	5000	ug/kg w	vet 50	25000		103	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 5	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"					
Duplicate (22G0745-DUP1)			Prepared	: 07/21/22	19:02 Ana	yzed: 07/22	/22 20:19					
QC Source Sample: Non-SDG (A2	2G0571-01)											
Gasoline Range Organics	6190000	969000	1940000	ug/kg w	vet 5000		6650000			7	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 5	0-150 %	Dilı	ition: 1x					
1,4-Difluorobenzene (Sur)			99 %	.5	0-150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Benz	ene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0857 - EPA 5035A							So	il				
Blank (22G0857-BLK1)			Prepared	d: 07/26/22	08:38 Ana	lyzed: 07/27	/22 00:54					
NWTPH-Gx (MS) Gasoline Range Organics	ND	1670	3330	ug/kg w								
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 99 % 101 %	Limits: 50	0-150 % 0-150 %	Dilı	ution: Ix					
LCS (22G0857-BS2)			Prepared	d: 07/26/22	08:38 Ana	lyzed: 07/27	/22 00:27					AMEND, X
NWTPH-Gx (MS) Gasoline Range Organics	24400	2500	5000	ug/kg w	et 50	25000		97	80-120%			
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 101 % 101 %	Limits: 50	0-150 % 0-150 %	Dilı	ution: 1x					
Duplicate (22G0857-DUP1)			Prepared	d: 07/23/22	14:58 Ana	lyzed: 07/27	/22 04:03					
QC Source Sample: Non-SDG (A2	2G0691-02)											
Gasoline Range Organics	ND	2650	5290	ug/kg di	ry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 102 % 100 %	Limits: 50	0-150 % 0-150 %	Dilı	ution: Ix					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22G0745 - EPA 5035A Soil Blank (22G0745-BLK1) Prepared: 07/22/22 08:00 Analyzed: 07/22/22 15:22 5035A/8260D ND 333 ug/kg wet 50 ICV-02 Acetone ND 33.3 66.7 50 Acrylonitrile ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 ND 8.33 16.7 Bromobenzene ug/kg wet 50 Bromochloromethane ND 16.7 33.3 50 ug/kg wet ND Bromodichloromethane 16.7 33.3 ug/kg wet 50 Bromoform ND 33.3 ug/kg wet 50 66.7 333 333 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 333 333 ug/kg wet 50 ICV-02 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 tert-Butylbenzene 16.7 50 ug/kg wet ---Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 ug/kg wet Dibromomethane ND 16.7 33.3 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 Dichlorodifluoromethane ND 33.3 66.7 ug/kg wet 50 ---ND 8.33 1,1-Dichloroethane 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 8.33 16.7 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22G0745 - EPA 5035A Soil Blank (22G0745-BLK1) Prepared: 07/22/22 08:00 Analyzed: 07/22/22 15:22 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane 2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 333 2-Hexanone ND 167 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 4-Isopropyltoluene ug/kg wet 333 Methylene chloride ND 167 ug/kg wet 50 ND 333 4-Methyl-2-pentanone (MiBK) 167 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 ND 33.3 66.7 Naphthalene ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 50 ug/kg wet 1.1.2.2-Tetrachloroethane ND 16.7 33.3 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 50 ug/kg wet 16.7 ND 1,1,2-Trichloroethane 8.33 50 ug/kg wet ---Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 33.3 66.7 50 ug/kg wet 1,2,3-Trichloropropane ND 16.7 33.3 ug/kg wet 50 1,2,4-Trimethylbenzene ND 16.7 33.3 50 ug/kg wet 1,3,5-Trimethylbenzene ND 16.7 33.3 ug/kg wet 50 Vinyl chloride ND 8.33 16.7 ug/kg wet 50 m,p-Xylene ND 16.7 33.3 ug/kg wet 50

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

Daren Jun

ND

8.33

16.7

Recovery: 100 %

ug/kg wet

Limits: 80-120 %

50

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0745 - EPA 5035A							Soi	i				
Blank (22G0745-BLK1)			Prepared	1: 07/22/22 0	8:00 Ana	lyzed: 07/22	2/22 15:22					
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80-	120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"					
LCS (22G0745-BS1)		Prepared: 07/22/22 08:00 Analyzed: 07/22/22 14:29										
5035A/8260D												
Acetone	1360	500	1000	ug/kg we	t 50	2000		68	80-120%			ICV-02, Q-5
Acrylonitrile	852	50.0	100	ug/kg we	t 50	1000		85	80-120%			
Benzene	1000	5.00	10.0	ug/kg we	t 50	1000		100	80-120%			
Bromobenzene	1000	12.5	25.0	ug/kg we	t 50	1000		100	80-120%			
Bromochloromethane	931	25.0	50.0	ug/kg we	t 50	1000		93	80-120%			
Bromodichloromethane	1070	25.0	50.0	ug/kg we	t 50	1000		107	80-120%			
Bromoform	848	50.0	100	ug/kg we	t 50	1000		85	80-120%			
Bromomethane	1300	500	500	ug/kg we	t 50	1000		130	80-120%			ICV-01, Q-5
2-Butanone (MEK)	1400	250	500	ug/kg we	t 50	2000		70	80-120%			ICV-02, Q-5
n-Butylbenzene	1110	25.0	50.0	ug/kg we	t 50	1000		111	80-120%			
sec-Butylbenzene	1130	25.0	50.0	ug/kg we	t 50	1000		113	80-120%			
tert-Butylbenzene	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
Carbon disulfide	844	250	500	ug/kg we	t 50	1000		84	80-120%			
Carbon tetrachloride	1150	25.0	50.0	ug/kg we	t 50	1000		115	80-120%			
Chlorobenzene	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
Chloroethane	1220	250	500	ug/kg we	t 50	1000		122	80-120%			Q-5
Chloroform	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			
Chloromethane	874	125	250	ug/kg we	t 50	1000		87	80-120%			
2-Chlorotoluene	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
4-Chlorotoluene	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			
Dibromochloromethane	922	50.0	100	ug/kg we	t 50	1000		92	80-120%			
1,2-Dibromo-3-chloropropane	838	125	250	ug/kg we	t 50	1000		84	80-120%			
1,2-Dibromoethane (EDB)	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
Dibromomethane	972	25.0	50.0	ug/kg we	t 50	1000		97	80-120%			
1,2-Dichlorobenzene	1020	12.5	25.0	ug/kg we		1000		102	80-120%			
1,3-Dichlorobenzene	1010	12.5	25.0	ug/kg we		1000		101	80-120%			
1,4-Dichlorobenzene	1000	12.5	25.0	ug/kg we		1000		100	80-120%			
Dichlorodifluoromethane	1270	50.0	100	ug/kg we	t 50	1000		127	80-120%			Q-5
1,1-Dichloroethane	970	12.5	25.0	ug/kg we	t 50	1000		97	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22G0745 - EPA 5035A Soil LCS (22G0745-BS1) Prepared: 07/22/22 08:00 Analyzed: 07/22/22 14:29 1,2-Dichloroethane (EDC) 984 12.5 25.0 ug/kg wet 50 1000 98 80-120% 1,1-Dichloroethene 1060 12.5 25.0 ug/kg wet 50 1000 106 80-120% ---------1000 cis-1,2-Dichloroethene 996 12.5 25.0 ug/kg wet 50 100 80-120% trans-1,2-Dichloroethene 1020 12.5 25.0 ug/kg wet 50 1000 102 80-120% 999 1000 12.5 25.0 50 100 80-120% 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane 1020 25.0 50.0 ug/kg wet 50 1000 102 80-120% 80-120% 2,2-Dichloropropane 1040 25.0 50.0 ug/kg wet 50 1000 104 1000 1,1-Dichloropropene 1120 25.0 50.0 ug/kg wet 50 112 80-120% 25.0 50.0 1000 cis-1,3-Dichloropropene 1020 ug/kg wet 50 102 80-120% trans-1,3-Dichloropropene 1090 25.0 50.0 ug/kg wet 50 1000 109 80-120% Ethylbenzene 1000 103 1030 25.0 50 80-120% 12.5 ug/kg wet 50.0 100 Hexachlorobutadiene 1090 ug/kg wet 50 1000 109 80-120% 1590 250 500 2000 80 2-Hexanone ug/kg wet 50 ---80-120% ---Isopropylbenzene 1080 25.0 50.0 ug/kg wet 50 1000 108 80-120% 50.0 50 1000 111 80-120% 4-Isopropyltoluene 1110 25.0 ug/kg wet ---Methylene chloride 1030 250 500 ug/kg wet 50 1000 103 80-120% 1720 250 500 2000 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 86 80-120% Methyl tert-butyl ether (MTBE) 970 25.0 50.0 50 1000 97 80-120% ug/kg wet Naphthalene 1010 50.0 100 50 1000 101 80-120% ug/kg wet -----n-Propylbenzene 1050 12.5 25.0 ug/kg wet 50 1000 105 80-120% 103 1030 25.0 50.0 50 1000 80-120% Styrene ug/kg wet 1,1,1,2-Tetrachloroethane 1150 12.5 25.0 ug/kg wet 50 1000 115 80-120% 1,1,2,2-Tetrachloroethane 982 25.0 50.0 ug/kg wet 50 1000 98 80-120% Tetrachloroethene (PCE) 1130 12.5 25.0 ug/kg wet 50 1000 113 80-120% Toluene 979 25.0 50.0 1000 98 ug/kg wet 50 80-120% ------1,2,3-Trichlorobenzene 994 125 250 ug/kg wet 50 1000 99 80-120% 1,2,4-Trichlorobenzene 984 125 250 50 1000 98 80-120% ug/kg wet ---1,1,1-Trichloroethane 1080 12.5 25.0 ug/kg wet 50 1000 108 80-120% 1.1.2-Trichloroethane 1040 12.5 25.0 50 1000 104 80-120% ug/kg wet Trichloroethene (TCE) 1070 12.5 25.0 ug/kg wet 50 1000 107 80-120% Trichlorofluoromethane 1350 50.0 100 50 1000 135 80-120% Q-56 ug/kg wet 1,2,3-Trichloropropane 1010 25.0 50.0 ug/kg wet 50 1000 101 80-120% 1,2,4-Trimethylbenzene 1080 25.0 50.0 ug/kg wet 50 1000 108 80-120% 1,3,5-Trimethylbenzene 1090 25.0 50.0 ug/kg wet 50 1000 109 80-120%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

		<u>'</u>	Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0745 - EPA 5035A							So	il				
LCS (22G0745-BS1)			Prepared	: 07/22/22 0	8:00 Ana	lyzed: 07/22	/22 14:29					
Vinyl chloride	1100	12.5	25.0	ug/kg we	t 50	1000		110	80-120%			
m,p-Xylene	2060	25.0	50.0	ug/kg we	t 50	2000		103	80-120%			
o-Xylene	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	79-	120 %		"					
Duplicate (22G0745-DUP1)			Prepared	: 07/21/22 1	9:02 Ana	lyzed: 07/22	/22 20:19					
OC Source Sample: Non-SDG (A2	G0571-01)											
Acetone	ND	194000	388000	ug/kg we	t 5000		ND				30%	ICV-0
Acrylonitrile	ND	19400	38800	ug/kg we	t 5000		ND				30%	
Benzene	75200	1940	3880	ug/kg we	t 5000		76000			1	30%	
Bromobenzene	ND	4840	9690	ug/kg we	t 5000		ND				30%	
Bromochloromethane	ND	9690	19400	ug/kg we	t 5000		ND				30%	
Bromodichloromethane	ND	9690	19400	ug/kg we	t 5000		ND				30%	
Bromoform	ND	19400	38800	ug/kg we	t 5000		ND				30%	
Bromomethane	ND	194000	194000	ug/kg we	t 5000		ND				30%	
2-Butanone (MEK)	ND	194000	194000	ug/kg we	t 5000		ND				30%	ICV-0
n-Butylbenzene	ND	9690	19400	ug/kg we	t 5000		ND				30%	
sec-Butylbenzene	ND	9690	19400	ug/kg we	t 5000		ND				30%	
tert-Butylbenzene	ND	9690	19400	ug/kg we	t 5000		ND				30%	
Carbon disulfide	ND	96900	194000	ug/kg we	t 5000		ND				30%	
Carbon tetrachloride	ND	9690	19400	ug/kg we	t 5000		ND				30%	
Chlorobenzene	ND	4840	9690	ug/kg we	t 5000		ND				30%	
Chloroethane	ND	96900	194000	ug/kg we	t 5000		ND				30%	
Chloroform	ND	9690	19400	ug/kg we	t 5000		ND				30%	
Chloromethane	ND	48400	96900	ug/kg we	t 5000		ND				30%	
2-Chlorotoluene	ND	9690	19400	ug/kg we	t 5000		ND				30%	
4-Chlorotoluene	ND	9690	19400	ug/kg we			ND				30%	
Dibromochloromethane	ND	19400	38800	ug/kg we	t 5000		ND				30%	
1,2-Dibromo-3-chloropropane	ND	48400	96900	ug/kg we	t 5000		ND				30%	
1,2-Dibromoethane (EDB)	ND	9690	19400	ug/kg we	t 5000		ND				30%	
Dibromomethane	ND	9690	19400	ug/kg we			ND				30%	
1,2-Dichlorobenzene	ND	4840	9690	ug/kg we	t 5000		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22G0745 - EPA 5035A Soil Duplicate (22G0745-DUP1) Prepared: 07/21/22 19:02 Analyzed: 07/22/22 20:19 QC Source Sample: Non-SDG (A2G0571-01) 1,3-Dichlorobenzene ND 4840 9690 ug/kg wet 5000 ND 30% ND 4840 9690 1,4-Dichlorobenzene ug/kg wet 5000 ND 30% Dichlorodifluoromethane ND 19400 38800 ug/kg wet 5000 ND 30% 1,1-Dichloroethane ND 4840 9690 ug/kg wet 5000 ND 30% 1,2-Dichloroethane (EDC) ND 4840 9690 ug/kg wet 5000 ND 30% ---ND 9690 1,1-Dichloroethene 4840 ug/kg wet 5000 ND 30% cis-1,2-Dichloroethene ND 4840 9690 ug/kg wet 5000 ND 30% trans-1,2-Dichloroethene ND 9690 ug/kg wet ND 30% 4840 5000 1,2-Dichloropropane ND 4840 9690 ug/kg wet 5000 ND 30% 19400 1,3-Dichloropropane ND 9690 ug/kg wet 5000 ND 30% 2,2-Dichloropropane ND 9690 19400 ug/kg wet 5000 ND 30% ND 9690 19400 ug/kg wet ND 30% 1,1-Dichloropropene 5000 cis-1,3-Dichloropropene ND 9690 19400 ug/kg wet 5000 ND 30% ND 9690 19400 30% trans-1,3-Dichloropropene ug/kg wet 5000 ND Ethylbenzene 18200 4840 9690 ug/kg wet 5000 18200 0 30% ND Hexachlorobutadiene 19400 38800 ug/kg wet 5000 ND ___ 30% 2-Hexanone ND 96900 194000 ug/kg wet 5000 ND 30% ND 19400 30% Isopropylbenzene 9690 ug/kg wet 5000 ND 4-Isopropyltoluene ND 9690 19400 ug/kg wet 5000 ND 30% ND 96900 194000 Methylene chloride ug/kg wet 5000 ND 30% 4-Methyl-2-pentanone (MiBK) ND 96900 194000 ug/kg wet 5000 ND 30% Methyl tert-butyl ether (MTBE) ND 9690 19400 ug/kg wet 5000 ND ---30% Naphthalene ND 19400 38800 ug/kg wet 5000 ND 30% ND ND 30% n-Propylbenzene 4840 9690 ug/kg wet 5000 ND 9690 19400 30% Styrene ug/kg wet 5000 ND 5000 ND 1,1,1,2-Tetrachloroethane 4840 9690 ND 30% ug/kg wet 1,1,2,2-Tetrachloroethane ND 9690 19400 ND 30% ug/kg wet 5000 Tetrachloroethene (PCE) 5810 4840 9690 ug/kg wet 5000 6400 10 30% 118000 9690 19400 ug/kg wet 5000 116000 1 30% 1,2,3-Trichlorobenzene ND 48400 96900 ND 30% ug/kg wet 5000 ---1,2,4-Trichlorobenzene ND 48400 96900 ug/kg wet 5000 ND 30% ND 4840 9690 1,1,1-Trichloroethane 5000 ND 30% ug/kg wet 1,1,2-Trichloroethane ND 4840 9690 ug/kg wet 5000 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

		1	Volatile Or	ganic Con	pounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0745 - EPA 5035A							Soi	I				
Duplicate (22G0745-DUP1)			Prepared	: 07/21/22 19	9:02 Ana	lyzed: 07/22/	/22 20:19					
QC Source Sample: Non-SDG (A2	2G0571-01)											
Trichloroethene (TCE)	ND	4840	9690	ug/kg wet	5000		ND				30%	
Trichlorofluoromethane	ND	19400	38800	ug/kg wet	5000		ND				30%	
1,2,3-Trichloropropane	ND	9690	19400	ug/kg wet	5000		ND				30%	
1,2,4-Trimethylbenzene	ND	9690	19400	ug/kg wet	5000		ND				30%	
1,3,5-Trimethylbenzene	ND	9690	19400	ug/kg wet	5000		ND				30%	
Vinyl chloride	ND	4840	9690	ug/kg wet	5000		ND				30%	
m,p-Xylene	33700	9690	19400	ug/kg wet	5000		33500			0.6	30%	
o-Xylene	6010	4840	9690	ug/kg wet	5000		6400			6	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 80-		Dilu	tion: 1x					
Toluene-d8 (Surr)			100 %	80-1	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	79-1	120 %		"					
QC Source Sample: Non-SDG (A2 5035A/8260D	2G0602-27)											
Acetone	1440	568	1140	ug/kg dry	50	2270	ND	64	36-164%			
	1440 992	568 56.8	1140 114	ug/kg dry ug/kg dry		2270 1130	ND ND	64 87	36-164% 65-134%			
Acetone					50							
Acetone Acrylonitrile	992	56.8	114	ug/kg dry	50 50	1130	ND	87	65-134%			
Acetone Acrylonitrile Benzene	992 1130	56.8 5.68	114 11.4	ug/kg dry ug/kg dry	50 50 50	1130 1130	ND ND	87 99	65-134% 77-121%			
Acetone Acrylonitrile Benzene Bromobenzene	992 1130 1110	56.8 5.68 14.2	114 11.4 28.4	ug/kg dry ug/kg dry ug/kg dry	50 50 50 50	1130 1130 1130	ND ND ND	87 99 97	65-134% 77-121% 78-121%		 	
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane	992 1130 1110 1070	56.8 5.68 14.2 28.4	114 11.4 28.4 56.8	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50	1130 1130 1130 1130	ND ND ND	87 99 97 94	65-134% 77-121% 78-121% 78-125%		 	
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	992 1130 1110 1070 1140	56.8 5.68 14.2 28.4 28.4	114 11.4 28.4 56.8 56.8	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50	1130 1130 1130 1130 1130	ND ND ND ND	87 99 97 94 100	65-134% 77-121% 78-121% 78-125% 75-127%		 	Q-54
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	992 1130 1110 1070 1140 875	56.8 5.68 14.2 28.4 28.4 56.8	114 11.4 28.4 56.8 56.8	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50 50	1130 1130 1130 1130 1130 1130	ND ND ND ND ND	87 99 97 94 100 77	65-134% 77-121% 78-121% 78-125% 75-127% 67-132%	 	 	Q-54 ICV-01, Q-5 ICV-02
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	992 1130 1110 1070 1140 875 1550	56.8 5.68 14.2 28.4 28.4 56.8	114 11.4 28.4 56.8 56.8 114 568	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50 50 50 50	1130 1130 1130 1130 1130 1130 1130	ND ND ND ND ND ND ND	87 99 97 94 100 77 137	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143%		 	Q-54 ICV-01, Q-5 ICV-02
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	992 1130 1110 1070 1140 875 1550 1520	56.8 5.68 14.2 28.4 28.4 56.8 568 284	114 11.4 28.4 56.8 56.8 114 568	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	50 50 50 50 50 50 50 50 50	1130 1130 1130 1130 1130 1130 1130 2270	ND	87 99 97 94 100 77 137 67	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148%	 	 	Q-54 ICV-01, Q-5 ICV-02
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	992 1130 1110 1070 1140 875 1550 1520	56.8 5.68 14.2 28.4 28.4 56.8 568 284	114 11.4 28.4 56.8 56.8 114 568 568	ug/kg dry	50 50 50 50 50 50 50 50 50	1130 1130 1130 1130 1130 1130 1130 2270	ND	87 99 97 94 100 77 137 67	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148%	 		Q-54 ICV-01, Q-5 ICV-02
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	992 1130 1110 1070 1140 875 1550 1520 1160 1210	56.8 5.68 14.2 28.4 28.4 56.8 568 284 28.4	114 11.4 28.4 56.8 56.8 114 568 568 56.8	ug/kg dry	50 50 50 50 50 50 50 50 50 50 50	1130 1130 1130 1130 1130 1130 1130 2270 1130	ND	87 99 97 94 100 77 137 67 102	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126%	 		Q-54 ICV-01, Q-5 ICV-02
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	992 1130 1110 1070 1140 875 1550 1520 1160 1210 1130	56.8 5.68 14.2 28.4 28.4 56.8 568 284 28.4 28.4	114 11.4 28.4 56.8 56.8 114 568 568 56.8 56.8	ug/kg dry	50 50 50 50 50 50 50 50 50 50 50 50	1130 1130 1130 1130 1130 1130 1130 2270 1130 1130	ND	87 99 97 94 100 77 137 67 102 107 99	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 73-125%	 		Q-54 ICV-01, Q-5 ICV-02
Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	992 1130 1110 1070 1140 875 1550 1520 1160 1210 1130 906	56.8 5.68 14.2 28.4 28.4 56.8 568 284 28.4 28.4 28.4	114 11.4 28.4 56.8 56.8 114 568 56.8 56.8 56.8	ug/kg dry	50 50 50 50 50 50 50 50 50 50 50 50 50	1130 1130 1130 1130 1130 1130 1130 2270 1130 1130 1130	ND N	87 99 97 94 100 77 137 67 102 107 99	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 63-132%	 		ICV-02, Q-54, ICV-01, Q-5- ICV-02, Q-54

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22G0745 - EPA 5035A Soil Matrix Spike (22G0745-MS1) Prepared: 07/21/22 19:02 Analyzed: 07/23/22 02:36 QC Source Sample: Non-SDG (A2G0602-27) Chloroform 1130 28.4 56.8 ug/kg dry 50 1130 ND 100 78-123% 973 142 284 1130 Chloromethane ug/kg dry 50 ND 86 50-136% 2-Chlorotoluene 1120 28.4 56.8 ug/kg dry 50 1130 ND 99 75-122% 4-Chlorotoluene 1090 28.4 56.8 ug/kg dry 50 1130 ND 96 72-124% Dibromochloromethane 956 56.8 114 ug/kg dry 50 1130 ND 84 74-126% 1,2-Dibromo-3-chloropropane 825 142 284 1130 73 ug/kg dry 50 ND 61-132% ug/kg dry 1,2-Dibromoethane (EDB) 1110 28.4 56.8 50 1130 ND 98 78-122% 1090 28.4 56.8 ND 78-125% Dibromomethane ug/kg dry 50 1130 96 1,2-Dichlorobenzene 1100 14.2 28.4 ug/kg dry 50 1130 ND 97 78-121% 1,3-Dichlorobenzene 1100 14.2 28.4 ug/kg dry 50 1130 ND 97 77-121% 1,4-Dichlorobenzene 1080 14.2 28.4 ug/kg dry 50 1130 ND 95 75-120% 129 O-54d 56.8 114 50 1130 ND 29-149% Dichlorodifluoromethane 1470 ug/kg dry 1,1-Dichloroethane 1150 14.2 28.4 ug/kg dry 50 1130 ND 101 76-125% 1,2-Dichloroethane (EDC) 1110 14.2 28.4 1130 ND 98 ug/kg dry 50 73-128% 28.4 1,1-Dichloroethene 1210 14.2 ug/kg dry 50 1130 ND 106 70-131% cis-1.2-Dichloroethene 1130 14.2 28.4 ug/kg dry 50 1130 ND 99 77-123% ___ trans-1,2-Dichloroethene 1150 14.2 28.4 ug/kg dry 50 1130 ND 101 74-125% 1110 14.2 28.4 1130 ND 98 76-123% 1,2-Dichloropropane 50 ug/kg dry 28.4 1130 ND 97 77-121% 1,3-Dichloropropane 1110 56.8 ug/kg dry 50 2,2-Dichloropropane 927 28.4 56.8 50 1130 ND 82 67-133% ug/kg dry 1270 28.4 1130 ND 112 76-125% 1,1-Dichloropropene 56.8 ug/kg dry 50 cis-1,3-Dichloropropene 1040 28.4 56.8 ug/kg dry 50 1130 ND 91 74-126% trans-1,3-Dichloropropene 1090 28.4 56.8 ug/kg dry 50 1130 ND 96 71-130% 28.4 ND 98 76-122% Ethylbenzene 1120 14.2 ug/kg dry 50 1130 56.8 114 1130 ND 99 61-135% Hexachlorobutadiene 1120 ug/kg dry 50 2-Hexanone 1650 284 568 50 2270 ND 73 53-145% ug/kg dry Isopropylbenzene 1180 28.4 56.8 50 1130 ND 104 68-134% ug/kg dry 73-127% 4-Isopropyltoluene 1180 28.4 56.8 ug/kg dry 50 1130 ND 104 Methylene chloride 1100 284 568 ug/kg dry 50 1130 ND 97 70-128% 1870 284 568 50 2270 ND 82 65-135% 4-Methyl-2-pentanone (MiBK) ug/kg dry Methyl tert-butyl ether (MTBE) 1060 28.4 56.8 ug/kg dry 50 1130 ND 93 73-125% 1040 56.8 114 50 ND 92 Naphthalene 1130 62-129% ug/kg dry n-Propylbenzene 1130 14.2 28.4 ug/kg dry 50 1130 ND 100 73-125%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport RoadProject Number:111323Niagara Falls, NY 14305Project Manager:Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filtercake

Project:

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22G0745 - EPA 5035A Soil Matrix Spike (22G0745-MS1) Prepared: 07/21/22 19:02 Analyzed: 07/23/22 02:36 QC Source Sample: Non-SDG (A2G0602-27) 1120 28.4 56.8 ug/kg dry 50 1130 ND 99 76-124% Styrene 1250 14.2 28.4 1130 1,1,1,2-Tetrachloroethane ug/kg dry 50 ND 110 78-125% 1,1,2,2-Tetrachloroethane 1050 28.4 56.8 ug/kg dry 50 1130 ND 92 70-124% Tetrachloroethene (PCE) 1230 14.2 28.4 ug/kg dry 50 1130 ND 108 73-128% Toluene 1070 28.4 56.8 ug/kg dry 50 1130 ND 94 77-121% 1,2,3-Trichlorobenzene 1030 142 284 1130 91 66-130% ug/kg dry 50 ND 142 1,2,4-Trichlorobenzene 1000 284 ug/kg dry 50 1130 ND 88 67-129% 1,1,1-Trichloroethane 14.2 28.4 1130 ND 108 73-130% 1230 ug/kg dry 50 1,1,2-Trichloroethane 1120 14.2 28.4 ug/kg dry 50 1130 ND 99 78-121% Trichloroethene (TCE) 1210 14.2 28.4 ug/kg dry 50 1130 ND 106 77-123% Trichlorofluoromethane 1440 56.8 114 ug/kg dry 50 1130 ND 127 62-140% Q-54b 50 1,2,3-Trichloropropane 1080 28.4 56.8 1130 ND 73-125% ug/kg dry 95 28.4 1130 75-123% 1,2,4-Trimethylbenzene 1170 56.8 ug/kg dry 50 ND 103 73-124% 1,3,5-Trimethylbenzene 1180 28.4 56.8 1130 ND 104 ug/kg dry 50 14.2 28.4 Vinyl chloride 1310 ug/kg dry 50 1130 ND 116 56-135% m,p-Xylene 2270 28.4 56.8 ug/kg dry 50 2270 ND 100 77-124% o-Xylene 1110 14.2 28.4 ug/kg dry 50 1130 ND 98 77-123% Surr: 1,4-Difluorobenzene (Surr) 100 % Dilution: Recovery: Limits: 98 % 80-120 % Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) 98% 79-120 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22G0857 - EPA 5035A Soil Blank (22G0857-BLK1) Prepared: 07/26/22 08:38 Analyzed: 07/27/22 00:54 5035A/8260D ND 667 ug/kg wet 50 ICV-02 Acetone ND 33.3 66.7 50 Acrylonitrile ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 ND 8.33 16.7 Bromobenzene ug/kg wet 50 Bromochloromethane ND 16.7 33.3 50 ug/kg wet ND Bromodichloromethane 16.7 33.3 ug/kg wet 50 Bromoform ND 66.7 ug/kg wet 50 66.7 333 333 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 333 333 ug/kg wet 50 ICV-02 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 tert-Butylbenzene 16.7 50 ug/kg wet ---Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 ND 167 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 167 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 ug/kg wet Dibromomethane ND 16.7 33.3 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 Dichlorodifluoromethane ND 33.3 66.7 ug/kg wet 50 ---ND 8.33 1,1-Dichloroethane 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 8.33 16.7 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22G0857 - EPA 5035A Soil Blank (22G0857-BLK1) Prepared: 07/26/22 08:38 Analyzed: 07/27/22 00:54 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane 2,2-Dichloropropane ND 33.3 33.3 ug/kg wet 50 Q-30 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 333 2-Hexanone ND 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 4-Isopropyltoluene ug/kg wet 333 Methylene chloride ND 167 ug/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 167 333 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 ND 33.3 66.7 Naphthalene ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 ug/kg wet 50 1.1.2.2-Tetrachloroethane ND 16.7 33.3 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 50 ug/kg wet 16.7 ND 1,1,2-Trichloroethane 8.33 50 ug/kg wet ---Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 33.3 66.7 50 ug/kg wet 1,2,3-Trichloropropane ND 16.7 33.3 ug/kg wet 50

50

50

50

50

50

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

Surr: 1,4-Difluorobenzene (Surr) Recovery: 101 % Limits: 80-120 % Dilution: Ix

16.7

16.7

8.33

16.7

8.33

33.3

33.3

16.7

33.3

16.7

ND

ND

ND

ND

ND

Apex Laboratories

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22G0857 - EPA 5035A							So	il					
Blank (22G0857-BLK1)			Prepared	l: 07/26/22 0	8:38 Ana	lyzed: 07/27	/22 00:54						
Surr: Toluene-d8 (Surr)		Rece	overy: 97 %	Limits: 80-	120 %	Dili	ution: 1x						
4-Bromofluorobenzene (Surr)			97 %	79-	120 %		"						
LCS (22G0857-BS1)		Prepared: 07/26/22 08:38 Analyzed: 07/27/22 00:00											
5035A/8260D													
Acetone	1210	1000	1000	ug/kg we	t 50	2000		61	80-120%			Q-55, ICV-0	
Acrylonitrile	846	50.0	100	ug/kg we	t 50	1000		85	80-120%				
Benzene	977	5.00	10.0	ug/kg we	t 50	1000		98	80-120%				
Bromobenzene	952	12.5	25.0	ug/kg we	t 50	1000		95	80-120%				
Bromochloromethane	932	25.0	50.0	ug/kg we	t 50	1000		93	80-120%				
Bromodichloromethane	996	25.0	50.0	ug/kg we	t 50	1000		100	80-120%				
Bromoform	784	100	100	ug/kg we	t 50	1000		78	80-120%			Q-5	
Bromomethane	1200	500	500	ug/kg we	t 50	1000		120	80-120%			ICV-0	
2-Butanone (MEK)	1280	500	500	ug/kg we	t 50	2000		64	80-120%			ICV-02, Q-5	
n-Butylbenzene	994	25.0	50.0	ug/kg we	t 50	1000		99	80-120%				
sec-Butylbenzene	1030	25.0	50.0	ug/kg we	t 50	1000		103	80-120%				
tert-Butylbenzene	951	25.0	50.0	ug/kg we	t 50	1000		95	80-120%				
Carbon disulfide	755	250	500	ug/kg we	t 50	1000		76	80-120%			Q-5	
Carbon tetrachloride	1070	25.0	50.0	ug/kg we	t 50	1000		107	80-120%				
Chlorobenzene	964	12.5	25.0	ug/kg we	t 50	1000		96	80-120%				
Chloroethane	1020	250	500	ug/kg we	t 50	1000		102	80-120%				
Chloroform	978	25.0	50.0	ug/kg we	t 50	1000		98	80-120%				
Chloromethane	788	250	250	ug/kg we	t 50	1000		79	80-120%			Q-5	
2-Chlorotoluene	995	25.0	50.0	ug/kg we	t 50	1000		100	80-120%				
4-Chlorotoluene	941	25.0	50.0	ug/kg we		1000		94	80-120%				
Dibromochloromethane	852	50.0	100	ug/kg we	t 50	1000		85	80-120%				
1,2-Dibromo-3-chloropropane	753	250	250	ug/kg we		1000		75	80-120%			Q-5	
1,2-Dibromoethane (EDB)	989	25.0	50.0	ug/kg we	t 50	1000		99	80-120%				
Dibromomethane	954	25.0	50.0	ug/kg we		1000		95	80-120%				
1,2-Dichlorobenzene	972	12.5	25.0	ug/kg we		1000		97	80-120%				
1,3-Dichlorobenzene	958	12.5	25.0	ug/kg we		1000		96	80-120%				
1,4-Dichlorobenzene	949	12.5	25.0	ug/kg we		1000		95	80-120%				
Dichlorodifluoromethane	1130	50.0	100	ug/kg we		1000		113	80-120%				
1,1-Dichloroethane	932	12.5	25.0	ug/kg we		1000		93	80-120%				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22G0857 - EPA 5035A Soil LCS (22G0857-BS1) Prepared: 07/26/22 08:38 Analyzed: 07/27/22 00:00 1,2-Dichloroethane (EDC) 990 12.5 25.0 ug/kg wet 50 1000 99 80-120% 99 1,1-Dichloroethene 986 12.5 25.0 ug/kg wet 50 1000 80-120% ---------950 1000 cis-1,2-Dichloroethene 12.5 25.0 ug/kg wet 50 95 80-120% trans-1,2-Dichloroethene 980 12.5 25.0 ug/kg wet 50 1000 98 80-120% 970 1000 97 12.5 25.0 50 80-120% 1,2-Dichloropropane ug/kg wet 976 98 1,3-Dichloropropane 25.0 50.0 ug/kg wet 50 1000 80-120% O-30 2,2-Dichloropropane 690 50.0 50.0 ug/kg wet 50 1000 69 80-120% 1070 1000 107 1,1-Dichloropropene 25.0 50.0 ug/kg wet 50 80-120% 25.0 50.0 1000 cis-1,3-Dichloropropene 880 ug/kg wet 50 88 80-120% trans-1,3-Dichloropropene 926 25.0 50.0 ug/kg wet 50 1000 93 80-120% Ethylbenzene 1000 958 25.0 50 96 80-120% 12.5 ug/kg wet 50.0 100 Hexachlorobutadiene 938 ug/kg wet 50 1000 94 80-120% 1400 500 500 2000 70 O-55 2-Hexanone ug/kg wet 50 80-120% ---Isopropylbenzene 986 25.0 50.0 ug/kg wet 50 1000 99 80-120% 100 1000 50.0 50 1000 80-120% 4-Isopropyltoluene 25.0 ug/kg wet Methylene chloride 971 250 500 ug/kg wet 50 1000 97 80-120% 1590 250 500 2000 80 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 80-120% Methyl tert-butyl ether (MTBE) 928 25.0 50.0 50 1000 93 80-120% ug/kg wet Naphthalene 898 50.0 100 50 1000 90 80-120% ug/kg wet --n-Propylbenzene 976 12.5 25.0 ug/kg wet 50 1000 98 80-120% 933 25.0 50.0 50 1000 93 80-120% Styrene ug/kg wet 1,1,1,2-Tetrachloroethane 1090 12.5 25.0 ug/kg wet 50 1000 109 80-120% 1,1,2,2-Tetrachloroethane 978 25.0 50.0 ug/kg wet 50 1000 98 80-120% Tetrachloroethene (PCE) 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% Toluene 923 25.0 50.0 1000 92 ug/kg wet 50 80-120% ------1,2,3-Trichlorobenzene 906 125 250 ug/kg wet 50 1000 91 80-120% 1,2,4-Trichlorobenzene 892 125 250 50 1000 89 80-120% ug/kg wet 1,1,1-Trichloroethane 1030 12.5 25.0 ug/kg wet 50 1000 103 80-120% 1.1.2-Trichloroethane 978 12.5 25.0 50 1000 98 80-120% ug/kg wet Trichloroethene (TCE) 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% Trichlorofluoromethane 1350 50.0 100 50 1000 135 80-120% Q-29 ug/kg wet 1,2,3-Trichloropropane 994 25.0 50.0 ug/kg wet 50 1000 99 80-120% 1,2,4-Trimethylbenzene 1020 25.0 50.0 ug/kg wet 50 1000 102 80-120%

Apex Laboratories

1,3,5-Trimethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

102

80-120%

1020

25.0

50.0

ug/kg wet

50

1000

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0857 - EPA 5035A							So	il				
LCS (22G0857-BS1)			Prepared	1: 07/26/22 0	8:38 Ana	lyzed: 07/27	/22 00:00					
Vinyl chloride	942	12.5	25.0	ug/kg we	t 50	1000		94	80-120%			
m,p-Xylene	1910	25.0	50.0	ug/kg we	t 50	2000		95	80-120%			
o-Xylene	930	12.5	25.0	ug/kg we	t 50	1000		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"					
Duplicate (22G0857-DUP1)			Prepared	d: 07/23/22 1	4:58 Ana	lyzed: 07/27	/22 04:03					
OC Source Sample: Non-SDG (A2	G0691-02)											
Acetone	ND	1060	1060	ug/kg dr	y 50		ND				30%	ICV-0
Acrylonitrile	ND	52.9	106	ug/kg dr	y 50		ND				30%	
Benzene	ND	5.29	10.6	ug/kg dr	y 50		ND				30%	
Bromobenzene	ND	13.2	26.5	ug/kg dr	y 50		ND				30%	
Bromochloromethane	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
Bromodichloromethane	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
Bromoform	ND	106	106	ug/kg dr	y 50		ND				30%	
Bromomethane	ND	529	529	ug/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND	529	529	ug/kg dr	y 50		ND				30%	ICV-0
n-Butylbenzene	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
tert-Butylbenzene	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
Carbon disulfide	ND	265	529	ug/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
Chlorobenzene	ND	13.2	26.5	ug/kg dr	y 50		ND				30%	
Chloroethane	ND	265	529	ug/kg dr	y 50		ND				30%	
Chloroform	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
Chloromethane	ND	265	265	ug/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND	26.5	52.9	ug/kg dr	y 50		ND				30%	
4-Chlorotoluene	ND	26.5	52.9	ug/kg dr			ND				30%	
Dibromochloromethane	ND	52.9	106	ug/kg dr			ND				30%	
1,2-Dibromo-3-chloropropane	ND	265	265	ug/kg dr			ND				30%	
1,2-Dibromoethane (EDB)	ND	26.5	52.9	ug/kg dr			ND				30%	
Dibromomethane	ND	26.5	52.9	ug/kg dr			ND				30%	
1,2-Dichlorobenzene	ND	13.2	26.5	ug/kg dr			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22G0857 - EPA 5035A Soil Duplicate (22G0857-DUP1) Prepared: 07/23/22 14:58 Analyzed: 07/27/22 04:03 QC Source Sample: Non-SDG (A2G0691-02) 1,3-Dichlorobenzene ND 13.2 26.5 ug/kg dry 50 ND 30% ND 13.2 26.5 1,4-Dichlorobenzene ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 52.9 106 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 13.2 26.5 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 13.2 26.5 ug/kg dry 50 ND 30% ---ND 13.2 26.5 1,1-Dichloroethene ug/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 13.2 26.5 50 ND 30% ug/kg dry trans-1,2-Dichloroethene ND 13.2 30% 26.5 ug/kg dry 50 ND 1,2-Dichloropropane ND 13.2 26.5 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 26.5 52.9 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 52.9 52.9 ug/kg dry 50 ND 30% Q-30 ND 26.5 52.9 30% 1,1-Dichloropropene ug/kg dry 50 ND cis-1,3-Dichloropropene ND 26.5 52.9 ug/kg dry 50 ND 30% ND 26.5 52.9 30% trans-1,3-Dichloropropene ug/kg dry 50 ND Ethylbenzene ND 13.2 26.5 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 52.9 106 ug/kg dry 50 ND ___ 30% 2-Hexanone ND 529 529 ug/kg dry 50 ND 30% ND 52.9 30% Isopropylbenzene 26.5 50 ND ug/kg dry 26.5 52.9 4-Isopropyltoluene ND ug/kg dry 50 ND 30% ND 265 529 Methylene chloride 50 ND 30% ug/kg dry 4-Methyl-2-pentanone (MiBK) ND 529 265 ug/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND 26.5 52.9 ug/kg dry 50 ND ---30% Naphthalene ND 52.9 106 ug/kg dry 50 ND 30% ND 30% n-Propylbenzene 13.2 26.5 ug/kg dry 50 ND ND 26.5 52.9 30% Styrene ug/kg dry 50 ND ND 13.2 26.5 ND 30% 1.1.1.2-Tetrachloroethane ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 26.5 52.9 ND 30% ug/kg dry 50 Tetrachloroethene (PCE) ND 13.2 26.5 ug/kg dry 50 ND 30% ND 26.5 52.9 ug/kg dry 50 ND 30% ND 132 265 30% 1.2.3-Trichlorobenzene ug/kg dry 50 ND 1,2,4-Trichlorobenzene ND 132 265 ug/kg dry 50 ND 30% 13.2 26.5 1,1,1-Trichloroethane ND 50 ND 30% ug/kg dry 1,1,2-Trichloroethane ND 13.2 26.5 ug/kg dry 50 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0857 - EPA 5035A							Soi	il				
Duplicate (22G0857-DUP1)			Prepared	1: 07/23/22 1	4:58 Ana	lyzed: 07/27/	/22 04:03					
QC Source Sample: Non-SDG (A2	2G0691-02)											
Trichloroethene (TCE)	ND	13.2	26.5	ug/kg dry	y 50		ND				30%	
Trichlorofluoromethane	ND	52.9	106	ug/kg dry	y 50		ND				30%	
1,2,3-Trichloropropane	ND	26.5	52.9	ug/kg dry	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	26.5	52.9	ug/kg dry	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	26.5	52.9	ug/kg dry	y 50		ND				30%	
Vinyl chloride	ND	13.2	26.5	ug/kg dry	y 50		ND				30%	
m,p-Xylene	ND	26.5	52.9	ug/kg dry	y 50		ND				30%	
o-Xylene	ND	13.2	26.5	ug/kg dry	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 100 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97%	79-	120 %		"					
QC Source Sample: Non-SDG (A2 5035A/8260D	2G0561-01)											
Acetone	1340	1110	1110	ug/kg dry	y 50	2210	ND	61	36-164%			ICV-02 Q-5
Acrylonitrile	880	55.3	111	ug/kg dry	y 50	1110	ND	80	65-134%			ì
Benzene	1090	5.53	11.1	ug/kg dry	y 50	1110	ND	98	77-121%			
Bromobenzene	1040	13.8	27.7	ug/kg dry	y 50	1110	ND	94	78-121%			
Bromochloromethane	977	27.7	55.3	ug/kg dry	y 50	1110	ND	88	78-125%			
Bromodichloromethane	1070	27.7	55.3	ug/kg dry	y 50	1110	ND	97	75-127%			
Bromoform	840	111	111	ug/kg dry	y 50	1110	ND	76	67-132%			Q-54
Bromomethane	1250	553	553	ug/kg dry	y 50	1110	ND	113	53-143%			ICV-0
2-Butanone (MEK)	1370	553	553	ug/kg dry	y 50	2210	ND	62	51-148%			ICV-02 Q-5
n-Butylbenzene	1130	27.7	55.3	ug/kg dry	y 50	1110	ND	102	70-128%			
sec-Butylbenzene	1180	27.7	55.3	ug/kg dry		1110	ND	106	73-126%			
tert-Butylbenzene	1080	27.7	55.3	ug/kg dry	y 50	1110	ND	97	73-125%			
Carbon disulfide	818	277	553	ug/kg dry		1110	ND	74	63-132%			Q-54
0 1 4 4 11 11	1250	27.7	55.3	ug/kg dry	y 50	1110	ND	113	70-135%			
Carbon tetrachloride Chlorobenzene Chloroethane	1060 1580	13.8 277	27.7 553	ug/kg dry	y 50 y 50	1110 1110	ND ND	96 142	79-120% 59-139%			Q-(

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22G0857 - EPA 5035A Soil Matrix Spike (22G0857-MS1) Prepared: 07/20/22 13:06 Analyzed: 07/27/22 06:18 QC Source Sample: Non-SDG (A2G0561-01) Chloroform 1080 27.7 55.3 ug/kg dry 50 1110 ND 98 78-123% 894 277 277 1110 Q-54e Chloromethane ug/kg dry 50 ND 81 50-136% ug/kg dry 2-Chlorotoluene 1090 27.7 55.3 50 1110 ND 99 75-122% 4-Chlorotoluene 1050 27.7 55.3 ug/kg dry 50 1110 ND 95 72-124% Dibromochloromethane 921 55.3 111 ug/kg dry 50 1110 ND 83 74-126% 1,2-Dibromo-3-chloropropane 779 277 277 1110 Q-541 ug/kg dry 50 ND 70 61-132% 1,2-Dibromoethane (EDB) 1040 27.7 55.3 50 1110 ND 94 78-122% ug/kg dry 1030 55.3 1110 ND 93 Dibromomethane 27.7 ug/kg dry 50 78-125% 1,2-Dichlorobenzene 1060 13.8 27.7 ug/kg dry 50 1110 ND 96 78-121% 1,3-Dichlorobenzene 1050 13.8 27.7 ug/kg dry 50 1110 ND 95 77-121% 1,4-Dichlorobenzene 1050 13.8 27.7 ug/kg dry 50 1110 ND 95 75-120% 55.3 50 1110 ND 29-149% Dichlorodifluoromethane 1320 111 ug/kg dry 120 1,1-Dichloroethane 1030 13.8 27.7 ug/kg dry 50 1110 ND 94 76-125% 1,2-Dichloroethane (EDC) 1050 13.8 27.7 1110 ND 95 ug/kg dry 50 73-128% 1,1-Dichloroethene 1130 13.8 27.7 ug/kg dry 50 1110 ND 102 70-131% cis-1.2-Dichloroethene 1060 13.8 27.7 ug/kg dry 50 1110 ND 96 77-123% ___ trans-1,2-Dichloroethene 1090 13.8 27.7 ug/kg dry 50 1110 ND 99 74-125% 1060 13.8 27.7 1110 ND 96 76-123% 1,2-Dichloropropane 50 ug/kg dry 27.7 55.3 1110 94 77-121% 1,3-Dichloropropane 1040 ug/kg dry 50 ND Q-30 703 55.3 55.3 50 1110 ND 67-133% 2,2-Dichloropropane ug/kg dry 64 1230 1110 ND 111 76-125% 1,1-Dichloropropene 27.7 55.3 ug/kg dry 50 cis-1,3-Dichloropropene 934 27.7 55.3 ug/kg dry 50 1110 ND 84 74-126% trans-1,3-Dichloropropene 987 27.7 55.3 ug/kg dry 50 1110 ND 89 71-130% 27.7 1110 ND 96 76-122% Ethylbenzene 1060 13.8 ug/kg dry 50 55.3 111 1110 ND 98 61-135% Hexachlorobutadiene 1080 ug/kg dry 50 2210 Q-54f 1500 553 553 50 ND 68 53-145% 2-Hexanone ug/kg dry Isopropylbenzene 1130 27.7 55.3 50 1110 ND 102 68-134% ug/kg dry 73-127% 4-Isopropyltoluene 1140 27.7 55.3 ug/kg dry 50 1110 ND 103 Methylene chloride 1060 277 553 ug/kg dry 50 1110 ND 96 70-128% 1690 277 553 50 2210 ND 77 65-135% 4-Methyl-2-pentanone (MiBK) ug/kg dry Methyl tert-butyl ether (MTBE) 987 27.7 55.3 50 1110 ND 89 73-125% ug/kg dry 965 55.3 87 Naphthalene 111 50 1110 ND 62-129% ug/kg dry n-Propylbenzene 1090 13.8 27.7 ug/kg dry 50 1110 ND 99 73-125%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0857 - EPA 5035A							So	il				
Matrix Spike (22G0857-MS1)			Prepared	: 07/20/22 1	3:06 Ana	lyzed: 07/27	//22 06:18					
QC Source Sample: Non-SDG (A20	G0561-01)											
Styrene	1050	27.7	55.3	ug/kg dry	50	1110	ND	95	76-124%			
1,1,1,2-Tetrachloroethane	1190	13.8	27.7	ug/kg dry	50	1110	ND	108	78-125%			
1,1,2,2-Tetrachloroethane	1000	27.7	55.3	ug/kg dry	50	1110	ND	90	70-124%			
Tetrachloroethene (PCE)	1170	13.8	27.7	ug/kg dry	50	1110	ND	106	73-128%			
Toluene	1030	27.7	55.3	ug/kg dry	50	1110	ND	93	77-121%			
1,2,3-Trichlorobenzene	982	138	277	ug/kg dry	50	1110	ND	89	66-130%			
1,2,4-Trichlorobenzene	953	138	277	ug/kg dry	50	1110	ND	86	67-129%			
1,1,1-Trichloroethane	1170	13.8	27.7	ug/kg dry	50	1110	ND	106	73-130%			
1,1,2-Trichloroethane	1050	13.8	27.7	ug/kg dry	50	1110	ND	95	78-121%			
Trichloroethene (TCE)	1160	13.8	27.7	ug/kg dry	50	1110	ND	105	77-123%			
Trichlorofluoromethane	1950	55.3	111	ug/kg dry	50	1110	ND	176	62-140%			Q-2
1,2,3-Trichloropropane	1030	27.7	55.3	ug/kg dry	50	1110	ND	93	73-125%			
1,2,4-Trimethylbenzene	1130	27.7	55.3	ug/kg dry	50	1110	ND	102	75-123%			
1,3,5-Trimethylbenzene	1140	27.7	55.3	ug/kg dry	50	1110	ND	103	73-124%			
Vinyl chloride	1140	13.8	27.7	ug/kg dry	50	1110	ND	103	56-135%			
m,p-Xylene	2140	27.7	55.3	ug/kg dry	50	2210	ND	97	77-124%			
o-Xylene	1040	13.8	27.7	ug/kg dry	50	1110	ND	94	77-123%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	79-	120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0954 - EPA 1311/503	0B TCLP	Volatiles					Wa	ter				
Blank (22G0954-BLK1)			Prepared	1: 07/28/22	10:26 Ana	yzed: 07/28	/22 13:42					
1311/8260D												
Benzene	ND	6.25	12.5	ug/L	50							
2-Butanone (MEK)	ND	250	500	ug/L	50							
Carbon tetrachloride	ND	25.0	50.0	ug/L	50							
Chlorobenzene	ND	12.5	25.0	ug/L	50							
Chloroform	ND	25.0	50.0	ug/L	50							
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50							
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50							
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50							
Vinyl chloride	ND	12.5	25.0	ug/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
LCS (22G0954-BS1)			Prepared	1: 07/28/22	10:26 Ana	yzed: 07/28	/22 12:48					
1311/8260D												
Benzene	1130	6.25	12.5	ug/L	50	1000		113	80-120%			
2-Butanone (MEK)	2230	250	500	ug/L	50	2000		111	80-120%			
Carbon tetrachloride	1330	25.0	50.0	ug/L	50	1000		133	80-120%			Q-
Chlorobenzene	1010	12.5	25.0	ug/L	50	1000		101	80-120%			
Chloroform	1050	25.0	50.0	ug/L	50	1000		105	80-120%			
1,4-Dichlorobenzene	974	12.5	25.0	ug/L	50	1000		97	80-120%			
1,1-Dichloroethene	1110	12.5	25.0	ug/L	50	1000		111	80-120%			
1,2-Dichloroethane (EDC)	1000	12.5	25.0	ug/L	50	1000		100	80-120%			
Tetrachloroethene (PCE)	1120	12.5	25.0	ug/L	50	1000		112	80-120%			
Trichloroethene (TCE)	1030	12.5	25.0	ug/L	50	1000		103	80-120%			
Vinyl chloride	1060	12.5	25.0	ug/L	50	1000		106	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					

Prepared: 07/28/22 10:26 Analyzed: 07/28/22 16:51

Apex Laboratories

Duplicate (22G0954-DUP1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darem Chim

TCLP

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

				-								
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0954 - EPA 1311/503	30B TCLP	Volatiles					Wa	ter				
Duplicate (22G0954-DUP1)			Prepared	d: 07/28/22	10:26 Ana	lyzed: 07/28	/22 16:51					TCLP
QC Source Sample: Non-SDG (A2	2G0563-02)											
Benzene	ND	62.5	125	ug/L	500		ND				30%	
2-Butanone (MEK)	ND	2500	5000	ug/L	500		ND				30%	
Carbon tetrachloride	ND	250	500	ug/L	500		ND				30%	
Chlorobenzene	ND	125	250	ug/L	500		ND				30%	
Chloroform	ND	250	500	ug/L	500		ND				30%	
1,4-Dichlorobenzene	ND	125	250	ug/L	500		ND				30%	
1,1-Dichloroethene	ND	125	250	ug/L	500		ND				30%	
1,2-Dichloroethane (EDC)	ND	125	250	ug/L	500		ND				30%	
Tetrachloroethene (PCE)	ND	125	250	ug/L	500		ND				30%	
Trichloroethene (TCE)	ND	125	250	ug/L	500		ND				30%	
Vinyl chloride	ND	125	250	ug/L	500		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80	0-120 %		"					
Matrix Spike (22G0954-MS1)			Prepared	d: 07/28/22	10:26 Anal	lyzed: 07/28	/22 14:36					TCLP
QC Source Sample: Non-SDG (A2	2G0613-04)											
<u>1311/8260D</u>												
Benzene	1110	6.25	12.5	ug/L	50	1000	ND	111	79-120%			
2-Butanone (MEK)	2340	250	500	ug/L	50	2000	ND	117	56-143%			
Carbon tetrachloride	1320	25.0	50.0	ug/L	50	1000	ND	132	72-136%			Q-54
Chlorobenzene	1010	12.5	25.0	ug/L	50	1000	ND	101	80-120%			
Chloroform	1050	25.0	50.0	ug/L	50	1000	ND	105	79-124%			
1,4-Dichlorobenzene	964	12.5	25.0	ug/L	50	1000	ND	96	79-120%			
1,1-Dichloroethene	1090	12.5	25.0	ug/L	50	1000	ND	109	71-131%			
1,2-Dichloroethane (EDC)	999	12.5	25.0	ug/L	50	1000	ND	100	73-128%			
Tetrachloroethene (PCE)	1110	12.5	25.0	ug/L	50	1000	ND	111	74-129%			
Trichloroethene (TCE)	1030	12.5	25.0	ug/L	50	1000	ND	103	79-123%			
Vinyl chloride	1050	12.5	25.0	ug/L	50	1000	ND	105	58-137%			
J		- D	overv: 98 %	Limits: 80	120%	Dil	ution: 1x					-
		Rece	overy: 98 %	Limits. 00	7-120 /0	Diii						
Surr: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr)		Rece	100 %)-120 %)-120 %	Diii	"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Spike % REC RPD Reporting Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 22H0028 - EPA 3546 Solid Blank (22H0028-BLK1) Prepared: 08/01/22 10:26 Analyzed: 08/01/22 15:43 EPA 8270E Acenaphthene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Acenaphthylene ug/kg wet 1 Anthracene ND 1.25 2.50 ug/kg wet 1.25 ND 2.50 Benz(a)anthracene ug/kg wet 1 ND 1.87 3.75 Benzo(a)pyrene ug/kg wet 1 1.87 ND Benzo(b)fluoranthene 3.75 ug/kg wet 1 ---Benzo(k)fluoranthene ND 1.87 3.75 ug/kg wet 1.25 2.50 ND Benzo(g,h,i)perylene ug/kg wet 1 Chrysene ND 1.25 2.50 ug/kg wet 1 Dibenz(a,h)anthracene ND 1.25 2.50 1 ug/kg wet Fluoranthene ND 1.25 2.50 ug/kg wet 1 1.25 ND Fluorene 2.50 1 ug/kg wet ---Indeno(1,2,3-cd)pyrene ND 1.25 2.50 ug/kg wet 1 ND 2.50 5.00 1-Methylnaphthalene ug/kg wet 1 2-Methylnaphthalene ND 2.50 5.00 ug/kg wet Naphthalene ND 2.50 5.00 ug/kg wet 1 ------Phenanthrene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Pyrene ug/kg wet 1 ---Carbazole ND 1.87 3.75 ug/kg wet 1 Dibenzofuran ND 1.25 2.50 ug/kg wet 1 2-Chlorophenol ND 6.25 12.5 ug/kg wet 4-Chloro-3-methylphenol ND 12.5 25.0 ug/kg wet 1 6.25 2,4-Dichlorophenol ND 12.5 ug/kg wet 2,4-Dimethylphenol ND 6.25 12.5 ug/kg wet 1 31.2 62.5 2,4-Dinitrophenol ND ug/kg wet 1 4,6-Dinitro-2-methylphenol ND 31.2 62.5 ug/kg wet 1 2-Methylphenol ND 3.12 6.25 ug/kg wet 1 3+4-Methylphenol(s) ND 3.12 6.25 ug/kg wet 1 ------2-Nitrophenol ND 12.5 25.0 ug/kg wet 1 12.5 4-Nitrophenol ND 25.0 ug/kg wet 1 ug/kg wet Pentachlorophenol (PCP) ND 12.5 25.0 1 Phenol ND 2.50 5.00 ug/kg wet 1 ND 6.25 12.5 2,3,4,6-Tetrachlorophenol ug/kg wet 1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

Batch 22H0028 - EPA 3546							So	lid		
Blank (22H0028-BLK1)			Prepared	: 08/01/22 10:2	26 Anal	yzed: 08/01	/22 15:43			
2,3,5,6-Tetrachlorophenol	ND	6.25	12.5	ug/kg wet	1				 	
2,4,5-Trichlorophenol	ND	6.25	12.5	ug/kg wet	1				 	
Nitrobenzene	ND	12.5	25.0	ug/kg wet	1				 	
2,4,6-Trichlorophenol	ND	6.25	12.5	ug/kg wet	1				 	
Bis(2-ethylhexyl)phthalate	ND	18.7	37.5	ug/kg wet	1				 	
Butyl benzyl phthalate	ND	12.5	25.0	ug/kg wet	1				 	
Diethylphthalate	ND	12.5	25.0	ug/kg wet	1				 	
Dimethylphthalate	ND	12.5	25.0	ug/kg wet	1				 	
Di-n-butylphthalate	ND	12.5	25.0	ug/kg wet	1				 	
Di-n-octyl phthalate	ND	12.5	25.0	ug/kg wet	1				 	
N-Nitrosodimethylamine	ND	3.12	6.25	ug/kg wet	1				 	
N-Nitroso-di-n-propylamine	ND	3.12	6.25	ug/kg wet	1				 	
N-Nitrosodiphenylamine	ND	3.12	6.25	ug/kg wet	1				 	
Bis(2-Chloroethoxy) methane	ND	3.12	6.25	ug/kg wet	1				 	
Bis(2-Chloroethyl) ether	ND	3.12	6.25	ug/kg wet	1				 	
2,2'-Oxybis(1-Chloropropane)	ND	3.12	6.25	ug/kg wet	1				 	
Hexachlorobenzene	ND	1.25	2.50	ug/kg wet	1				 	
Hexachlorobutadiene	ND	3.12	6.25	ug/kg wet	1				 	
Hexachlorocyclopentadiene	ND	6.25	12.5	ug/kg wet	1				 	
Hexachloroethane	ND	3.12	6.25	ug/kg wet	1				 	
2-Chloronaphthalene	ND	1.25	2.50	ug/kg wet	1				 	
1,2,4-Trichlorobenzene	ND	3.12	6.25	ug/kg wet	1				 	
4-Bromophenyl phenyl ether	ND	3.12	6.25	ug/kg wet	1				 	
4-Chlorophenyl phenyl ether	ND	3.12	6.25	ug/kg wet	1				 	
Aniline	ND	6.25	12.5	ug/kg wet	1				 	
4-Chloroaniline	ND	3.12	6.25	ug/kg wet	1				 	
2-Nitroaniline	ND	25.0	50.0	ug/kg wet	1				 	
3-Nitroaniline	ND	25.0	50.0	ug/kg wet	1				 	
4-Nitroaniline	ND	25.0	50.0	ug/kg wet	1				 	
2,4-Dinitrotoluene	ND	12.5	25.0	ug/kg wet	1				 	
2,6-Dinitrotoluene	ND	12.5	25.0	ug/kg wet	1				 	
Benzoic acid	ND	157	312	ug/kg wet	1				 	
Benzyl alcohol	ND	6.25	12.5	ug/kg wet	1				 	
Isophorone	ND	3.12	6.25	ug/kg wet	1				 	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0028 - EPA 3546							Sol	id				
Blank (22H0028-BLK1)			Prepared	1: 08/01/22 1	0:26 Ana	yzed: 08/01	/22 15:43					
Azobenzene (1,2-DPH)	ND	3.12	6.25	ug/kg we	et 1							
Bis(2-Ethylhexyl) adipate	ND	31.2	62.5	ug/kg we	t 1							
3,3'-Dichlorobenzidine	ND	25.0	50.0	ug/kg we	et 1							Q-
1,2-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
1,3-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
1,4-Dinitrobenzene	ND	31.2	62.5	ug/kg we	t 1							
Pyridine	ND	6.25	12.5	ug/kg we	t 1							
1,2-Dichlorobenzene	ND	3.12	6.25	ug/kg we	t 1							
1,3-Dichlorobenzene	ND	3.12	6.25	ug/kg we	t 1							
1,4-Dichlorobenzene	ND	3.12	6.25	ug/kg we	t 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 88 %	Limits: 37-	-122 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			78 %	44-	120 %		"					
Phenol-d6 (Surr)			71 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			83 %	54-	127 %		"					
2-Fluorophenol (Surr)			73 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			85 %	39-	-132 %		"					
LCS (22H0028-BS1)			Prepared	l: 08/01/22 1	0:26 Anal	yzed: 08/01	/22 16:14					
EPA 8270E												
Acenaphthene	499	5.32	10.7	ug/kg we	et 4	533		94	40-123%			
Acenaphthylene	505	5.32	10.7	ug/kg we	et 4	533		95	32-132%			
Anthracene	502	5.32	10.7	ug/kg we	et 4	533		94	47-123%			
Benz(a)anthracene	489	5.32	10.7	ug/kg we		533		92	49-126%			
Benzo(a)pyrene	511	8.00	16.0	ug/kg we	et 4	533		96	45-129%			
Benzo(b)fluoranthene	512	8.00	16.0	ug/kg we		533		96	45-132%			
Benzo(k)fluoranthene	502	8.00	16.0	ug/kg we		533		94	47-132%			
Benzo(g,h,i)perylene	498	5.32	10.7	ug/kg we		533		93	43-134%			
Chrysene	480	5.32	10.7	ug/kg we	et 4	533		90	50-124%			
Dibenz(a,h)anthracene	495	5.32	10.7	ug/kg we		533		93	45-134%			
Fluoranthene	500	5.32	10.7	ug/kg we		533		94	50-127%			
Fluorene	463	5.32	10.7	ug/kg we		533		87	43-125%			
Indeno(1,2,3-cd)pyrene	495	5.32	10.7	ug/kg we		533		93	45-133%			
1-Methylnaphthalene	484	10.7	21.3	ug/kg we		533		91	40-120%			
2-Methylnaphthalene	500	10.7	21.3	ug/kg we		533		94	38-122%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** Limits RPD % REC Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

Batch 22H0028 - EPA 3546							So	lid		
LCS (22H0028-BS1)			Prepared	: 08/01/22 10:2	26 Anal	yzed: 08/01/	22 16:14			
Naphthalene	485	10.7	21.3	ug/kg wet	4	533		91	35-123%	
Phenanthrene	483	5.32	10.7	ug/kg wet	4	533		91	50-121%	
Pyrene	492	5.32	10.7	ug/kg wet	4	533		92	47-127%	
Carbazole	474	8.00	16.0	ug/kg wet	4	533		89	50-123%	
Dibenzofuran	482	5.32	10.7	ug/kg wet	4	533		90	44-120%	
2-Chlorophenol	470	26.7	53.2	ug/kg wet	4	533		88	34-121%	
1-Chloro-3-methylphenol	482	53.2	107	ug/kg wet	4	533		90	45-122%	
2,4-Dichlorophenol	464	26.7	53.2	ug/kg wet	4	533		87	40-122%	
2,4-Dimethylphenol	514	26.7	53.2	ug/kg wet	4	533		96	30-127%	
2,4-Dinitrophenol	354	133	267	ug/kg wet	4	533		66	10-137%	
4,6-Dinitro-2-methylphenol	408	133	267	ug/kg wet	4	533		77	29-132%	
2-Methylphenol	481	13.3	26.7	ug/kg wet	4	533		90	32-122%	
3+4-Methylphenol(s)	495	13.3	26.7	ug/kg wet	4	533		93	34-120%	
2-Nitrophenol	524	53.2	107	ug/kg wet	4	533		98	36-123%	
-Nitrophenol	412	53.2	107	ug/kg wet	4	533		77	30-132%	
Pentachlorophenol (PCP)	425	53.2	107	ug/kg wet	4	533		80	25-133%	
Phenol	449	10.7	21.3	ug/kg wet	4	533		84	34-121%	
2,3,4,6-Tetrachlorophenol	482	26.7	53.2	ug/kg wet	4	533		90	44-125%	
2,3,5,6-Tetrachlorophenol	462	26.7	53.2	ug/kg wet	4	533		87	40-120%	
2,4,5-Trichlorophenol	474	26.7	53.2	ug/kg wet	4	533		89	41-124%	
Nitrobenzene	456	53.2	107	ug/kg wet	4	533		86	34-122%	
2,4,6-Trichlorophenol	472	26.7	53.2	ug/kg wet	4	533		89	39-126%	
Bis(2-ethylhexyl)phthalate	476	80.0	160	ug/kg wet	4	533		89	51-133%	
Butyl benzyl phthalate	478	53.2	107	ug/kg wet	4	533		90	48-132%	
Diethylphthalate	460	53.2	107	ug/kg wet	4	533		86	50-124%	
Dimethylphthalate	481	53.2	107	ug/kg wet	4	533		90	48-124%	
Di-n-butylphthalate	513	53.2	107	ug/kg wet	4	533		96	51-128%	
Di-n-octyl phthalate	479	53.2	107	ug/kg wet	4	533		90	45-140%	
N-Nitrosodimethylamine	427	13.3	26.7	ug/kg wet	4	533		80	23-120%	
N-Nitroso-di-n-propylamine	483	13.3	26.7	ug/kg wet	4	533		91	36-120%	
N-Nitrosodiphenylamine	489	13.3	26.7	ug/kg wet	4	533		92	38-127%	
Bis(2-Chloroethoxy) methane	501	13.3	26.7	ug/kg wet	4	533		94	36-121%	
Bis(2-Chloroethyl) ether	440	13.3	26.7	ug/kg wet	4	533		83	31-120%	
2,2'-Oxybis(1-Chloropropane)	508	13.3	26.7	ug/kg wet	4	533		95	39-120%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22H0028 - EPA 3546 Solid LCS (22H0028-BS1) Prepared: 08/01/22 10:26 Analyzed: 08/01/22 16:14 489 5.32 10.7 533 92 45-122% Hexachlorobenzene ug/kg wet Hexachlorobutadiene 463 13.3 26.7 ug/kg wet 4 533 87 32-123% ------Hexachlorocyclopentadiene 456 26.7 53.2 ug/kg wet 4 533 85 10-140% Hexachloroethane 460 13.3 26.7 ug/kg wet 4 533 86 28-120% 504 94 2-Chloronaphthalene 5.32 10.7 4 533 41-120% ug/kg wet 90 1,2,4-Trichlorobenzene 481 13.3 26.7 ug/kg wet 4 533 34-120% 4-Bromophenyl phenyl ether 485 13.3 26.7 ug/kg wet 4 533 91 46-124% 533 87 4-Chlorophenyl phenyl ether 466 13.3 26.7 ug/kg wet 4 45-121% 53.2 Aniline 352 26.7 ug/kg wet 4 533 66 10-120% 4-Chloroaniline 373 13.3 26.7 ug/kg wet 4 533 70 17-120% 90 2-Nitroaniline 481 107 213 4 533 44-127% ug/kg wet 107 213 78 3-Nitroaniline 414 ug/kg wet 4 533 33-120% 448 107 213 533 84 51-125% 4-Nitroaniline ug/kg wet 4 2,4-Dinitrotoluene 489 53.2 107 ug/kg wet 4 533 92 48-126% 92 2,6-Dinitrotoluene 492 53.2 107 4 533 46-124% ug/kg wet Benzoic acid 741 668 668 ug/kg wet 4 1070 69 10-140% 402 26.7 53.2 533 75 29-122% Benzyl alcohol 4 ug/kg wet 467 13.3 26.7 4 533 88 30-122% Isophorone ug/kg wet 528 13.3 26.7 4 533 99 39-125% Azobenzene (1,2-DPH) ug/kg wet ---Bis(2-Ethylhexyl) adipate 466 133 267 ug/kg wet 4 533 87 61-121% 3,3'-Dichlorobenzidine 2380 107 213 4 1070 224 22-121% O-29 ug/kg wet 1,2-Dinitrobenzene 482 133 267 ug/kg wet 4 533 90 44-120% 43-127% 1,3-Dinitrobenzene 467 133 267 4 533 88 ug/kg wet 1,4-Dinitrobenzene 428 133 267 ug/kg wet 4 533 80 37-132% 26.7 4 533 67 Pyridine 360 53.2 ug/kg wet 10-120% ---1,2-Dichlorobenzene 461 13.3 26.7 ug/kg wet 4 533 86 33-120% 451 13.3 26.7 4 533 85 30-120% 1.3-Dichlorobenzene ug/kg wet ---1,4-Dichlorobenzene 451 13.3 26.7 ug/kg wet 4 533 85 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 87% Limits: 37-122 % Dilution: 4x 44-120 % 2-Fluorobiphenyl (Surr) 94% Phenol-d6 (Surr) 86 % 33-122 % p-Terphenyl-d14 (Surr) 101 % 54-127 % 2-Fluorophenol (Surr) 86 % 35-120 % 2,4,6-Tribromophenol (Surr) 93 % 39-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0028 - EPA 3546							Sol	id				
Duplicate (22H0028-DUP1)			Prepared	: 08/01/22 1	0:26 Anal	lyzed: 08/01	/22 19:05					
QC Source Sample: FC-071922-19	952 (A2G055	<u>58-01)</u>										
<u>EPA 8270E</u>												
Acenaphthene	167000	1650	3320	ug/kg dry	200		146000			14	30%	
Acenaphthylene	ND	14900	14900	ug/kg dry	200		ND				30%	R-0
Anthracene	127000	1650	3320	ug/kg dry	200		111000			13	30%	
Benz(a)anthracene	71300	1650	3320	ug/kg dry	200		61300			15	30%	
Benzo(a)pyrene	79500	2480	4970	ug/kg dry	200		69400			13	30%	
Benzo(b)fluoranthene	63700	2480	4970	ug/kg dry	200		55300			14	30%	
Benzo(k)fluoranthene	21700	2480	4970	ug/kg dry	200		16800			25	30%	M-0
Benzo(g,h,i)perylene	50900	1650	3320	ug/kg dry	200		44200			14	30%	
Chrysene	93000	1650	3320	ug/kg dry	200		79100			16	30%	
Dibenz(a,h)anthracene	5310	1650	3320	ug/kg dry	200		4450			17	30%	
Fluoranthene	310000	1650	3320	ug/kg dry	200		274000			12	30%	
Fluorene	107000	1650	3320	ug/kg dry	200		93000			14	30%	
Indeno(1,2,3-cd)pyrene	43200	1650	3320	ug/kg dry	200		37900			13	30%	
1-Methylnaphthalene	64400	3320	6620	ug/kg dry	200		52400			21	30%	
2-Methylnaphthalene	75700	3320	6620	ug/kg dry	200		59200			24	30%	
Naphthalene	10800	3320	6620	ug/kg dry	200		7360			38	30%	Q-0
Phenanthrene	598000	1650	3320	ug/kg dry	200		540000			10	30%	
Pyrene	368000	1650	3320	ug/kg dry	200		326000			12	30%	
Carbazole	5100	2480	4970	ug/kg dry	200		4340			16	30%	
Dibenzofuran	13100	1650	3320	ug/kg dry	200		11200			15	30%	
2-Chlorophenol	ND	8280	16500	ug/kg dry	200		ND				30%	
4-Chloro-3-methylphenol	ND	16500	33200	ug/kg dry	200		ND				30%	
2,4-Dichlorophenol	ND	8280	16500	ug/kg dry	200		ND				30%	
2,4-Dimethylphenol	ND	8280	16500	ug/kg dry	200		ND				30%	
2,4-Dinitrophenol	ND	41400	82800	ug/kg dry	200		ND				30%	
4,6-Dinitro-2-methylphenol	ND	41400	82800	ug/kg dry	200		ND				30%	
2-Methylphenol	ND	4140	8280	ug/kg dry	200		ND				30%	
3+4-Methylphenol(s)	ND	4140	8280	ug/kg dry			ND				30%	
2-Nitrophenol	ND	16500	33200	ug/kg dry			ND				30%	
4-Nitrophenol	ND	33200	33200	ug/kg dry			ND				30%	
Pentachlorophenol (PCP)	ND	16500	33200	ug/kg dry			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22H0028 - EPA 3546 Solid Duplicate (22H0028-DUP1) Prepared: 08/01/22 10:26 Analyzed: 08/01/22 19:05 QC Source Sample: FC-071922-1952 (A2G0558-01) ug/kg dry Phenol ND 3320 6620 200 ND 30% ND 8280 16500 200 2,3,4,6-Tetrachlorophenol ug/kg dry ND 30% 2,3,5,6-Tetrachlorophenol ND 8280 16500 ug/kg dry 200 ND 30% 2,4,5-Trichlorophenol ND 8280 16500 ug/kg dry 200 ND 30% Nitrobenzene ND 16500 33200 ug/kg dry 200 ND 30% ------ND 8280 2,4,6-Trichlorophenol 16500 ug/kg dry 200 ND 30% Bis(2-ethylhexyl)phthalate ND 24800 49700 ug/kg dry 200 ND 30% ND 200 ND 30% Butyl benzyl phthalate 16500 33200 ug/kg dry Diethylphthalate ND 16500 33200 ug/kg dry 200 ND 30% Dimethylphthalate ND 16500 33200 ug/kg dry 200 ND 30% Di-n-butylphthalate ND 16500 33200 ug/kg dry 200 ND 30% Di-n-octyl phthalate ND 16500 33200 200 ND 30% ug/kg dry N-Nitrosodimethylamine ND 4140 8280 ug/kg dry 200 ND 30% ND 4140 8280 200 ND 30% N-Nitroso-di-n-propylamine ug/kg dry R-02 N-Nitrosodiphenylamine ND 16100 16100 ug/kg dry 200 ND 30% Bis(2-Chloroethoxy) methane ND 4140 8280 ug/kg dry 200 ND ___ 30% Bis(2-Chloroethyl) ether ND 4140 8280 ug/kg dry 200 ND 30% ND 4140 8280 200 30% 2,2'-Oxybis(1-Chloropropane) ND ug/kg dry ---ND Hexachlorobenzene 1650 3320 ug/kg dry 200 ND 30% 8280 Hexachlorobutadiene ND 4140 200 ND 30% ug/kg dry ND 8280 16500 Hexachlorocyclopentadiene ug/kg dry 200 ND 30% Hexachloroethane ND 4140 8280 ug/kg dry 200 ND ___ ---30% 2-Chloronaphthalene ND 1650 3320 ug/kg dry 200 ND 30% ND ND 30% 1,2,4-Trichlorobenzene 4140 8280 ug/kg dry 200 ND 4140 8280 ND 30% 4-Bromophenyl phenyl ether ug/kg dry 200 ND 4-Chlorophenyl phenyl ether 4140 8280 200 ND 30% ug/kg dry ---Aniline ND 8280 16500 200 ND 30% ug/kg dry 4-Chloroaniline ND 4140 8280 ug/kg dry 200 ND ---30% 2-Nitroaniline ND 33200 66200 ug/kg dry 200 ND 30% 3-Nitroaniline ND 33200 66200 200 ND 30% ug/kg dry 4-Nitroaniline ND 33200 66200 ug/kg dry 200 ND 30% ND 16500 2,4-Dinitrotoluene 33200 200 ND 30% ug/kg dry 2,6-Dinitrotoluene ND 16500 33200 ug/kg dry 200 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0028 - EPA 3546							Sol	id				
Duplicate (22H0028-DUP1)			Prepared	: 08/01/22 10	0:26 Ana	lyzed: 08/01	/22 19:05					
QC Source Sample: FC-071922-19	052 (A2G05	<u>58-01)</u>										
Benzoic acid	ND	207000	414000	ug/kg dry	200		ND				30%	
Benzyl alcohol	ND	8280	16500	ug/kg dry	200		ND				30%	
Isophorone	ND	4140	8280	ug/kg dry	200		ND				30%	
Azobenzene (1,2-DPH)	ND	4140	8280	ug/kg dry	200		ND				30%	
Bis(2-Ethylhexyl) adipate	ND	41400	82800	ug/kg dry	200		ND				30%	
3,3'-Dichlorobenzidine	ND	33200	66200	ug/kg dry	200		ND				30%	Q
1,2-Dinitrobenzene	ND	41400	82800	ug/kg dry	200		ND				30%	
1,3-Dinitrobenzene	ND	41400	82800	ug/kg dry	200		ND				30%	
1,4-Dinitrobenzene	ND	41400	82800	ug/kg dry	200		ND				30%	
Pyridine	ND	8280	16500	ug/kg dry	200		ND				30%	
1,2-Dichlorobenzene	ND	4140	8280	ug/kg dry	200		ND				30%	
1,3-Dichlorobenzene	ND	4140	8280	ug/kg dry	200		ND				30%	
1,4-Dichlorobenzene	ND	4140	8280	ug/kg dry	200		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 75 %	Limits: 37-	122 %	Dilı	ution: 200x	;				S-05
2-Fluorobiphenyl (Surr)			98 %	44	120 %		"					S-05
Phenol-d6 (Surr)			91 %	33-	122 %		"					S-05
p-Terphenyl-d14 (Surr)			102 %	54-	127 %		"					S-05
2-Fluorophenol (Surr)			51 %	35-	120 %		"					S-05
2,4,6-Tribromophenol (Surr)			42 %	39-	132 %		"					S-05
Matrix Spike (22H0028-MS1)			Prepared	: 08/01/22 10	0:26 Ana	yzed: 08/02	/22 12:25					
QC Source Sample: Non-SDG (A2	G0730-03R	E1)										
EPA 8270E												
Acenaphthene	350	5.13	10.3	ug/kg wet	4	514	ND	68	40-123%			
Acenaphthylene	357	5.13	10.3	ug/kg wet	4	514	ND	70	32-132%			
Anthracene	385	5.13	10.3	ug/kg wet	4	514	ND	75	47-123%			
Benz(a)anthracene	370	5.13	10.3	ug/kg wet	4	514	ND	72	49-126%			
Benzo(a)pyrene	404	7.71	15.4	ug/kg wet	4	514	ND	79	45-129%			
Benzo(b)fluoranthene	397	7.71	15.4	ug/kg we	4	514	ND	77	45-132%			
Benzo(k)fluoranthene	386	7.71	15.4	ug/kg we	4	514	ND	75	47-132%			
Benzo(g,h,i)perylene	381	5.13	10.3	ug/kg we		514	ND	74	43-134%			
Chrysene	367	5.13	10.3	ug/kg wet		514	ND	71	50-124%			
Dibenz(a,h)anthracene	385	5.13	10.3	ug/kg wet		514	ND	75	45-134%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22H0028 - EPA 3546 Solid Matrix Spike (22H0028-MS1) Prepared: 08/01/22 10:26 Analyzed: 08/02/22 12:25 QC Source Sample: Non-SDG (A2G0730-03RE1) Fluoranthene 5.13 10.3 ug/kg wet 4 514 ND 74 50-127% 514 5.13 10.3 Fluorene 341 ug/kg wet 4 ND 66 43-125% Indeno(1,2,3-cd)pyrene 376 5.13 10.3 ug/kg wet 4 514 ND 73 45-133% 1-Methylnaphthalene 336 10.3 20.5 ug/kg wet 4 514 ND 65 40-120% 2-Methylnaphthalene 345 10.3 20.5 ug/kg wet 4 514 ND 67 38-122% 322 10.3 20.5 514 Naphthalene ug/kg wet 4 ND 63 35-123% Phenanthrene 356 5.13 10.3 ug/kg wet 4 514 ND 69 50-121% 384 10.3 514 ND 75 47-127% Pyrene 5.13 ug/kg wet 4 Carbazole 372 7.71 15.4 ug/kg wet 4 514 ND 72 50-123% Dibenzofuran 349 5.13 10.3 ug/kg wet 4 514 ND 68 44-120% 2-Chlorophenol 334 25.7 51.3 ug/kg wet 4 514 ND 65 34-121% 103 4-Chloro-3-methylphenol 382 51.3 ND 45-122% ug/kg wet 4 514 74 352 40-122% 2,4-Dichlorophenol 25.7 51.3 ug/kg wet 4 514 ND 69 2,4-Dimethylphenol 408 25.7 51.3 4 514 ND 79 30-127% ug/kg wet 128 257 Q-01 2,4-Dinitrophenol ND ug/kg wet 4 514 ND 10-137% 4,6-Dinitro-2-methylphenol ND 128 257 ug/kg wet 4 514 ND 29-132% ___ Q-01 2-Methylphenol 372 12.8 25.7 ug/kg wet 4 514 ND 72 32-122% 631 12.8 25.7 514 3+4-Methylphenol(s) 4 343 56 34-120% ug/kg wet 317 103 514 ND 36-123% Q-41 2-Nitrophenol 51.3 ug/kg wet 4 62 51.3 103 4-Nitrophenol 315 4 514 ND 61 30-132% ug/kg wet Pentachlorophenol (PCP) 305 51.3 103 4 514 ND 59 25-133% ug/kg wet Phenol 338 10.3 20.5 ug/kg wet 4 514 15.5 63 34-121% 2,3,4,6-Tetrachlorophenol 348 25.7 51.3 ug/kg wet 4 514 ND 68 44-125% 317 25.7 51.3 4 514 ND 62 40-120% 2,3,5,6-Tetrachlorophenol ug/kg wet 374 25.7 51.3 514 ND 73 41-124% 2,4,5-Trichlorophenol ug/kg wet 4 103 333 51.3 4 514 ND 65 34-122% Nitrobenzene ug/kg wet 2,4,6-Trichlorophenol 347 25.7 51.3 514 ND 68 39-126% ug/kg wet 4 427 Bis(2-ethylhexyl)phthalate 77.1 154 ug/kg wet 4 514 ND 83 51-133% Butyl benzyl phthalate 401 51.3 103 ug/kg wet 4 514 ND 78 48-132% Diethylphthalate 340 51.3 103 4 514 ND ug/kg wet 66 50-124% Dimethylphthalate 356 51.3 103 ug/kg wet 4 514 ND 69 48-124% 51.3 103 4 82 Di-n-butylphthalate 424 514 ND 51-128% ug/kg wet Di-n-octyl phthalate 448 51.3 103 ug/kg wet 4 514 ND 87 45-140%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22H0028 - EPA 3546 Solid Matrix Spike (22H0028-MS1) Prepared: 08/01/22 10:26 Analyzed: 08/02/22 12:25 QC Source Sample: Non-SDG (A2G0730-03RE1) N-Nitrosodimethylamine 12.8 25.7 ug/kg wet 4 514 ND 56 23-120% 12.8 25.7 71 N-Nitroso-di-n-propylamine 365 ug/kg wet 4 514 ND 36-120% N-Nitrosodiphenylamine 387 12.8 25.7 ug/kg wet 4 514 ND 75 38-127% Bis(2-Chloroethoxy) methane 352 12.8 25.7 ug/kg wet 4 514 ND 69 36-121% Bis(2-Chloroethyl) ether 322 12.8 25.7 4 514 ND 63 31-120% ug/kg wet 332 25.7 514 2,2'-Oxybis(1-Chloropropane) 12.8 ug/kg wet 4 ND 65 39-120% ug/kg wet Hexachlorobenzene 360 5.13 10.3 4 514 ND 70 45-122% 299 25.7 514 58 Hexachlorobutadiene 12.8 ug/kg wet 4 ND 32-123% Hexachlorocyclopentadiene 106 25.7 51.3 ug/kg wet 4 514 ND 21 10-140% Hexachloroethane 258 12.8 25.7 ug/kg wet 4 514 ND 50 28-120% 2-Chloronaphthalene 348 5.13 10.3 ug/kg wet 4 514 ND 68 41-120% 311 12.8 25.7 ND 61 34-120% 1,2,4-Trichlorobenzene ug/kg wet 4 514 4-Bromophenyl phenyl ether 369 12.8 25.7 ug/kg wet 4 514 ND 72 46-124% 4-Chlorophenyl phenyl ether 356 12.8 25.7 4 514 ND 69 45-121% ug/kg wet Aniline 241 25.7 51.3 ug/kg wet 4 514 ND 47 10-120% 4-Chloroaniline 282 12.8 25.7 ug/kg wet 4 514 ND 55 17-120% 2-Nitroaniline 476 103 205 ug/kg wet 4 514 ND 93 44-127% 328 103 205 514 3-Nitroaniline 4 ND 64 33-120% ug/kg wet 510 103 514 99 51-125% 4-Nitroaniline 205 ug/kg wet 4 ND 51.3 103 2,4-Dinitrotoluene 350 4 514 ND 48-126% ug/kg wet 68 2,6-Dinitrotoluene 51.3 103 4 514 ND 70 46-124% 361 ug/kg wet Q-01 Benzoic acid ND 644 1280 ug/kg wet 4 1030 ND 10-140% ---Benzyl alcohol 316 25.7 51.3 ug/kg wet 4 514 ND 62 29-122% 342 25.7 4 514 30-122% Isophorone 12.8 ug/kg wet ND 66 394 12.8 25.7 514 77 39-125% Azobenzene (1,2-DPH) ug/kg wet 4 ND 412 128 257 ug/kg wet 4 514 ND 80 61-121% Bis(2-Ethylhexyl) adipate 3,3'-Dichlorobenzidine 2200 103 205 1030 ND 214 22-121% Q-01 ug/kg wet 4 44-120% 1,2-Dinitrobenzene 259 128 257 ug/kg wet 4 514 ND 50 1,3-Dinitrobenzene 316 128 257 ug/kg wet 4 514 ND 61 43-127% 187 128 257 4 514 ND 36 37-132% Q-01, J 1,4-Dinitrobenzene ug/kg wet Pyridine 257 25.7 51.3 ug/kg wet 4 514 ND 50 10-120% 301 25.7 4 59 12.8 514 ND 33-120% 1.2-Dichlorobenzene ug/kg wet 1,3-Dichlorobenzene 287 12.8 25.7 ug/kg wet 4 514 ND 56 30-120%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike Source % REC **RPD** Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 22H0028 - EPA 3546 Solid Matrix Spike (22H0028-MS1) Prepared: 08/01/22 10:26 Analyzed: 08/02/22 12:25 QC Source Sample: Non-SDG (A2G0730-03RE1) 1,4-Dichlorobenzene 12.8 25.7 ug/kg wet ND 58 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 66 % Limits: 37-122 % Dilution: 4x 2-Fluorobiphenyl (Surr) 44-120 % 46 % Phenol-d6 (Surr) 33-122 % 68 % p-Terphenyl-d14 (Surr) 54-127 % S-03 52 % 2-Fluorophenol (Surr) 62 % 35-120 % 2,4,6-Tribromophenol (Surr) 80 % 39-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte Detection Result Limit Limit Limit Units Dilution Spike Round Result % REC Limits RPD Limit Note Note Result % REC Limits RPD Limit Note Result Result Result RPD RPD Note RPD Note RPD RPD Note RPD RPD Note RPD RPD Note RPD RPD RPD Note RPD RPD Note RPD RPD Note RPD RPD RPD Note RPD RPD RPD Note RPD RPD RPD Note RPD RPD				Total N	letals by	EPA 6020	B (ICPMS	5)						
Prepared: 07/27/22 09:33 Analyzed: 07/27/22 15:16	Analyte	Result			Units	Dilution			% REC		RPD		Notes	
### Ansenic	Batch 22G0896 - EPA 3051A							Sol	id					
Arsenic ND 481 962 ug/kg wet 10	Blank (22G0896-BLK1)			Prepared	: 07/27/22 0	9:33 Anal	yzed: 07/27	/22 15:16						
Barium	EPA 6020B													
Cadmium ND 96.2 192 ug/kg wet 10	Arsenic	ND	481	962	ug/kg we	t 10								
Chromium	Barium	ND	481	962										
Lead	Cadmium	ND	96.2	192	ug/kg we	t 10								
Lead	Chromium	ND	481	962	ug/kg we	t 10								
Selenium ND 481 962 ug/kg wet 10	Lead	ND	96.2	192	ug/kg we	t 10								
ND 96.2 192 ug/kg wet 10	Mercury	ND	38.5	76.9										
Prepared: 07/27/22 09:33 Analyzed: 07/27/22 15:20	Selenium	ND	481	962	ug/kg we	t 10								
## Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 OC Source Sample: Non-SDG (A2G0730-01)	Silver	ND	96.2	192	ug/kg we	t 10								
Arsenic 47000 500 1000 ug/kg wet 10 50000 94 80-120% Barium 48100 500 1000 ug/kg wet 10 50000 96 80-120% Cadmium 48500 100 200 ug/kg wet 10 50000 97 80-120% Chromium 47600 500 1000 ug/kg wet 10 50000 95 80-120% Chromium 47600 100 200 ug/kg wet 10 50000 95 80-120% Chromium 23300 500 1000 ug/kg wet 10 50000 95 80-120% Selenium 23300 500 1000 ug/kg wet 10 1000 95 80-120% Selenium 23300 500 1000 ug/kg wet 10 25000 93 80-120% Silver 24400 100 200 ug/kg wet 10 25000 98 80-120% Selenium 23300 500 1000 ug/kg wet 10 25000 98 80-120% Selenium 24400 100 200 ug/kg wet 10 25000 98 80-120% Selenium 24400 100 200 ug/kg wet 10 25000 98 80-120% Selenium 25000 549 1100 ug/kg wet 10 1490 8 20% Barium 75600 549 1100 ug/kg wet 10 10660 8 20% Cadmium 1020 110 220 ug/kg wet 10 10660 3 20% Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Chromium 33100 549 1100 ug/kg wet 10 17500 6 20% Chromium 33100 549 1100 ug/kg wet 10 17500 6 20% Chromium ND 549 1100 ug/kg wet 10 17500 6 20% Chromium ND 549 1100 ug/kg wet 10 17500 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 90 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 6 20% Chromium ND 549 1100 ug/kg wet 10 ND 4 20% Chromium ND 549 1100 ug/kg wet 10 ND 4 20% Chromium ND 549 1100 ug/kg wet 10 ND 4 20% Chromium ND 549 1100 ug/kg wet 10 ND 4 20% Chromium ND 549 1100 ug/kg wet 10	LCS (22G0896-BS1)			Prepared	: 07/27/22 0	9:33 Anal	yzed: 07/27	/22 15:20						
Barium 48100 500 1000 ug/kg wet 10 50000 96 80-120% Cadmium 48500 100 200 ug/kg wet 10 50000 97 80-120% Chromium 47600 500 1000 ug/kg wet 10 50000 95 80-120% Lead 49400 100 200 ug/kg wet 10 50000 95 80-120% Mercury 947 40.0 80.0 ug/kg wet 10 1000 95 80-120% Selenium 23300 500 1000 ug/kg wet 10 25000 93 80-120% Silver 24400 100 200 ug/kg wet 10 25000 98 80-120% Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 OC Source Sample: Non-SDG (A2G0730-01) Arsenic 1620 549 1100 ug/kg wet 10 1490 8 20% Barium 75600 549 1100 ug/kg wet 10 75000 9.8 20% Cadmium 1020 1110 220 ug/kg wet 10 30300 0.8 20% Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Lead 16500 110 220 ug/kg wet 10 17500 0.8 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 ND 0.8 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.8 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20% Selenium ND 549 1100 ug/kg wet 10 ND 0.9 20%	EPA 6020B													
Cadmium 48500 100 200 ug/kg wet 10 50000 97 80-120% Chromium 47600 500 1000 ug/kg wet 10 50000 95 80-120% Lead 49400 100 200 ug/kg wet 10 50000 95 80-120% Mercury 947 40.0 80.0 ug/kg wet 10 1000 95 80-120% Selenium 23300 500 1000 ug/kg wet 10 25000 93 80-120% Silver 24400 100 200 ug/kg wet 10 25000 98 80-120% Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 OC Source Sample: Non-SDG (A2G0730-01) Arsenic 1620 549 1100 ug/kg wet 10 1490 8 20% Barium 75600 549 1100 ug/kg wet 10 75000 0.8 20% Cadmium 1020 110 220 ug/kg wet 10 1060 1060 3 20% Chromium 33100 549 1100 ug/kg wet 10 17500 9 20% Lead 16500 110 220 ug/kg wet 10 17500 9 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 ND 9 20% Selenium ND 549 1100 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Arsenic	47000	500	1000	ug/kg we	t 10	50000		94	80-120%				
Chromium 47600 500 1000 ug/kg wet 10 50000 95 80-120% Lead 49400 100 200 ug/kg wet 10 50000 95 80-120% Mercury 947 40.0 80.0 ug/kg wet 10 1000 95 80-120% Selenium 23300 500 1000 ug/kg wet 10 25000 93 80-120% Silver 24400 100 200 ug/kg wet 10 25000 98 80-120% Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 OC Source Sample: Non-SDG (A2G0730-01) Arsenic 1620 549 1100 ug/kg wet 10 1490 8 20% Barium 75600 549 1100 ug/kg wet 10 75000 0.8 20% Cadmium 1020 110 220 ug/kg wet 10 1060 3 20% Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Chad 16500 110 220 ug/kg wet 10 17500 9 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 80.1 9 20% Silver 318 110 220 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Barium	48100	500	1000	ug/kg we	t 10	50000		96	80-120%				
Lead	Cadmium	48500	100	200	ug/kg we	t 10	50000		97	80-120%				
Mercury 947 40.0 80.0 ug/kg wet 10 1000 95 80-120% Selenium 23300 500 1000 ug/kg wet 10 25000 93 80-120% Silver 24400 100 200 ug/kg wet 10 25000 98 80-120% Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18 <td col<="" td=""><td>Chromium</td><td>47600</td><td>500</td><td>1000</td><td>ug/kg we</td><td>t 10</td><td>50000</td><td></td><td>95</td><td>80-120%</td><td></td><td></td><td></td></td>	<td>Chromium</td> <td>47600</td> <td>500</td> <td>1000</td> <td>ug/kg we</td> <td>t 10</td> <td>50000</td> <td></td> <td>95</td> <td>80-120%</td> <td></td> <td></td> <td></td>	Chromium	47600	500	1000	ug/kg we	t 10	50000		95	80-120%			
Selenium 23300 500 1000 ug/kg wet 10 25000 93 80-120%	Lead	49400	100	200	ug/kg we	t 10	50000		99	80-120%				
Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18	Mercury	947	40.0	80.0	ug/kg we	t 10	1000		95	80-120%				
Duplicate (22G0896-DUP1) Prepared: 07/27/22 09:33 Analyzed: 07/27/22 16:18	Selenium	23300	500	1000	ug/kg we	t 10	25000		93	80-120%				
OC Source Sample: Non-SDG (A2G0730-01) Arsenic 1620 549 1100 ug/kg wet 10 1490 8 20% Barium 75600 549 1100 ug/kg wet 10 75000 0.8 20% Cadmium 1020 110 220 ug/kg wet 10 1060 3 20% Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Lead 16500 110 220 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 ND 20% Silver 318 </td <td>Silver</td> <td>24400</td> <td>100</td> <td>200</td> <td>ug/kg we</td> <td>t 10</td> <td>25000</td> <td></td> <td>98</td> <td>80-120%</td> <td></td> <td></td> <td></td>	Silver	24400	100	200	ug/kg we	t 10	25000		98	80-120%				
Arsenic 1620 549 1100 ug/kg wet 10 1490 8 20% Barium 75600 549 1100 ug/kg wet 10 75000 0.8 20% Cadmium 1020 110 220 ug/kg wet 10 1060 3 20% Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Lead 16500 110 220 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 80.1 9 20% Silver 318 110 220 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Duplicate (22G0896-DUP1)			Prepared	: 07/27/22 0	9:33 Anal	yzed: 07/27	/22 16:18						
Barium 75600 549 1100 ug/kg wet 10 75000 0.8 20% Cadmium 1020 110 220 ug/kg wet 10 1060 3 20% Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Lead 16500 110 220 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 ND 9 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	QC Source Sample: Non-SDG (A2	(G0730-01)												
Cadmium 1020 110 220 ug/kg wet 10 1060 3 20% Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Lead 16500 110 220 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Arsenic	1620	549	1100	ug/kg we	t 10		1490			8	20%		
Chromium 33100 549 1100 ug/kg wet 10 30300 9 20% Lead 16500 110 220 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Barium	75600	549	1100	ug/kg we	t 10		75000			0.8	20%		
Lead 16500 110 220 ug/kg wet 10 17500 6 20% Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Cadmium	1020	110	220	ug/kg we	t 10		1060			3	20%		
Mercury 73.4 44.0 87.9 ug/kg wet 10 80.1 9 20% Selenium ND 549 1100 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Chromium	33100	549	1100	ug/kg we	t 10		30300			9	20%		
Selenium ND 549 1100 ug/kg wet 10 ND 20% Silver 318 110 220 ug/kg wet 10 332 4 20%	Lead	16500	110	220				17500			6	20%		
Silver 318 110 220 ug/kg wet 10 332 4 20%	Mercury	73.4	44.0	87.9	ug/kg we	t 10		80.1			9	20%		
	Selenium	ND	549	1100	ug/kg we	t 10		ND				20%		
	Silver	318	110	220	ug/kg we	t 10		332			4	20%		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: 2749 Lockport Road Project Number: 111323

Niagara Falls, NY 14305 Project Manager: Chip Byrd Report ID:

A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filtercake

			Total M	letals by E	PA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0896 - EPA 3051A							So	lid				
Matrix Spike (22G0896-MS1)			Prepared	: 07/27/22 09	9:33 Ana	yzed: 07/27	/22 16:23					
QC Source Sample: Non-SDG (A20	G0730-01)											
EPA 6020B												
Arsenic	47900	512	1020	ug/kg wet	10	51200	1490	91	75-125%			
Barium	132000	512	1020	ug/kg wet	10	51200	75000	111	75-125%			
Cadmium	50800	102	205	ug/kg wet	10	51200	1060	97	75-125%			
Chromium	85500	512	1020	ug/kg wet	10	51200	30300	108	75-125%			
Lead	65200	102	205	ug/kg wet	10	51200	17500	93	75-125%			
Mercury	1000	41.0	82.0	ug/kg wet	10	1020	80.1	90	75-125%			
Selenium	23400	512	1020	ug/kg wet	10	25600	ND	91	75-125%			
Silver	25300	102	205	ug/kg wet	10	25600	332	97	75-125%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	etals by	EPA 602	B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0098 - EPA 1311	3015A						So	il				
Blank (22H0098-BLK1)			Prepared	08/02/22	13:57 Ana	yzed: 08/02	/22 22:23					
1311/6020B												
Arsenic	ND		0.100	mg/L	10							TCLI
Barium	ND		5.00	mg/L	10							TCLI
Cadmium	ND		0.100	mg/L	10							TCLI
Chromium	ND		0.100	mg/L	10							TCLI
Lead	ND		0.0500	mg/L	10							TCLI
Mercury	ND		0.00700	mg/L	10							TCLI
Selenium	ND		0.100	mg/L	10							TCLI
Silver	ND		0.100	mg/L	10							TCLI
LCS (22H0098-BS1)			Prepared:	08/02/22	13:57 Ana	yzed: 08/02	/22 22:29					
1311/6020B												
Arsenic	4.64		0.100	mg/L	10	5.00		93	80-120%			TCLI
Barium	10.1		5.00	mg/L	10	10.0		101	80-120%			TCLI
Cadmium	0.926		0.100	mg/L	10	1.00		93	80-120%			TCLI
Chromium	5.05		0.100	mg/L	10	5.00		101	80-120%			TCLI
Lead	4.69		0.0500	mg/L	10	5.00		94	80-120%			TCLI
Mercury	0.0926		0.00700	mg/L	10	0.100		93	80-120%			TCLI
Selenium	0.959		0.100	mg/L	10	1.00		96	80-120%			TCLI
Silver	0.967		0.100	mg/L	10	1.00		97	80-120%			TCLI
Matrix Spike (22H0098-MS	S1)		Prepared:	08/02/22	13:57 Anal	yzed: 08/02	/22 22:39					
QC Source Sample: FC-07192	2-1952 (A2G055	58-01)										
1311/6020B												
Arsenic	4.50		0.100	mg/L	10	5.00	ND	90	50-150%			
Barium	9.84		5.00	mg/L	10	10.0	ND	98	50-150%			
Cadmium	0.891		0.100	mg/L	10	1.00	ND	89	50-150%			
Chromium	4.85		0.100	mg/L	10	5.00	ND	97	50-150%			
Lead	4.42		0.0500	mg/L	10	5.00	ND	88	50-150%			
Mercury	0.0883		0.00700	mg/L	10	0.100	ND	88	50-150%			
Selenium	0.942		0.100	mg/L	10	1.00	ND	94	50-150%			
Silver	0.886		0.100	mg/L	10	1.00	ND	89	50-150%			

Prepared: 08/02/22 13:57 Analyzed: 08/02/22 22:50

Apex Laboratories

Matrix Spike (22H0098-MS2)

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	etals by	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22H0098 - EPA 1311/301	5A						Soi	il				
Matrix Spike (22H0098-MS2)			Prepared:	08/02/22	13:57 Anal	yzed: 08/02	/22 22:50					
QC Source Sample: Non-SDG (A20	G0559-01)											
1311/6020B												
Arsenic	4.57		0.100	mg/L	10	5.00	ND	91	50-150%			
Barium	10.3		5.00	mg/L	10	10.0	ND	103	50-150%			
Cadmium	0.923		0.100	mg/L	10	1.00	ND	92	50-150%			
Chromium	4.98		0.100	mg/L	10	5.00	ND	100	50-150%			
Lead	4.66		0.0500	mg/L	10	5.00	ND	93	50-150%			
Mercury	0.0930		0.00700	mg/L	10	0.100	ND	93	50-150%			
Selenium	0.947		0.100	mg/L	10	1.00	ND	95	50-150%			
Silver	0.936		0.100	mg/L	10	1.00	ND	94	50-150%			
Matrix Spike (22H0098-MS3)			Prepared	08/02/22	13:57 Anal	lyzed: 08/02	/22 23:11					
QC Source Sample: Non-SDG (A20	G0778-01)											
1311/6020B												
Arsenic	4.77		0.100	mg/L	10	5.00	ND	95	50-150%			
Barium	10.8		5.00	mg/L	10	10.0	ND	108	50-150%			
Cadmium	0.946		0.100	mg/L	10	1.00	ND	95	50-150%			
Chromium	5.12		0.100	mg/L	10	5.00	ND	102	50-150%			
Lead	4.51		0.0500	mg/L	10	5.00	ND	90	50-150%			
Mercury	0.0911		0.00700	mg/L	10	0.100	ND	91	50-150%			
Selenium	0.942		0.100	mg/L	10	1.00	ND	94	50-150%			
Silver	0.978		0.100	mg/L	10	1.00	ND	98	50-150%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

	Solu	ble Cyanic	de by UV Di	igestion	Gas Diffu	sion/Amp	erometr	ic Detection	on			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0718 - ASTM D7511-	12mod (S	5)					Soi	I				
Blank (22G0718-BLK1)			Prepared	l: 07/22/22	08:34 Ana	lyzed: 07/22	/22 12:15					
D7511-12 Total Cyanide	ND	50.0	100	ug/kg w	vet 1							
LCS (22G0718-BS1)			Prepared	l: 07/22/22	08:34 Ana	lyzed: 07/22	/22 12:17					
D7511-12 Total Cyanide	419	50.0	100	ug/kg w	vet 1	400		105	84-116%			
Matrix Spike (22G0718-MS3)			Prepared	l: 07/22/22	08:34 Ana	lyzed: 07/22	/22 13:56					
QC Source Sample: Non-SDG (A20)	G0563-02R	E2)										
Total Cyanide	9280	836	1670	ug/kg d	ry 10	334	10700	-424	64-136%			Q-03, Q-1
Matrix Spike Dup (22G0718-M	SD3)		Prepared	l: 07/22/22	08:34 Ana	lyzed: 07/22	/22 13:58					
OC Source Sample: Non-SDG (A20 Total Cyanide	10200	E2) 838	1680	ug/kg d	ry 10	335	10700	-146	64-136%	10	47%	Q-03, Q-1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	t Dry Wei	ht						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22G0677 - Total Solids (Dry Weig	ht)					Soil	I				
Duplicate (22G0677-DUP1)			Prepared	: 07/21/22	13:23 Anal	yzed: 07/22/	/22 07:21					
QC Source Sample: Non-SDG (A2	G0438-03)											
% Solids	75.3		1.00	%	1		75.9			0.8	10%	
Duplicate (22G0677-DUP2)			Prepared	: 07/21/22	13:23 Anal	yzed: 07/22/	/22 07:21					
QC Source Sample: Non-SDG (A2	G0438-06)				·			·				
% Solids	73.6		1.00	%	1		74.2			0.8	10%	
Duplicate (22G0677-DUP3)			Prepared	: 07/21/22	13:23 Anal	yzed: 07/22	/22 07:21					
QC Source Sample: Non-SDG (A2	G0438-14)											
% Solids	74.8		1.00	%	1		74.6			0.3	10%	
Duplicate (22G0677-DUP4)			Prepared	: 07/21/22	13:23 Anal	yzed: 07/22/	/22 07:21					
QC Source Sample: Non-SDG (A2	G0438-17)											
% Solids	69.7		1.00	%	1		70.2			0.7	10%	
Duplicate (22G0677-DUP5)			Prepared	: 07/21/22	19:34 Anal	yzed: 07/22/	/22 07:21					
QC Source Sample: Non-SDG (A2	G0612-01)											
% Solids	96.3		1.00	%	1		96.4			0.006	10%	
Duplicate (22G0677-DUP6)			Prepared	: 07/21/22	19:34 Anal	yzed: 07/22	/22 07:21					
QC Source Sample: Non-SDG (A2												
% Solids	96.3		1.00	%	1		96.1			0.2	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	is by NWTPH-Dx			
Prep: EPA 3546 (Fuel	<u>s)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0729							
A2G0558-01	Solid	NWTPH-Dx	07/19/22 04:15	07/22/22 10:00	10.25g/5mL	10g/5mL	0.98
	Gasol	ine Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0857							
A2G0558-01RE1	Solid	NWTPH-Gx (MS)	07/19/22 04:15	07/20/22 13:35	4.6g/5mL	5g/5mL	1.09
		Volatile C	Organic Compounds	by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0857			1	1			
A2G0558-01RE1	Solid	5035A/8260D	07/19/22 04:15	07/20/22 13:35	4.6g/5mL	5g/5mL	1.09
		Regulated TCLP Vol	atile Organic Comp	ounds by EPA 1311	/8260D		
Prep: EPA 1311/5030E	3 TCLP Volatiles				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0954			•	·			
A2G0558-01	Solid	1311/8260D	07/19/22 04:15	07/28/22 10:26	5mL/5mL	5mL/5mL	1.00
		Semivolatile	e Organic Compour	nds by EPA 8270E			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0028			1	1			
A2G0558-01	Solid	EPA 8270E	07/19/22 04:15	08/01/22 10:26	10.66g/2mL	15g/2mL	1.41
		Total	Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3051A				•	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0896			P100	Fares			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

SAMPLE PREPARATION INFORMATION

		Tota	l Metals by EPA 6020	0B (ICPMS)			
Prep: EPA 3051A Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
		TCL	P Metals by EPA 602	0B (ICPMS)			
Prep: EPA 1311/3015A	<u>\</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
<u>Batch: 22H0098</u> A2G0558-01	Solid	1311/6020B	07/19/22 04:15	08/02/22 13:57	10mL/50mL	10mL/50mL	1.00
	S	oluble Cyanide by U	V Digestion/Gas Diffu	usion/Amperometric	Detection		
Prep: ASTM D7511-12	mod (S)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0718 A2G0558-01	Solid	D7511-12	07/19/22 04:15	07/22/22 08:34	2.5825g/50mL	2.5g/50mL	0.97
			Percent Dry Wei	ght			
Prep: Total Solids (Dry	Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22G0677 A2G0558-01	Solid	EPA 8000D	07/19/22 04:15	07/21/22 13:23			NA
		7	ΓCLP Extraction by E	PA 1311			
Prep: EPA 1311 (TCLF	<u> </u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22H0052 A2G0558-01	Solid	EPA 1311	07/19/22 04:15	08/01/22 17:09	99.9g/2002g	100g/2000g	NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

AMEND	The Result, Reporting Level, Recovery and/or RPD has changed. Note: Batch QC marked as AMENDED may or may not have been issued prior to the change. Case Narrative included if client data is affected.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
ICV-02	Estimated Result. Initial Calibration Verification (ICV) failed low.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-16	Reanalysis of an original Batch QC sample.
Q-17	RPD between original and duplicate sample is outside of established control limits.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-30	Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
Q-37	Sample is non-homogenous. Sample results are less than MRL and duplicate results have hits greater than the MRL. See Duplicate results.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +10%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +13%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +15%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the \pm 20% criteria listed in EPA method 8260/8270 by \pm 7%. The results are reported as Estimated Values.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

iagara Fal	lls, NY 14305	Project Manager: Chip Byrd	A2G0558 - 08 25
Q-54e	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA metho	od 8260/8270 by -1%. The
Q-54f	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA method	od 8260/8270 by -10%. The
Q-54g	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA method	od 8260/8270 by -12%. The
Q-54h	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA method	od 8260/8270 by -14%. The
Q-54i	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA method	od 8260/8270 by -16%. The
Q-54j	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA method	od 8260/8270 by -19%. The
Q-54k	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA metho	od 8260/8270 by -2%. The
Q-54l	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	y for this analyte failed the +/-20% criteria listed in EPA metho	od 8260/8270 by -5%. The
Q-55	Daily CCV/LCS recovery for this analyte was belo detection at the reporting level.	ow the +/-20% criteria listed in EPA 8260, however there is ad	equate sensitivity to ensure
Q-56	Daily CCV/LCS recovery for this analyte was abo	ve the +/-20% criteria listed in EPA 8260	
R-02	The Reporting Limit for this analyte has been raise	ed to account for interference from coeluting organic compour	nds present in the sample.
S-01	Surrogate recovery for this sample is not available interference.	due to sample dilution required from high analyte concentration	on and/or matrix
S-03	Sample re-extract, or the analysis of an associated	Batch QC sample, confirms surrogate failure due to sample m	natrix effect.
S-05	Surrogate recovery is estimated due to sample dilu	tion required for high analyte concentration and/or matrix inte	erference.
TCLP	This batch QC sample was prepared with TCLP or	SPLP fluid from preparation batch 22G0836.	
TCLPa	This batch QC sample was prepared with TCLP or	SPLP fluid from preparation batch 22H0052.	
V-15	Sample aliquot was subsampled from the sample c sampling.	container. The subsampled aliquot was preserved in the laborate	tory within 48 hours of
X	See Case Narrative.		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project:

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

REPORTING NOTES AND CONVENTIONS:

Gasco -- Filtercake

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: <u>Gasco -- Filtercake</u>
Project Number: 111323

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

2749 Lockport Road

Niagara Falls, NY 14305

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2G0558 - 08 25 22 0848

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A2G0558 - 08 25 22 0848

						l		l		L						l		L				
COMPANY: Sevenson Environmental Services, Inc.	Services, Inc.			Proje	Project Mgr: Chip Byrd	g	Byrd		1	g	ect N	аше:	Project Name: Gasco Filtercake	Filter	ake	-		Proj	Project # 111323	1323		
Address: 2749 Lockport Road, Niagara Falls, NY 14305	, Niagara	Falls, NY 14	305			2	٦	hone	(716)	Phone: (716) 583-2754	754		Fax:			E-mail:	ii.	vrd@se	wbyrd@sevenson.com	m00:		
Sampled by: Lani) 1/	Chlern	247												ANAL	YSIS R	ANALYSIS REQUEST	5					
1			-																			ļ
SAMPLEID	# di av i	# QI 8AJ	TIME	XISTAM	# OF CONTAINERS	SSE0 AOC®	1311/8260 TCPL VOCs	S270D LL Full List	Dry Weight Metals, RCRA 8	Metals, TPCL	Total Cyanide	xd- Hqtwn	xō-HaTWN					\$1.00.000000000000000000000000000000000				
EC-071922-1952		7-4-2)	7	30	-	×	. ×	×		×	×	×	×			ļ		_				<u> </u>
A. A																						
								_			_				+							\perp
111111111111111111111111111111111111111			-				\top	+	+		-	1		+	-	-	+	_				-
								+				_		+		_	+					-
			-				1		+	\bot	-			+	-	-	+	-		-		-
				-					\vdash	-	4-4			H			H					
- Parket State Control of the Contro									-	_	_					_	-					
			-	-	_		7	\dashv	- 1	_	1			1	-		\dashv	-				-
Norma	Turn Arou	Normal Turn Around Time (TAT) = 6-10 Business Days	(T) = 6-10) Busines	s Days	1			<u>~</u>	T S A	Š	§	SPECIAL INSTRUCTIONS:									
TAT Requested (circle)		1 DAY	<u>a</u>	≱li	3 DAY		4 DAY	_														
	2 5 1	5 DAY	STD)		Other:	اا			ı													
ļ	SAMPL	SAMPLES ARE HELD FOR 30 DAYS	LD FOR	30 DAYS			1		+						1		-				2/1	2/16/14 BC
RELINGUISHED BY:	2-7-2 大	4 2 S		RECEIVED BY	N. J	4.1	Cate:	100	<u>S</u> S	nature:	Date: 7 /Lo/2.2 Signature:	;			Date:	ioi	∝ ഗ്ഗ്	RECEIVED BY: Signature:	.: 89		Date:	
Printed Vame Sn. Alch		Time:	NE A	Inted Name	Julou	١.	rime:	Time: 12.10		Printed Name:	ame:				Time:	ioj.	à	Printed Name:	Je.		Time:	
Company:			E S	Company:	X.0.K				ŏ	Company							ŏ	Company:				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2G0558 - 08 25 22 0848

Client: <u>Jevenson</u>	Environmental Services In Element WO#: A26-0558
Project/Project #:	Hercake/11/323
Delivery Info :	1 11 1
Date/time received: 1/2	20/22@1210 By: AM
Delivered by: Apex	Client ESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Da	ate/time inspected: 7/20/22 @ 1300 By: AM
Chain of Custody include	The state of the s
Signed/dated by client?	Yes No
Signed/dated by Apex?	Yes No XAMIPO
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #
Temperature (°C)	3.9 5.8 /4.2 /3.9 /5.2
Received on ice?(Y/N)	y y / y / y / y / - — —
Temp. blanks? (Y/N)	
Ice type: (Gel/Real/Other)	7
Condition: Cooler out of temp? (Y/N)	Good Good Good Good
Out of temperature sample Sample Inspection: Da	of temperature samples? YesNo les form initiated? YesNo ate/time inspected: 7/20/12 @ 13:20 By: 24M
Musufix-	(NO) 24M 4120
Bottle labels/COCs agree?	? Yes X Nox Comments: Container read \$# 1952 has no
Meshit prefix	
COC/container discrepand	cies form initiated? Yes No
Containers/volumes receiv	ved appropriate for analysis? Yes X No Comments:
	A A A A A A A A A A A A A A A A A A A
	le headspace? Yes No NA
Comments	
	ed: YesNoNA_X_pH appropriate? YesNoNA_X_
Comments:	
Additional information:	
Additional information: Labeled by:	Witness: Cooler Inspected by:

Apex Laboratories