

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, October 28, 2022 Chip Byrd Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, NY 14305

RE: A2I0864 - Gasco -- Filtercake - 111323

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2I0864, which was received by the laboratory on 9/28/2022 at 10:05:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler#1 1.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: C

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFOR	MATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FC-091922-1984	A2I0864-01	Solid	09/19/22 17:30	09/28/22 10:05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: 2749 Lockport Road Project Number: 111323 Niagara Falls, NY 14305 Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

Gasco -- Filtercake

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
FC-091922-1984 (A2I0864-01)				Matrix: Solid Batch: 22J0032							
Diesel	674000	33600	67200	ug/kg dry	1	10/04/22 11:45	NWTPH-Dx	F-17			
Oil	344000	67200	134000	ug/kg dry	1	10/04/22 11:45	NWTPH-Dx	F-17			
Surrogate: o-Terphenyl (Surr)		Reco	very: 77 %	Limits: 50-150 %	6 I	10/04/22 11:45	NWTPH-Dx				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

Project:

ANALYTICAL SAMPLE RESULTS

Gasco -- Filtercake

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
FC-091922-1984 (A2I0864-01RE1)		Matrix: Solid Batch: 2211017						V-16		
Gasoline Range Organics	57300	13800	27500	ug/kg dry	50	09/30/22 11:45	NWTPH-Gx (MS)			
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ry: 113 % 108 %	Limits: 50-150 % 50-150 %	-	09/30/22 11:45 09/30/22 11:45	NWTPH-Gx (MS) NWTPH-Gx (MS)			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

	V	Jiatile Organ	ic Compoun	us by EFA 02	.000			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FC-091922-1984 (A2l0864-01RE1)				Matrix: Sol	lid	Batch:	2211017	V-16
Acetone	ND	2750	5510	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Acrylonitrile	ND	275	551	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Benzene	ND	27.5	55.1	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Bromobenzene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Bromochloromethane	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Bromodichloromethane	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Bromoform	ND	275	551	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Bromomethane	ND	2750	2750	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
2-Butanone (MEK)	ND	1380	2750	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
n-Butylbenzene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
sec-Butylbenzene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
tert-Butylbenzene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Carbon disulfide	ND	2750	2750	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Carbon tetrachloride	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Chlorobenzene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Chloroethane	ND	1380	2750	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Chloroform	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Chloromethane	ND	689	1380	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
2-Chlorotoluene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
4-Chlorotoluene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Dibromochloromethane	ND	275	551	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	1380	1380	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Dibromomethane	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2-Dichlorobenzene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,3-Dichlorobenzene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,4-Dichlorobenzene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Dichlorodifluoromethane	ND	551	551	ug/kg dry	50	09/30/22 11:45	5035A/8260D	ICV-0
1,1-Dichloroethane	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,1-Dichloroethene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
cis-1,2-Dichloroethene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
trans-1,2-Dichloroethene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	160D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FC-091922-1984 (A2I0864-01RE1)				Matrix: Soli	i <u>d</u>	Batch:	: 2211017	V-16
1,2-Dichloropropane	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,3-Dichloropropane	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
2,2-Dichloropropane	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,1-Dichloropropene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
cis-1,3-Dichloropropene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
trans-1,3-Dichloropropene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Ethylbenzene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Hexachlorobutadiene	ND	275	551	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
2-Hexanone	ND	1380	2750	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Isopropylbenzene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
4-Isopropyltoluene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Methylene chloride	ND	1380	2750	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	1380	2750	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Naphthalene	ND	275	551	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
n-Propylbenzene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Styrene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Tetrachloroethene (PCE)	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Toluene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2,3-Trichlorobenzene	ND	689	1380	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2,4-Trichlorobenzene	ND	689	1380	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,1,1-Trichloroethane	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,1,2-Trichloroethane	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Trichloroethene (TCE)	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Trichlorofluoromethane	ND	275	551	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2,3-Trichloropropane	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,2,4-Trimethylbenzene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
1,3,5-Trimethylbenzene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
Vinyl chloride	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
m,p-Xylene	ND	138	275	ug/kg dry	50	09/30/22 11:45	5035A/8260D	
o-Xylene	ND	68.9	138	ug/kg dry	50	09/30/22 11:45	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: 2749 Lockport Road Project Number: 111323 Niagara Falls, NY 14305 Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

Gasco -- Filtercake

	Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	Un	nits	Dilution	Date Analyzed	Method Ref.	Notes		
FC-091922-1984 (A2I0864-01RE1)				Matr	ix: Solid	d	Batch:	2211017	V-16		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107%	Limits:	80-120 %	6 <i>1</i>	09/30/22 11:45	5035A/8260D			
Toluene-d8 (Surr)			98 %		80-120 %	6 I	09/30/22 11:45	5035A/8260D			
4-Bromofluorobenzene (Surr)			92 %		79-120 %	6 1	09/30/22 11:45	5035A/8260D			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FC-091922-1984 (A2I0864-01)				Matrix: Solid	1	Batch:	22J0268	
Benzene	ND	6.25	12.5	ug/L	50	10/07/22 16:01	1311/8260D	
2-Butanone (MEK)	ND	250	500	ug/L	50	10/07/22 16:01	1311/8260D	
Carbon tetrachloride	ND	25.0	50.0	ug/L	50	10/07/22 16:01	1311/8260D	
Chlorobenzene	ND	12.5	25.0	ug/L	50	10/07/22 16:01	1311/8260D	
Chloroform	ND	25.0	50.0	ug/L	50	10/07/22 16:01	1311/8260D	
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50	10/07/22 16:01	1311/8260D	
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50	10/07/22 16:01	1311/8260D	
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50	10/07/22 16:01	1311/8260D	
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50	10/07/22 16:01	1311/8260D	
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50	10/07/22 16:01	1311/8260D	
Vinyl chloride	ND	12.5	25.0	ug/L	50	10/07/22 16:01	1311/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 112 %	Limits: 80-120 %	: 1	10/07/22 16:01	1311/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	I	10/07/22 16:01	1311/8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	10/07/22 16:01	1311/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Sample Result	Limit Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FC-091922-1984 (A2I0864-01)				Matrix: Sol	id	Batch:	22J0030	
Acenaphthene	4090	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	Q-42
Acenaphthylene	1100	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	J
Anthracene	9540	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Benz(a)anthracene	7560	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Benzo(a)pyrene	9440	1370	2740	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Benzo(b)fluoranthene	7550	1370	2740	ug/kg dry	200	10/04/22 00:08	EPA 8270E	Q-42
Benzo(k)fluoranthene	3870	1370	2740	ug/kg dry	200	10/04/22 00:08	EPA 8270E	M-05
Benzo(g,h,i)perylene	5040	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Chrysene	9830	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Dibenz(a,h)anthracene	ND	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Fluoranthene	28300	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Fluorene	4000	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	Q-42
Indeno(1,2,3-cd)pyrene	5560	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
1-Methylnaphthalene	ND	1830	3650	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2-Methylnaphthalene	ND	1830	3650	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Naphthalene	ND	1830	3650	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Phenanthrene	40400	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Pyrene	32200	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Carbazole	ND	1370	2740	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Dibenzofuran	ND	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2-Chlorophenol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
4-Chloro-3-methylphenol	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,4-Dichlorophenol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,4-Dimethylphenol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,4-Dinitrophenol	ND	22800	45700	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	22800	45700	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2-Methylphenol	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
3+4-Methylphenol(s)	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2-Nitrophenol	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
4-Nitrophenol	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Pentachlorophenol (PCP)	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Phenol	ND	1830	3650	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compou	ınds by EPA	8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FC-091922-1984 (A2I0864-01)				Matrix: Soli	id	Batch:	22J0030	
2,3,5,6-Tetrachlorophenol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,4,5-Trichlorophenol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Nitrobenzene	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,4,6-Trichlorophenol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	13700	27400	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Butyl benzyl phthalate	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Diethylphthalate	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Dimethylphthalate	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Di-n-butylphthalate	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Di-n-octyl phthalate	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
N-Nitrosodimethylamine	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
N-Nitrosodiphenylamine	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Hexachlorobenzene	ND	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Hexachlorobutadiene	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Hexachlorocyclopentadiene	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Hexachloroethane	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2-Chloronaphthalene	ND	912	1830	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
1,2,4-Trichlorobenzene	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
4-Bromophenyl phenyl ether	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Aniline	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
4-Chloroaniline	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2-Nitroaniline	ND	18300	36500	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
3-Nitroaniline	ND	18300	36500	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
4-Nitroaniline	ND	18300	36500	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,4-Dinitrotoluene	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
2,6-Dinitrotoluene	ND	9120	18300	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Benzoic acid	ND	115000	228000	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Benzyl alcohol	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
FC-091922-1984 (A2I0864-01)				Matrix: Solid	d	Batch:	22J0030	
Isophorone	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Azobenzene (1,2-DPH)	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	22800	45700	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
3,3'-Dichlorobenzidine	ND	18300	36500	ug/kg dry	200	10/04/22 00:08	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	22800	45700	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
1,3-Dinitrobenzene	ND	22800	45700	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
1,4-Dinitrobenzene	ND	22800	45700	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Pyridine	ND	4570	9120	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
1,2-Dichlorobenzene	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
1,3-Dichlorobenzene	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
1,4-Dichlorobenzene	ND	2280	4570	ug/kg dry	200	10/04/22 00:08	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	very: 52 %	Limits: 37-122 %	6 200	10/04/22 00:08	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			77 %	44-120 %	5 200	10/04/22 00:08	EPA 8270E	S-03
Phenol-d6 (Surr)			65 %	33-122 %	5 200	10/04/22 00:08	EPA 8270E	S-0.
p-Terphenyl-d14 (Surr)			91 %	54-127 %	5 200	10/04/22 00:08	EPA 8270E	S-0.
2-Fluorophenol (Surr)			73 %	35-120 %	5 200	10/04/22 00:08	EPA 8270E	S-0.
2,4,6-Tribromophenol (Surr)			130 %	39-132 %	6 200	10/04/22 00:08	EPA 8270E	S-05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
FC-091922-1984 (A2I0864-01)		Matrix: Solid									
Batch: 22I0998											
Arsenic	7840	1690	3390	ug/kg dry	10	09/30/22 13:17	EPA 6020B				
Barium	209000	1690	3390	ug/kg dry	10	09/30/22 13:17	EPA 6020B				
Cadmium	ND	339	678	ug/kg dry	10	09/30/22 13:17	EPA 6020B				
Chromium	ND	1690	3390	ug/kg dry	10	09/30/22 13:17	EPA 6020B				
Lead	ND	339	678	ug/kg dry	10	09/30/22 13:17	EPA 6020B				
Mercury	ND	136	271	ug/kg dry	10	09/30/22 13:17	EPA 6020B				
Selenium	ND	1690	3390	ug/kg dry	10	09/30/22 13:17	EPA 6020B				
Silver	ND	339	678	ug/kg dry	10	09/30/22 13:17	EPA 6020B				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 602	OB (ICPMS	S)					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
FC-091922-1984 (A2I0864-01)	Matrix: Solid									
Batch: 22I0976					·					
Arsenic	ND		0.100	mg/L	10	09/30/22 02:43	1311/6020B			
Barium	ND		5.00	mg/L	10	09/30/22 02:43	1311/6020B			
Cadmium	ND		0.100	mg/L	10	09/30/22 02:43	1311/6020B			
Chromium	ND		0.100	mg/L	10	09/30/22 02:43	1311/6020B			
Lead	ND		0.0500	mg/L	10	09/30/22 02:43	1311/6020B			
Mercury	ND		0.00700	mg/L	10	09/30/22 02:43	1311/6020B			
Selenium	ND		0.100	mg/L	10	09/30/22 02:43	1311/6020B			
Silver	ND		0.100	mg/L	10	09/30/22 02:43	1311/6020B			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, NY 14305

Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

Soluble Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
FC-091922-1984 (A2I0864-01RE1) Matrix: Solid Batch: 2												
Total Cyanide	5540	662	1320	ug/kg dry	4	10/03/22 15:34	D7511-12	Q-42				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
FC-091922-1984 (A2I0864-01)			Batch:	2211046								
% Solids	29.1		1.00	%	1	10/03/22 06:52	EPA 8000D					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

ANALYTICAL SAMPLE RESULTS

	TCLP Extraction by EPA 1311												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
FC-091922-1984 (A2I0864-01)	Matrix: Solid Batch: 2210935												
TCLP Extraction TCLP ZHE Extraction	PREP PREP			N/A N/A	1	09/28/22 16:22 10/04/22 15:01	EPA 1311 EPA 1311 ZHE	H-01					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22J0032 - EPA 3546 (F	uels)						Sol	id					
Blank (22J0032-BLK1)			Prepared	: 10/03/22 1	0:39 Ana	lyzed: 10/04	1/22 10:58						
NWTPH-Dx													
Diesel	ND	9090	18200	ug/kg we									
Oil	ND	18200	36400	ug/kg we	t 1								
Surr: o-Terphenyl (Surr)		Reco	very: 72 %	Limits: 50-	150 %	Dil	ution: 1x						
LCS (22J0032-BS1)			Prepared	l: 10/03/22 1	0:39 Ana	lyzed: 10/04	1/22 11:22						
NWTPH-Dx													
Diesel	106000	10000	20000	ug/kg we	t 1	125000		85	38-132%				
Surr: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50-	150 %	Dil	ution: 1x						
Duplicate (22J0032-DUP1)			Prepared	: 10/03/22 1	0:39 Anal	lyzed: 10/04	1/22 12:33						
QC Source Sample: Non-SDG (A	210874-01)												
Diesel	13000000	123000	246000	ug/kg dr	/ 1		11800000)		10	30%		
Oil	7620000	246000	492000	ug/kg dr			6850000			11	30%		
Oli	7020000	2.0000	.,2000	00.									

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210864 - 10 28 22 0608

Project:

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filtercake

	Gasolir	ne Range H	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0974 - EPA 5035A							So	il				
Blank (22I0974-BLK1)			Prepared	l: 09/29/22	08:00 Anal	lyzed: 09/29	/22 12:46					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	1670	3330	ug/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %	5	0-150 %		"					
LCS (22I0974-BS2)			Prepared	1: 09/29/22	08:00 Ana	lyzed: 09/29	/22 12:19					
NWTPH-Gx (MS)												
Gasoline Range Organics	21700	2500	5000	ug/kg v	vet 50	25000		87	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
Duplicate (22I0974-DUP1)			Prepared	l: 09/28/22	16:14 Ana	lyzed: 09/29	/22 19:30					V-16
QC Source Sample: Non-SDG (A2	210874-01)											
Gasoline Range Organics	9580000	298000	595000	ug/kg d	lry 100		9350000			2	30%	F-1
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			88 %	5	0-150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22I1017 - EPA 5035A							Soi	I					
Blank (22I1017-BLK1)			Prepared	1: 09/30/22	08:00 Ana	lyzed: 09/30	/22 10:51						
NWTPH-Gx (MS) Gasoline Range Organics	ND	1670	3330	ug/kg w	ret 50								
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 104 % 107 %	Limits: 50	0-150 % 0-150 %	Dilı	ution: 1x						
LCS (22I1017-BS2)			Prepared	1: 09/30/22	08:00 Ana	lyzed: 09/30.	/22 10:25						
NWTPH-Gx (MS) Gasoline Range Organics	25200	2500	5000	ug/kg w	vet 50	25000		101	80-120%				
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 108 % 106 %	Limits: 50	0-150 % 0-150 %	Dilı	ution: 1x						
Duplicate (22I1017-DUP1)			Prepared	d: 09/27/22	11:00 Anal	lyzed: 09/30/	/22 12:39						
QC Source Sample: Non-SDG (A2	210845-02)												
Gasoline Range Organics	ND	3480	6960	ug/kg d	ry 50		ND				30%		
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 109 % 107 %	Limits: 50	0-150 % 0-150 %	Dilı	ution: 1x						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Blank (22I0974-BLK1) Prepared: 09/29/22 08:00 Analyzed: 09/29/22 12:46 5035A/8260D ND 333 ug/kg wet 50 Acetone ND 33.3 66.7 50 Acrylonitrile ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 50 ug/kg wet ND Bromodichloromethane 16.7 33.3 ug/kg wet 50 Bromoform ND 33.3 ug/kg wet 50 66.7 333 333 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 tert-Butylbenzene 16.7 50 ug/kg wet ---Carbon disulfide ND 333 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 333 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 ICV-02 Dichlorodifluoromethane ND 66.7 66.7 ug/kg wet 50 ---ND 1,1-Dichloroethane 8.33 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 ND 8.33 16.7 trans-1,2-Dichloroethene ug/kg wet 50

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Blank (22I0974-BLK1) Prepared: 09/29/22 08:00 Analyzed: 09/29/22 12:46 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane 2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 333 2-Hexanone ND 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 4-Isopropyltoluene ug/kg wet 333 Methylene chloride ND 167 ug/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 333 333 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 ND 33.3 66.7 Naphthalene ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 ug/kg wet 50 1.1.2.2-Tetrachloroethane ND 16.7 33.3 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 50 ug/kg wet

50

50

50

50

50

50

50

50

50

ug/kg wet

Surr: 1,4-Difluorobenzene (Surr) Recovery: 103 % Limits: 80-120 % Dilution: Ix

8.33

8.33

33.3

16.7

16.7

16.7

16.7

16.7

8.33

ND

ND

ND

ND

ND

ND

ND

ND

ND

16.7

16.7

66.7

33.3

33.3

33.3

16.7

33.3

16.7

Apex Laboratories

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EST

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0974 - EPA 5035A							Soi	l				
Blank (22I0974-BLK1)			Prepared	1: 09/29/22 0	8:00 Ana	lyzed: 09/29	/22 12:46					
Surr: Toluene-d8 (Surr)		Reco	overy: 97 %	Limits: 80-	120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			98 %	79-	120 %		"					
LCS (22I0974-BS1)			Prepared	d: 09/29/22 0	8:00 Ana	lyzed: 09/29	/22 11:51					
5035A/8260D												
Acetone	1670	500	1000	ug/kg we	t 50	2000		83	80-120%			ICV-0
Acrylonitrile	884	50.0	100	ug/kg we	t 50	1000		88	80-120%			
Benzene	1010	5.00	10.0	ug/kg we	t 50	1000		101	80-120%			
Bromobenzene	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
Bromochloromethane	996	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
Bromodichloromethane	1170	25.0	50.0	ug/kg we	t 50	1000		117	80-120%			
Bromoform	1260	50.0	100	ug/kg we	t 50	1000		126	80-120%			Q-5
Bromomethane	966	500	500	ug/kg we	t 50	1000		97	80-120%			
2-Butanone (MEK)	1590	250	500	ug/kg we	t 50	2000		80	80-120%			
n-Butylbenzene	1020	25.0	50.0	ug/kg we	t 50	1000		102	80-120%			
sec-Butylbenzene	999	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
tert-Butylbenzene	856	25.0	50.0	ug/kg we	t 50	1000		86	80-120%			
Carbon disulfide	712	500	500	ug/kg we	t 50	1000		71	80-120%			Q-5
Carbon tetrachloride	1260	25.0	50.0	ug/kg we	t 50	1000		126	80-120%			Q-5
Chlorobenzene	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
Chloroethane	793	500	500	ug/kg we	t 50	1000		79	80-120%			Q-5
Chloroform	1020	25.0	50.0	ug/kg we	t 50	1000		102	80-120%			
Chloromethane	868	125	250	ug/kg we	t 50	1000		87	80-120%			
2-Chlorotoluene	962	25.0	50.0	ug/kg we	t 50	1000		96	80-120%			
4-Chlorotoluene	916	25.0	50.0	ug/kg we	t 50	1000		92	80-120%			
Dibromochloromethane	1340	50.0	100	ug/kg we	t 50	1000		134	80-120%			Q-5
1,2-Dibromo-3-chloropropane	1010	125	250	ug/kg we	t 50	1000		101	80-120%			
1,2-Dibromoethane (EDB)	993	25.0	50.0	ug/kg we	t 50	1000		99	80-120%			
Dibromomethane	1090	25.0	50.0	ug/kg we	t 50	1000		109	80-120%			
1,2-Dichlorobenzene	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
1,3-Dichlorobenzene	1070	12.5	25.0	ug/kg we		1000		107	80-120%			
1,4-Dichlorobenzene	1050	12.5	25.0	ug/kg we	t 50	1000		105	80-120%			
Dichlorodifluoromethane	888	100	100	ug/kg we	t 50	1000		89	80-120%			ICV-0
1,1-Dichloroethane	991	12.5	25.0	ug/kg we		1000		99	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

Batch 2210974 - EPA 5035A							Sc	oil			
LCS (22I0974-BS1)			Prepared	: 09/29/22 08:	00 Ana	lyzed: 09/29/	22 11:51				
1,2-Dichloroethane (EDC)	950	12.5	25.0	ug/kg wet	50	1000		95	80-120%	 	
1,1-Dichloroethene	803	12.5	25.0	ug/kg wet	50	1000		80	80-120%	 	
cis-1,2-Dichloroethene	940	12.5	25.0	ug/kg wet	50	1000		94	80-120%	 	
trans-1,2-Dichloroethene	964	12.5	25.0	ug/kg wet	50	1000		96	80-120%	 	
1,2-Dichloropropane	962	12.5	25.0	ug/kg wet	50	1000		96	80-120%	 	
1,3-Dichloropropane	948	25.0	50.0	ug/kg wet	50	1000		95	80-120%	 	
2,2-Dichloropropane	1240	25.0	50.0	ug/kg wet	50	1000		124	80-120%	 	Q-56
1,1-Dichloropropene	942	25.0	50.0	ug/kg wet	50	1000		94	80-120%	 	
cis-1,3-Dichloropropene	962	25.0	50.0	ug/kg wet	50	1000		96	80-120%	 	
trans-1,3-Dichloropropene	1010	25.0	50.0	ug/kg wet	50	1000		101	80-120%	 	
Ethylbenzene	961	12.5	25.0	ug/kg wet	50	1000		96	80-120%	 	
Hexachlorobutadiene	1100	50.0	100	ug/kg wet	50	1000		110	80-120%	 	
2-Hexanone	1460	500	500	ug/kg wet	50	2000		73	80-120%	 	Q-55
Isopropylbenzene	962	25.0	50.0	ug/kg wet	50	1000		96	80-120%	 	
4-Isopropyltoluene	959	25.0	50.0	ug/kg wet	50	1000		96	80-120%	 	
Methylene chloride	1140	250	500	ug/kg wet	50	1000		114	80-120%	 	
4-Methyl-2-pentanone (MiBK)	1470	500	500	ug/kg wet	50	2000		74	80-120%	 	Q-55
Methyl tert-butyl ether (MTBE)	902	25.0	50.0	ug/kg wet	50	1000		90	80-120%	 	
Naphthalene	1010	50.0	100	ug/kg wet	50	1000		101	80-120%	 	
n-Propylbenzene	950	12.5	25.0	ug/kg wet	50	1000		95	80-120%	 	
Styrene	963	25.0	50.0	ug/kg wet	50	1000		96	80-120%	 	
1,1,1,2-Tetrachloroethane	1190	12.5	25.0	ug/kg wet	50	1000		119	80-120%	 	
1,1,2,2-Tetrachloroethane	892	25.0	50.0	ug/kg wet	50	1000		89	80-120%	 	
Tetrachloroethene (PCE)	1150	12.5	25.0	ug/kg wet	50	1000		115	80-120%	 	
Toluene	943	25.0	50.0	ug/kg wet	50	1000		94	80-120%	 	
1,2,3-Trichlorobenzene	1060	125	250	ug/kg wet	50	1000		106	80-120%	 	
1,2,4-Trichlorobenzene	1050	125	250	ug/kg wet	50	1000		105	80-120%	 	
1,1,1-Trichloroethane	1050	12.5	25.0	ug/kg wet	50	1000		105	80-120%	 	
1,1,2-Trichloroethane	973	12.5	25.0	ug/kg wet	50	1000		97	80-120%	 	
Trichloroethene (TCE)	1140	12.5	25.0	ug/kg wet	50	1000		114	80-120%	 	
Trichlorofluoromethane	1800	50.0	100	ug/kg wet	50	1000		180	80-120%	 	Q-56, EST
1,2,3-Trichloropropane	974	25.0	50.0	ug/kg wet	50	1000		97	80-120%	 	
1,2,4-Trimethylbenzene	970	25.0	50.0	ug/kg wet	50	1000		97	80-120%	 	
1,3,5-Trimethylbenzene	973	25.0	50.0	ug/kg wet	50	1000		97	80-120%	 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren Jum

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 2210974 - EPA 5035A							Soi	I					
LCS (22I0974-BS1)			Prepared	: 09/29/22 (08:00 Ana	lyzed: 09/29	/22 11:51						
Vinyl chloride	743	25.0	25.0	ug/kg we	et 50	1000		74	80-120%			Q-5	
m,p-Xylene	1920	25.0	50.0	ug/kg we	et 50	2000		96	80-120%				
o-Xylene	888	12.5	25.0	ug/kg we	et 50	1000		89	80-120%				
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 103 %	Limits: 80	-120 %	Dilı	ution: 1x					_	
Toluene-d8 (Surr)			97 %	80-	-120 %		"						
4-Bromofluorobenzene (Surr)			96 %	79-	-120 %		"						
Duplicate (22I0974-DUP1)			Prepared	: 09/28/22 1	l6:14 Ana	lyzed: 09/29	/22 19:30					V-16	
OC Source Sample: Non-SDG (A2	10874-01)												
Acetone	ND	59500	119000	ug/kg dr	y 100		ND				30%		
Acrylonitrile	ND	5950	11900	ug/kg dr	y 100		ND				30%		
Benzene	ND	595	1190	ug/kg dr	y 100		ND				30%		
Bromobenzene	ND	1490	2980	ug/kg dr	y 100		ND				30%		
Bromochloromethane	ND	2980	5950	ug/kg dr	y 100		ND				30%		
Bromodichloromethane	59300	2980	5950	ug/kg dr	y 100		58900			0.7	30%		
Bromoform	20700	5950	11900	ug/kg dr	y 100		20300			2	30%	Q-54	
Bromomethane	ND	59500	59500	ug/kg dr	y 100		ND				30%		
2-Butanone (MEK)	ND	29800	59500	ug/kg dr	y 100		ND				30%		
n-Butylbenzene	ND	5950	5950	ug/kg dr	y 100		ND				30%		
sec-Butylbenzene	ND	2980	5950	ug/kg dr	y 100		ND				30%		
tert-Butylbenzene	ND	2980	5950	ug/kg dr	y 100		ND				30%		
Carbon disulfide	ND	59500	59500	ug/kg dr	y 100		ND				30%		
Carbon tetrachloride	ND	2980	5950	ug/kg dr	y 100		ND				30%		
Chlorobenzene	ND	1490	2980	ug/kg dr	y 100		ND				30%		
Chloroethane	ND	59500	59500	ug/kg dr	y 100		ND				30%		
Chloroform	70500	2980	5950	ug/kg dr	y 100		71100			0.8	30%		
Chloromethane	ND	14900	29800	ug/kg dr	y 100		ND				30%		
2-Chlorotoluene	ND	2980	5950	ug/kg dr	y 100		ND				30%		
4-Chlorotoluene	ND	2980	5950	ug/kg dr	y 100		ND				30%		
Dibromochloromethane	41800	5950	11900	ug/kg dr	y 100		40000			5	30%	Q-54	
1,2-Dibromo-3-chloropropane	ND	14900	29800	ug/kg dr	y 100		ND				30%		
1,2-Dibromoethane (EDB)	ND	2980	5950	ug/kg dr	y 100		ND				30%		
Dibromomethane	ND	2980	5950	ug/kg dr	y 100		ND				30%		
1,2-Dichlorobenzene	ND	1490	2980	ug/kg dr	y 100		ND				30%		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport Road Project Number: 111323 Report ID: Niagara Falls, NY 14305 Project Manager: Chip Byrd A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0974 - EPA 5035A							Soi	I				
Duplicate (22I0974-DUP1)			Prepared	: 09/28/22 1	6:14 Ana	lyzed: 09/29	/22 19:30					V-16
QC Source Sample: Non-SDG (A2	210874-01)											
1,3-Dichlorobenzene	ND	1490	2980	ug/kg dry	100		ND				30%	
1,4-Dichlorobenzene	ND	1490	2980	ug/kg dry	100		ND				30%	
Dichlorodifluoromethane	ND	11900	11900	ug/kg dry	7 100		ND				30%	ICV-02
1,1-Dichloroethane	ND	1490	2980	ug/kg dry	7 100		ND				30%	
1,2-Dichloroethane (EDC)	ND	1490	2980	ug/kg dry	100		ND				30%	
1,1-Dichloroethene	ND	1490	2980	ug/kg dry	7 100		ND				30%	
cis-1,2-Dichloroethene	ND	1490	2980	ug/kg dry	7 100		ND				30%	
trans-1,2-Dichloroethene	ND	1490	2980	ug/kg dry	100		ND				30%	
1,2-Dichloropropane	ND	1490	2980	ug/kg dry	100		ND				30%	
1,3-Dichloropropane	ND	2980	5950	ug/kg dry	7 100		ND				30%	
2,2-Dichloropropane	ND	2980	5950	ug/kg dry	7 100		ND				30%	
1,1-Dichloropropene	ND	2980	5950	ug/kg dry	7 100		ND				30%	
cis-1,3-Dichloropropene	ND	2980	5950	ug/kg dry	7 100		ND				30%	
trans-1,3-Dichloropropene	ND	2980	5950	ug/kg dry	7 100		ND				30%	
Ethylbenzene	6310	1490	2980	ug/kg dry	100		6370			0.9	30%	
Hexachlorobutadiene	ND	5950	11900	ug/kg dry	7 100		ND				30%	
2-Hexanone	ND	59500	59500	ug/kg dry	100		ND				30%	
Isopropylbenzene	ND	2980	5950	ug/kg dry	100		ND				30%	
4-Isopropyltoluene	ND	2980	5950	ug/kg dry	7 100		ND				30%	
Methylene chloride	ND	29800	59500	ug/kg dry	7 100		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	59500	59500	ug/kg dry	100		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	2980	5950	ug/kg dry	7 100		ND				30%	
Naphthalene	14600	5950	11900	ug/kg dry	100		20400			33	30%	Q-05
n-Propylbenzene	ND	1490	2980	ug/kg dry	100		ND				30%	
Styrene	ND	2980	5950	ug/kg dry	100		ND				30%	
1,1,1,2-Tetrachloroethane	ND	1490	2980	ug/kg dry	100		ND				30%	
1,1,2,2-Tetrachloroethane	ND	5950	5950	ug/kg dry	100		ND				30%	
Tetrachloroethene (PCE)	ND	1490	2980	ug/kg dry	100		ND				30%	
Toluene	ND	2980	5950	ug/kg dry	100		ND				30%	
1,2,3-Trichlorobenzene	ND	14900	29800	ug/kg dry			ND				30%	
1,2,4-Trichlorobenzene	ND	14900	29800	ug/kg dry	100		ND				30%	
1,1,1-Trichloroethane	ND	1490	2980	ug/kg dry	100		ND				30%	
1,1,2-Trichloroethane	ND	1490	2980	ug/kg dry	100		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 2210974 - EPA 5035A							So	il					
Duplicate (22I0974-DUP1)			Prepared	d: 09/28/22 1	6:14 Ana	lyzed: 09/29	/22 19:30					V-16	
QC Source Sample: Non-SDG (A2	10874-01)												
Trichloroethene (TCE)	ND	1490	2980	ug/kg dr	y 100		ND				30%		
Trichlorofluoromethane	ND	5950	11900	ug/kg dr	y 100		ND				30%	ES	
1,2,3-Trichloropropane	ND	8930	8930	ug/kg dr	y 100		ND				30%	R-0	
1,2,4-Trimethylbenzene	8810	2980	5950	ug/kg dr	y 100		8690			1	30%		
1,3,5-Trimethylbenzene	ND	2980	5950	ug/kg dr	y 100		ND				30%		
Vinyl chloride	ND	2980	2980	ug/kg dr	y 100		ND				30%		
m,p-Xylene	ND	2980	5950	ug/kg dr	y 100		ND				30%		
o-Xylene	2680	1490	2980	ug/kg dr	y 100		2500			7	30%		
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80-	-120 %	Dil	ution: 1x						
Toluene-d8 (Surr)			97 %	80-	-120 %		"						
4-Bromofluorobenzene (Surr)			97 %	79-	-120 %		"						
QC Source Sample: Non-SDG (A2	<u>10908-01)</u>												
5035A/8260D	2570	711	1.420	/1 1	50	2050	ND	00	26 1640/			ICV-	
Acetone	2570	711 71.1	1420 142	ug/kg dr		2850	ND	90	36-164%			IC V-(
Acrylonitrile	1210			ug/kg dr	•	1420	ND	85	65-134%				
Benzene	1430	7.11	14.2	ug/kg dr		1420	ND	100	77-121%				
Bromobenzene	1530	17.8	35.5	ug/kg dr		1420	ND	107	78-121%				
Bromochloromethane Bromodichloromethane	1380	35.5	71.1	ug/kg dr		1420	ND	97	78-125%				
Bromoform	1670 1770	35.5 71.1	71.1 142	ug/kg dr		1420 1420	ND ND	118 124	75-127% 67-132%			Q-54	
Bromotorm	1550	71.1	711	ug/kg dr		1420	ND ND	124	53-143%			Q-3.	
2-Butanone (MEK)	2280	355	711	ug/kg dr	•	2850	ND ND	80	51-148%				
` /		35.5	71.1	ug/kg dr		1420	1790	99	70-128%				
n-Butylbenzene sec-Butylbenzene	3200 2040	35.5	71.1	ug/kg dr ug/kg dr		1420	380	99 117	70-128%				
tert-Butylbenzene	1410	35.5	71.1			1420	ND	99	73-126%				
Carbon disulfide	1250	711	71.1	ug/kg dr ug/kg dr		1420	ND	88	63-132%			O-5	
Carbon tetrachloride	1880	35.5	71.1	ug/kg dr		1420	ND	132	70-135%			Q-54 Q-54	
Chlorobenzene	1450	17.8	35.5	ug/kg dr		1420	ND	102	79-120%			Q -3-	
Chloroethane	1430	711	711	ug/kg dr		1420	ND	102	79-120% 59-139%			Q-54	
Chloroform	1470	35.5	71.1	ug/kg dr	•	1420	ND	104	78-123%			Q-3	
Chloromethane	1250	178	355			1420	ND ND	88	50-136%				
Chioromethane	1230	1/8	333	ug/kg dr	y 30	1420	ND	00	30-130%				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Matrix Spike (22I0974-MS1) Prepared: 09/29/22 11:25 Analyzed: 09/29/22 16:48 V-15 QC Source Sample: Non-SDG (A2I0908-01) 2-Chlorotoluene 1560 35.5 71.1 ug/kg dry 50 1420 ND 107 75-122% 97 1380 35.5 71.1 1420 4-Chlorotoluene ug/kg dry 50 ND 72-124% Dibromochloromethane 1920 71.1 142 ug/kg dry 50 1420 ND 135 74-126% Q-54 1,2-Dibromo-3-chloropropane 1730 178 355 ug/kg dry 50 1420 ND 121 61-132% 1,2-Dibromoethane (EDB) 1450 35.5 71.1 ug/kg dry 50 1420 ND 102 78-122% 35.5 71.1 1420 ND 107 78-125% Dibromomethane 1530 ug/kg dry 50 1,2-Dichlorobenzene 1530 17.8 35.5 50 1420 ND 107 78-121% ug/kg dry 35.5 1420 ND 1,3-Dichlorobenzene 1590 17.8 ug/kg dry 50 112 77-121% 1,4-Dichlorobenzene 1510 17.8 35.5 ug/kg dry 50 1420 ND 106 75-120% ICV-02 Dichlorodifluoromethane 1410 142 142 ug/kg dry 50 1420 ND 99 29-149% 1,1-Dichloroethane 1450 17.8 35.5 ug/kg dry 50 1420 ND 102 76-125% 1,2-Dichloroethane (EDC) 17.8 35.5 50 1420 ND 73-128% 1370 ug/kg dry 96 1420 97 1,1-Dichloroethene 1380 17.8 35.5 ug/kg dry 50 ND 70-131% 1370 17.8 35.5 1420 ND 97 77-123% cis-1,2-Dichloroethene ug/kg dry 50 35.5 trans-1,2-Dichloroethene 1410 17.8 ug/kg dry 50 1420 ND 99 74-125% 1,2-Dichloropropane 1340 17.8 35.5 ug/kg dry 50 1420 ND 94 76-123% ___ 1,3-Dichloropropane 1360 35.5 71.1 ug/kg dry 50 1420 ND 96 77-121% 1790 35.5 71.1 1420 ND 67-133% O-54c 2,2-Dichloropropane 50 126 ug/kg dry 1420 ND 97 76-125% 1,1-Dichloropropene 1380 35.5 71.1 ug/kg dry 50 71.1 97 cis-1,3-Dichloropropene 35.5 50 1420 ND 74-126% 1390 ug/kg dry 1420 ND 101 71-130% trans-1,3-Dichloropropene 1440 35.5 71.1 ug/kg dry 50 Ethylbenzene 1430 17.8 35.5 ug/kg dry 50 1420 ND 101 76-122% Hexachlorobutadiene 2280 71.1 142 ug/kg dry 50 1420 ND 161 61-135% Q-01 711 2850 ND 78 Q-54j 2-Hexanone 2220 711 ug/kg dry 50 53-145% 35.5 71.1 1420 ND Isopropylbenzene 1610 ug/kg dry 50 113 68-134% 1420 2170 35.5 71.1 50 461 120 73-127% 4-Isopropyltoluene ug/kg dry Methylene chloride 1430 355 711 50 1420 ND 100 70-128% ug/kg dry 2850 75 Q-54i 4-Methyl-2-pentanone (MiBK) 2150 711 711 ug/kg dry 50 ND 65-135% Methyl tert-butyl ether (MTBE) 1330 35.5 71.1 ug/kg dry 50 1420 ND 93 73-125% Naphthalene 8170 71.1 142 50 1420 6370 127 62-129% ug/kg dry n-Propylbenzene 1700 17.8 35.5 ug/kg dry 50 1420 186 106 73-125% 35.5 71.1 1420 Styrene 1450 50 ND 102 76-124% ug/kg dry 1,1,1,2-Tetrachloroethane 1720 17.8 35.5 ug/kg dry 50 1420 ND 121 78-125%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Matrix Spike (22I0974-MS1) Prepared: 09/29/22 11:25 Analyzed: 09/29/22 16:48 V-15 QC Source Sample: Non-SDG (A2I0908-01) 1,1,2,2-Tetrachloroethane 1410 35.5 71.1 ug/kg dry 50 1420 ND 91 70-124% 1690 17.8 35.5 1420 Tetrachloroethene (PCE) ug/kg dry 50 ND 119 73-128% 77-121% Toluene 1370 35.5 71.1 ug/kg dry 50 1420 ND 97 1,2,3-Trichlorobenzene 1820 178 355 ug/kg dry 50 1420 ND 128 66-130% 1,2,4-Trichlorobenzene 1870 178 355 ug/kg dry 50 1420 ND 132 67-129% Q-01 1,1,1-Trichloroethane 35.5 1420 ND 1570 17.8 ug/kg dry 50 111 73-130% 35.5 1,1,2-Trichloroethane 1410 17.8 ug/kg dry 50 1420 ND 99 78-121% Trichloroethene (TCE) 35.5 1420 ND 77-123% 1650 17.8 ug/kg dry 50 116 EST, Q-54e Trichlorofluoromethane 2190 71.1 142 ug/kg dry 50 1420 ND 154 62-140% 71.1 1,2,3-Trichloropropane 1460 35.5 ug/kg dry 50 1420 ND 100 73-125% 1,2,4-Trimethylbenzene 11700 35.5 71.1 ug/kg dry 50 1420 9990 117 75-123% 50 1,3,5-Trimethylbenzene 35.5 71.1 1420 3000 73-124% 4680 ug/kg dry 118 1290 35.5 35.5 1420 ND 90 Q-54i Vinyl chloride ug/kg dry 50 56-135% 2900 71.1 2850 m,p-Xylene 35.5 35.5 101 77-124% ug/kg dry 50 17.8 35.5 77-123% o-Xylene 1420 ug/kg dry 50 20.6 Surr: 1,4-Difluorobenzene (Surr) Recovery: 101 % Limits: 80-120 % Dilution: 1x 97% Toluene-d8 (Surr) 80-120 % 4-Bromofluorobenzene (Surr) 101 % 79-120 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22I1017 - EPA 5035A Soil Blank (22I1017-BLK1) Prepared: 09/30/22 08:00 Analyzed: 09/30/22 10:51 5035A/8260D ND 333 ug/kg wet Acetone ND 33.3 66.7 50 Acrylonitrile ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 50 ug/kg wet ND Bromodichloromethane 16.7 33.3 ug/kg wet 50 Bromoform ND 33.3 ug/kg wet 50 66.7 333 333 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 tert-Butylbenzene 16.7 50 ug/kg wet ---Carbon disulfide ND 333 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 167 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 ICV-02 Dichlorodifluoromethane ND 66.7 66.7 ug/kg wet 50 ---ND 1,1-Dichloroethane 8.33 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 ND 8.33 16.7 trans-1,2-Dichloroethene ug/kg wet 50

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22I1017 - EPA 5035A Soil Blank (22I1017-BLK1) Prepared: 09/30/22 08:00 Analyzed: 09/30/22 10:51 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane 2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 333 2-Hexanone ND 167 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 4-Isopropyltoluene 16.7 33.3 50 ug/kg wet 333 Methylene chloride ND 167 ug/kg wet 50 ND 333 4-Methyl-2-pentanone (MiBK) 167 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 ND 33.3 66.7 Naphthalene ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 50 ug/kg wet 1.1.2.2-Tetrachloroethane ND 16.7 33.3 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 50 ug/kg wet 16.7 ND 1,1,2-Trichloroethane 8.33 50 ug/kg wet ---Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 33.3 66.7 50 ug/kg wet 1,2,3-Trichloropropane ND 16.7 33.3 ug/kg wet 50 1,2,4-Trimethylbenzene ND 16.7 33.3 50 ug/kg wet 1,3,5-Trimethylbenzene ND 16.7 33.3 ug/kg wet 50 Vinyl chloride ND 8.33 16.7 ug/kg wet 50 m,p-Xylene ND 16.7 33.3 ug/kg wet 50 o-Xylene ND 8.33 16.7 ug/kg wet 50

Limits: 80-120 %

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

Danu lum

Recovery: 106 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l1017 - EPA 5035A							Soi	il				
Blank (22I1017-BLK1)			Prepared	1: 09/30/22 0	8:00 Ana	lyzed: 09/30	/22 10:51					
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80-	120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			93 %	79-	120 %		"					
LCS (22I1017-BS1)			Prepared	l: 09/30/22 0	8:00 Ana	lyzed: 09/30	/22 09:58					
5035A/8260D												
Acetone	2060	500	1000	ug/kg we	t 50	2000		103	80-120%			
Acrylonitrile	1020	50.0	100	ug/kg we	t 50	1000		102	80-120%			
Benzene	1070	5.00	10.0	ug/kg we	t 50	1000		107	80-120%			
Bromobenzene	940	12.5	25.0	ug/kg we	t 50	1000		94	80-120%			
Bromochloromethane	1070	25.0	50.0	ug/kg we	t 50	1000		107	80-120%			
Bromodichloromethane	980	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Bromoform	800	50.0	100	ug/kg we	t 50	1000		80	80-120%			
Bromomethane	1230	500	500	ug/kg we	t 50	1000		123	80-120%			ICV-01, Q-5
2-Butanone (MEK)	2070	250	500	ug/kg we	t 50	2000		103	80-120%			
n-Butylbenzene	999	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
sec-Butylbenzene	964	25.0	50.0	ug/kg we	t 50	1000		96	80-120%			
tert-Butylbenzene	895	25.0	50.0	ug/kg we	t 50	1000		90	80-120%			
Carbon disulfide	732	500	500	ug/kg we	t 50	1000		73	80-120%			Q-5
Carbon tetrachloride	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
Chlorobenzene	956	12.5	25.0	ug/kg we	t 50	1000		96	80-120%			
Chloroethane	1170	250	500	ug/kg we	t 50	1000		117	80-120%			
Chloroform	1060	25.0	50.0	ug/kg we	t 50	1000		106	80-120%			
Chloromethane	864	125	250	ug/kg we	t 50	1000		86	80-120%			
2-Chlorotoluene	948	25.0	50.0	ug/kg we	t 50	1000		95	80-120%			
4-Chlorotoluene	943	25.0	50.0	ug/kg we	t 50	1000		94	80-120%			
Dibromochloromethane	846	50.0	100	ug/kg we	t 50	1000		85	80-120%			
1,2-Dibromo-3-chloropropane	679	250	250	ug/kg we	t 50	1000		68	80-120%			Q-5
1,2-Dibromoethane (EDB)	1010	25.0	50.0	ug/kg we	t 50	1000		101	80-120%			
Dibromomethane	1060	25.0	50.0	ug/kg we		1000		106	80-120%			
1,2-Dichlorobenzene	968	12.5	25.0	ug/kg we		1000		97	80-120%			
1,3-Dichlorobenzene	972	12.5	25.0	ug/kg we	t 50	1000		97	80-120%			
1,4-Dichlorobenzene	954	12.5	25.0	ug/kg we		1000		95	80-120%			
Dichlorodifluoromethane	866	100	100	ug/kg we		1000		87	80-120%			ICV-0
1.1-Dichloroethane	1030	12.5	25.0	ug/kg we		1000		103	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22I1017 - EPA 5035A Soil LCS (22I1017-BS1) Prepared: 09/30/22 08:00 Analyzed: 09/30/22 09:58 1,2-Dichloroethane (EDC) 1100 12.5 25.0 ug/kg wet 50 1000 110 80-120% 1,1-Dichloroethene 1050 12.5 25.0 ug/kg wet 50 1000 105 80-120% ---------1000 cis-1,2-Dichloroethene 1070 12.5 25.0 ug/kg wet 50 107 80-120% trans-1,2-Dichloroethene 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% 1000 1100 12.5 25.0 50 110 80-120% 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane 1020 25.0 50.0 ug/kg wet 50 1000 102 80-120% 2,2-Dichloropropane 1030 25.0 50.0 ug/kg wet 50 1000 103 80-120% 1000 1,1-Dichloropropene 1110 25.0 50.0 ug/kg wet 50 111 80-120% 974 25.0 50.0 1000 97 cis-1,3-Dichloropropene ug/kg wet 50 80-120% trans-1,3-Dichloropropene 1020 25.0 50.0 ug/kg wet 50 1000 102 80-120% Ethylbenzene 1000 940 25.0 ug/kg wet 50 94 80-120% 12.5 972 50.0 100 97 Hexachlorobutadiene ug/kg wet 50 1000 80-120% 92 1850 250 500 2000 2-Hexanone ug/kg wet 50 80-120% ---Isopropylbenzene 956 25.0 50.0 ug/kg wet 50 1000 96 80-120% 970 97 50.0 50 1000 80-120% 4-Isopropyltoluene 25.0 ug/kg wet Methylene chloride 1120 250 500 ug/kg wet 50 1000 112 80-120% 1970 250 500 2000 98 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 80-120% Methyl tert-butyl ether (MTBE) 1050 25.0 50.0 50 1000 105 80-120% ug/kg wet Naphthalene 868 50.0 100 50 1000 87 80-120% ug/kg wet -----n-Propylbenzene 948 12.5 25.0 ug/kg wet 50 1000 95 80-120% 919 25.0 50.0 50 1000 92 80-120% Styrene ug/kg wet 1,1,1,2-Tetrachloroethane 996 12.5 25.0 ug/kg wet 50 1000 100 80-120% 1,1,2,2-Tetrachloroethane 942 25.0 50.0 ug/kg wet 50 1000 94 80-120% Tetrachloroethene (PCE) 950 12.5 25.0 ug/kg wet 50 1000 95 80-120% Toluene 944 25.0 50.0 1000 94 ug/kg wet 50 80-120% ---1,2,3-Trichlorobenzene 907 125 250 ug/kg wet 50 1000 91 80-120% 1,2,4-Trichlorobenzene 911 125 250 50 1000 91 80-120% ug/kg wet 1,1,1-Trichloroethane 1050 12.5 25.0 ug/kg wet 50 1000 105 80-120% 1.1.2-Trichloroethane 988 12.5 25.0 50 1000 99 80-120% ug/kg wet Trichloroethene (TCE) 1110 12.5 25.0 ug/kg wet 50 1000 111 80-120% Trichlorofluoromethane 1070 50.0 100 50 1000 107 80-120% ug/kg wet 1,2,3-Trichloropropane 964 25.0 50.0 ug/kg wet 50 1000 96 80-120% 1,2,4-Trimethylbenzene 957 25.0 50.0 ug/kg wet 50 1000 96 80-120%

Apex Laboratories

1,3,5-Trimethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

80-120%

98

25.0

50.0

ug/kg wet

50

1000

979

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l1017 - EPA 5035A							So	il				
LCS (22I1017-BS1)			Prepared	1: 09/30/22 0	8:00 Ana	lyzed: 09/30	/22 09:58					
Vinyl chloride	1370	12.5	25.0	ug/kg we	t 50	1000		137	80-120%			Q-5
m,p-Xylene	1930	25.0	50.0	ug/kg we	t 50	2000		97	80-120%			
o-Xylene	939	12.5	25.0	ug/kg we	t 50	1000		94	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	107 % Limits: 80-120 %		Dilution: 1x						
Toluene-d8 (Surr)		97 %		80-120 %		"						
4-Bromofluorobenzene (Surr)			94 %	79-	120 %		"					
Duplicate (22I1017-DUP1)			Prepared	l: 09/27/22 1	1:00 Ana	lyzed: 09/30	/22 12:39					
OC Source Sample: Non-SDG (A2	10845-02)											
Acetone	ND	696	1390	ug/kg dry	y 50		ND				30%	
Acrylonitrile	ND	69.6	139	ug/kg dry	y 50		ND				30%	
Benzene	ND	6.96	13.9	ug/kg dry	y 50		ND				30%	
Bromobenzene	ND	17.4	34.8	ug/kg dry	y 50		ND				30%	
Bromochloromethane	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
Bromodichloromethane	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
Bromoform	ND	69.6	139	ug/kg dry	y 50		ND				30%	
Bromomethane	ND	696	696	ug/kg dry	y 50		ND				30%	
2-Butanone (MEK)	ND	348	696	ug/kg dry	y 50		ND				30%	
n-Butylbenzene	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
sec-Butylbenzene	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
tert-Butylbenzene	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
Carbon disulfide	ND	696	696	ug/kg dry	y 50		ND				30%	
Carbon tetrachloride	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
Chlorobenzene	ND	17.4	34.8	ug/kg dry	y 50		ND				30%	
Chloroethane	ND	348	696	ug/kg dry	y 50		ND				30%	
Chloroform	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
Chloromethane	ND	174	348	ug/kg dry	y 50		ND				30%	
2-Chlorotoluene	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
4-Chlorotoluene	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
Dibromochloromethane	ND	69.6	139	ug/kg dry	y 50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	348	348	ug/kg dry	y 50		ND				30%	
1,2-Dibromoethane (EDB)	ND	34.8	69.6	ug/kg dry	y 50		ND				30%	
Dibromomethane	ND	34.8	69.6	ug/kg dry			ND				30%	
1,2-Dichlorobenzene	ND	17.4	34.8	ug/kg dry			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22I1017 - EPA 5035A Soil Duplicate (22I1017-DUP1) Prepared: 09/27/22 11:00 Analyzed: 09/30/22 12:39 QC Source Sample: Non-SDG (A2I0845-02) 1,3-Dichlorobenzene ND 17.4 34.8 ug/kg dry 50 ND 30% ND 34.8 1,4-Dichlorobenzene 17.4 ug/kg dry 50 ND 30% ICV-02 Dichlorodifluoromethane ND 139 139 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 17.4 34.8 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 17.4 34.8 ug/kg dry 50 ND 30% ------ND 1,1-Dichloroethene 17.4 34.8 ug/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 17.4 34.8 50 ND 30% ug/kg dry trans-1,2-Dichloroethene ND ND 30% 17.4 34.8 ug/kg dry 50 1,2-Dichloropropane ND 17.4 34.8 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 34.8 69.6 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 34.8 69.6 ug/kg dry 50 ND 30% ND 34.8 69.6 30% 1,1-Dichloropropene ug/kg dry 50 ND cis-1,3-Dichloropropene ND 34.8 69.6 ug/kg dry 50 ND 30% ND 34.8 69.6 30% trans-1,3-Dichloropropene ug/kg dry 50 ND Ethylbenzene ND 17.4 34.8 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 69.6 139 ug/kg dry 50 ND ___ 30% 2-Hexanone ND 348 696 ug/kg dry 50 ND 30% ND 34.8 30% Isopropylbenzene 69.6 50 ND ug/kg dry 4-Isopropyltoluene ND 34.8 69.6 ug/kg dry 50 ND 30% ND 348 Methylene chloride 696 50 ND 30% ug/kg dry 4-Methyl-2-pentanone (MiBK) ND 348 696 ug/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND 34.8 69.6 ug/kg dry 50 ND ------30% Naphthalene ND 69.6 139 ug/kg dry 50 ND 30% ND 30% n-Propylbenzene 17.4 34.8 ug/kg dry 50 ND ND 34.8 69.6 30% Styrene ug/kg dry 50 ND ND 1,1,1,2-Tetrachloroethane 17.4 34.8 ND 30% ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 34.8 69.6 ND 30% ug/kg dry 50 Tetrachloroethene (PCE) ND 17.4 34.8 ug/kg dry 50 ND 30% ND 34.8 69.6 ug/kg dry 50 ND 30% 1,2,3-Trichlorobenzene ND 174 348 30% ug/kg dry 50 ND 1,2,4-Trichlorobenzene ND 174 348 ug/kg dry 50 ND 30% ND 17.4 34.8 1,1,1-Trichloroethane 50 ND 30% ug/kg dry 1,1,2-Trichloroethane ND 17.4 34.8 ug/kg dry 50 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I1017 - EPA 5035A							Soi	I				
Duplicate (22I1017-DUP1)			Prepared	1: 09/27/22 1	1:00 Anal	yzed: 09/30/	/22 12:39					
QC Source Sample: Non-SDG (A2	10845-02)											
Trichloroethene (TCE)	ND	17.4	34.8	ug/kg dry	50		ND				30%	
Trichlorofluoromethane	ND	69.6	139	ug/kg dry	50		ND				30%	
1,2,3-Trichloropropane	ND	34.8	69.6	ug/kg dry	50		ND				30%	
1,2,4-Trimethylbenzene	ND	34.8	69.6	ug/kg dry	50		ND				30%	
1,3,5-Trimethylbenzene	ND	34.8	69.6	ug/kg dry	50		ND				30%	
Vinyl chloride	ND	17.4	34.8	ug/kg dry			ND				30%	
m,p-Xylene	ND	34.8	69.6	ug/kg dry	50		ND				30%	
o-Xylene	ND	17.4	34.8	ug/kg dry	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			92 %	79-	120 %		"					
QC Source Sample: Non-SDG (A2	10948-15)											
5035A/8260D	2500	0.61	1500		5 0	2470		110	26.16.107			
Acetone	3790	861	1720	ug/kg dry		3450	ND	110	36-164%			
Acrylonitrile	1850	86.1	172	ug/kg dry		1720	ND	108	65-134%			
Benzene	1990	8.61	17.2	ug/kg dry		1720	ND	115	77-121%			
Bromobenzene	1710	21.5	43.0	ug/kg dry		1720	ND	99	78-121%			
Bromochloromethane	1950	43.0	86.1	ug/kg dry		1720	ND	113	78-125%			
Bromodichloromethane	1750	43.0	86.1	ug/kg dry		1720	ND	101	75-127%			
Bromoform	1360	86.1	172	ug/kg dry		1720	ND	79 124	67-132%			TON
Bromomethane	2300	861	861	ug/kg dry	50	1720	ND	134	53-143%			ICV- Q-
2-Butanone (MEK)	3690	430	861	ug/kg dry	50	3450	ND	107	51-148%			~
n-Butylbenzene	1820	43.0	86.1	ug/kg dry	50	1720	ND	106	70-128%			
sec-Butylbenzene	1800	43.0	86.1	ug/kg dry	50	1720	ND	104	73-126%			
ert-Butylbenzene	1630	43.0	86.1	ug/kg dry	50	1720	ND	95	73-125%			
Carbon disulfide	1370	861	861	ug/kg dry	50	1720	ND	79	63-132%			Q
Carbon tetrachloride	1900	43.0	86.1	ug/kg dry	50	1720	ND	110	70-135%			
Chlorobenzene	1760	21.5	43.0	ug/kg dry	50	1720	ND	102	79-120%			
Chloroethane	2260	430	861	ug/kg dry	50	1720	ND	131	59-139%			
Chloroform	1950	43.0	86.1	ug/kg dry	50	1720	ND	113	78-123%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22I1017 - EPA 5035A Soil Matrix Spike (22I1017-MS1) Prepared: 09/29/22 12:28 Analyzed: 09/30/22 17:36 QC Source Sample: Non-SDG (A2I0948-15) Chloromethane 1540 215 430 ug/kg dry 50 1720 ND 89 50-136% 1760 43.0 86.1 1720 2-Chlorotoluene ug/kg dry 50 ND 102 75-122% 4-Chlorotoluene 1740 43.0 86.1 ug/kg dry 50 1720 ND 101 72-124% Dibromochloromethane 1460 86.1 172 ug/kg dry 50 1720 ND 85 74-126% 1,2-Dibromo-3-chloropropane 1170 430 430 ug/kg dry 50 1720 ND 68 61-132% Q-54h ---1790 1720 ND 1,2-Dibromoethane (EDB) 43.0 86.1 ug/kg dry 50 104 78-122% Dibromomethane 1880 43.0 86.1 50 1720 ND 109 78-125% ug/kg dry 1750 21.5 50 1720 ND 102 1,2-Dichlorobenzene 43.0 ug/kg dry 78-121% 1,3-Dichlorobenzene 1760 21.5 43.0 ug/kg dry 50 1720 ND 102 77-121% 1,4-Dichlorobenzene 1730 21.5 43.0 ug/kg dry 50 1720 ND 100 75-120% Dichlorodifluoromethane 1650 172 172 ug/kg dry 50 1720 ND 95 29-149% ICV-02 1910 21.5 43.0 50 1720 ND 76-125% 1.1-Dichloroethane ug/kg dry 111 1,2-Dichloroethane (EDC) 1990 21.5 43.0 ug/kg dry 50 1720 ND 115 73-128% 1980 21.5 43.0 1720 ND 115 70-131% 1,1-Dichloroethene ug/kg dry 50 21.5 cis-1,2-Dichloroethene 1980 43.0 ug/kg dry 50 1720 ND 115 77-123% trans-1,2-Dichloroethene 1960 21.5 43.0 ug/kg dry 50 1720 ND 114 74-125% ___ 1,2-Dichloropropane 2000 21.5 43.0 ug/kg dry 50 1720 ND 116 76-123% 1820 43.0 1720 ND 106 77-121% 1,3-Dichloropropane 86.1 50 ug/kg dry 43.0 1720 ND 67-133% 2,2-Dichloropropane 1660 86.1 ug/kg dry 50 96 43.0 1,1-Dichloropropene 86.1 2080 50 1720 ND 121 76-125% ug/kg dry 43.0 50 1720 ND 99 74-126% cis-1,3-Dichloropropene 1710 86.1 ug/kg dry trans-1,3-Dichloropropene 1750 43.0 86.1 ug/kg dry 50 1720 ND 102 71-130% Ethylbenzene 1740 21.5 43.0 ug/kg dry 50 1720 ND 101 76-122% 86.1 172 1720 ND 100 Hexachlorobutadiene 1730 ug/kg dry 50 61-135% 430 861 3450 ND 93 53-145% 2-Hexanone 3210 ug/kg dry 50 43.0 1750 86.1 50 1720 ND 101 68-134% Isopropylbenzene ug/kg dry 1780 43.0 86.1 50 1720 ND 103 73-127% 4-Isopropyltoluene ug/kg dry Methylene chloride 1940 430 861 ug/kg dry 50 1720 ND 112 70-128% 4-Methyl-2-pentanone (MiBK) 3460 430 861 ug/kg dry 50 3450 ND 100 65-135% Methyl tert-butyl ether (MTBE) 1850 43.0 86.1 50 1720 ND 107 73-125% ug/kg dry Naphthalene 1490 86.1 172 ug/kg dry 50 1720 ND 86 62-129% 1790 21.5 43.0 50 1720 ND n-Propylbenzene 104 73-125% ug/kg dry Styrene 1660 43.0 86.1 ug/kg dry 50 1720 ND 96 76-124%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22I1017 - EPA 5035A Soil Matrix Spike (22I1017-MS1) Prepared: 09/29/22 12:28 Analyzed: 09/30/22 17:36 QC Source Sample: Non-SDG (A2I0948-15) 1,1,1,2-Tetrachloroethane 1780 21.5 43.0 ug/kg dry 50 1720 ND 103 78-125% 1620 43.0 1720 1,1,2,2-Tetrachloroethane 86.1 ug/kg dry 50 ND 94 70-124% Tetrachloroethene (PCE) 1760 21.5 43.0 ug/kg dry 50 1720 ND 102 73-128% Toluene 1750 43.0 86.1 ug/kg dry 50 1720 ND 102 77-121% 1,2,3-Trichlorobenzene 1600 215 430 ug/kg dry 50 1720 ND 93 66-130% 215 430 1720 ND 90 1,2,4-Trichlorobenzene 1550 ug/kg dry 50 67-129% 21.5 1,1,1-Trichloroethane 1970 43.0 ug/kg dry 50 1720 ND 114 73-130% 1,1,2-Trichloroethane 21.5 1720 ND 102 78-121% 1760 43.0 ug/kg dry 50 Trichloroethene (TCE) 2050 21.5 43.0 ug/kg dry 50 1720 ND 119 77-123% Trichlorofluoromethane 2070 86.1 172 ug/kg dry 50 1720 ND 120 62-140% 1,2,3-Trichloropropane 1710 43.0 86.1 ug/kg dry 50 1720 ND 99 73-125% 50 1,2,4-Trimethylbenzene 43.0 86.1 1720 ND 101 75-123% 1740 ug/kg dry 43.0 1720 ND 73-124% 1,3,5-Trimethylbenzene 1810 86.1 ug/kg dry 50 105 21.5 O-54a Vinyl chloride 2700 43.0 1720 ND 56-135% ug/kg dry 50 156 43.0 3450 m,p-Xylene 3570 86.1 ug/kg dry 50 ND 104 77-124% o-Xylene 1730 21.5 43.0 ug/kg dry 50 1720 ND 100 77-123% ___ Surr: 1,4-Difluorobenzene (Surr) 107 % Dilution: 1x Recovery: Limits: 80-120 % Toluene-d8 (Surr) 98 % 80-120 % 94 % 79-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0268 - EPA 1311/503	0B TCLP	Volatiles					Wa	ter				
Blank (22J0268-BLK1)			Prepared	1: 10/07/22	08:23 Anal	lyzed: 10/07	/22 15:07					TCLPb
1311/8260D												
Benzene	ND	6.25	12.5	ug/L	50							
2-Butanone (MEK)	ND	250	500	ug/L	50							
Carbon tetrachloride	ND	25.0	50.0	ug/L	50							
Chlorobenzene	ND	12.5	25.0	ug/L	50							
Chloroform	ND	25.0	50.0	ug/L	50							
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50							
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50							
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50							
Vinyl chloride	ND	12.5	25.0	ug/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80)-120 %		"					
Blank (22J0268-BLK2)			Prepared	d: 10/07/22	08:23 Anal	lyzed: 10/07	/22 15:34					TCLPc
1311/8260D												
Benzene	ND	6.25	12.5	ug/L	50							
2-Butanone (MEK)	ND	250	500	ug/L	50							
Carbon tetrachloride	ND	25.0	50.0	ug/L	50							
Chlorobenzene	ND	12.5	25.0	ug/L	50							
Chloroform	ND	25.0	50.0	ug/L	50							
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50							
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50							
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50							
Vinyl chloride	ND	12.5	25.0	ug/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80	0-120 %		"					
			102 %		0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Thum I must

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

	•		TCLP Volat	0. 941		- aao						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0268 - EPA 1311/503	OB TCLP	Volatiles					Wa	ter				
LCS (22J0268-BS1)			Prepared	l: 10/07/22	08:23 Anal	yzed: 10/07	/22 13:18					TCLPb
1311/8260D												
Benzene	1050	6.25	12.5	ug/L	50	1000		105	80-120%			
2-Butanone (MEK)	1890	250	500	ug/L	50	2000		95	80-120%			
Carbon tetrachloride	1290	25.0	50.0	ug/L	50	1000		129	80-120%			Q-
Chlorobenzene	1010	12.5	25.0	ug/L	50	1000		101	80-120%			
Chloroform	1030	25.0	50.0	ug/L	50	1000		103	80-120%			
1,4-Dichlorobenzene	999	12.5	25.0	ug/L	50	1000		100	80-120%			
1,1-Dichloroethene	1070	12.5	25.0	ug/L	50	1000		107	80-120%			
1,2-Dichloroethane (EDC)	987	12.5	25.0	ug/L	50	1000		99	80-120%			
Tetrachloroethene (PCE)	1260	12.5	25.0	ug/L	50	1000		126	80-120%			Q-:
Trichloroethene (TCE)	1080	12.5	25.0	ug/L	50	1000		108	80-120%			
Vinyl chloride	798	12.5	25.0	ug/L	50	1000		80	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 96 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			94 %		-120 %		"					
4-Bromofluorobenzene (Surr)			98 %)-120 %		"					
LCS (22J0268-BS2)			Prepared	l· 10/07/22	08·23 Anai	lyzed: 10/07/	/22 13:45					TCLPc
1311/8260D			Trepuree	10/0//22	00.25 71114	19200. 10/0//	22 13.13					10210
Benzene	1040	6.25	12.5	ug/L	50	1000		104	80-120%			
2-Butanone (MEK)	1900	250	500	ug/L	50	2000		95	80-120%			
Carbon tetrachloride	1290	25.0	50.0	ug/L	50	1000		129	80-120%			Q-:
Chlorobenzene	1010	12.5	25.0	ug/L	50	1000		101	80-120%			
Chloroform	1020	25.0	50.0	ug/L	50	1000		102	80-120%			
1,4-Dichlorobenzene	1000	12.5	25.0	ug/L	50	1000		100	80-120%			
1,1-Dichloroethene	1110	12.5	25.0	ug/L	50	1000		111	80-120%			
1,2-Dichloroethane (EDC)	971	12.5	25.0	ug/L	50	1000		97	80-120%			
Tetrachloroethene (PCE)	1250	12.5	25.0	ug/L	50	1000		125	80-120%			Q-
Trichloroethene (TCE)	1090	12.5	25.0	ug/L	50	1000		109	80-120%			Ψ.
Vinyl chloride	852	12.5	25.0	ug/L	50	1000		85	80-120%			
Surr: 1,4-Difluorobenzene (Surr)	032		overy: 95 %	Limits: 80			ution: 1x		30 120/0			
Toluene-d8 (Surr)		Reco	94 %)-120 %)-120 %	Diii	uion. 1x					
4-Bromofluorobenzene (Surr)			94 % 98 %		1-120 % 1-120 %		,,					

Prepared: 10/07/22 10:23 Analyzed: 10/07/22 17:22

Apex Laboratories

Duplicate (22J0268-DUP1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daum lum

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

						a ''			0/ 85=		222	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0268 - EPA 1311/503	0B TCLP	Volatiles					Wa	ter				
Duplicate (22J0268-DUP1)			Prepared	d: 10/07/22	10:23 Ana	yzed: 10/07	/22 17:22					
QC Source Sample: Non-SDG (A2	10892-01)											
Benzene	ND	6.25	12.5	ug/L	50		ND				30%	
2-Butanone (MEK)	ND	250	500	ug/L	50		ND				30%	
Carbon tetrachloride	ND	25.0	50.0	ug/L	50		ND				30%	
Chlorobenzene	ND	12.5	25.0	ug/L	50		ND				30%	
Chloroform	ND	25.0	50.0	ug/L	50		ND				30%	
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50		ND				30%	
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50		ND				30%	
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50		ND				30%	
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50		ND				30%	
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50		ND				30%	
Vinyl chloride	ND	12.5	25.0	ug/L	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
Matrix Spike (22J0268-MS1)			Prepared	d: 10/07/22	10:23 Ana	yzed: 10/07	/22 18:16					
QC Source Sample: Non-SDG (A2	10980-01)											
<u>1311/8260D</u>	1050	6.25	10.7	/Tr	50	1000	NID	105	70.1200 /			
Benzene	1050	6.25	12.5	ug/L	50	1000	ND	105	79-120%			
2-Butanone (MEK)	1880	250	500	ug/L	50	2000	ND	94	56-143%			0.5
Carbon tetrachloride	1310	25.0	50.0	ug/L	50	1000	ND	131	72-136%			Q-5
Chlorobenzene	1030	12.5	25.0	ug/L	50	1000	ND	103	80-120%			
Chloroform	1040	25.0	50.0	ug/L	50	1000	ND	104	79-124%			
1,4-Dichlorobenzene	999	12.5	25.0	ug/L	50	1000	ND	100	79-120%			
1,1-Dichloroethene	1120	12.5	25.0	ug/L	50	1000	ND	112	71-131%			
1,2-Dichloroethane (EDC)	996	12.5	25.0	ug/L	50	1000	ND	100	73-128%			
Tetrachloroethene (PCE)	1260	12.5	25.0	ug/L	50	1000	ND	126	74-129%			Q-54
Trichloroethene (TCE)	1090	12.5	25.0	ug/L	50	1000	ND	109	79-123%			
Vinyl chloride	816	12.5	25.0	ug/L	50	1000	ND	82	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80		Dilı	ution: 1x					
Toluene-d8 (Surr)			94 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	9/	0-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport Road Project Number: 111323 Report ID: Niagara Falls, NY 14305 Project Manager: Chip Byrd A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Spike % REC RPD Reporting Source Analyte Result Limit Units Dilution Amount Result % REC RPD Limit Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Blank (22J0030-BLK1) Prepared: 10/03/22 10:34 Analyzed: 10/03/22 22:59 EPA 8270E Acenaphthene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Acenaphthylene ug/kg wet 1 Anthracene ND 1.25 2.50 ug/kg wet 1.25 Benz(a)anthracene ND 2.50 ug/kg wet 1 ND 1.87 3.75 Benzo(a)pyrene ug/kg wet 1 1.87 ND Benzo(b)fluoranthene 3.75 ug/kg wet 1 ------Benzo(k)fluoranthene ND 1.87 3.75 ug/kg wet 1.25 2.50 ND Benzo(g,h,i)perylene ug/kg wet 1 Chrysene ND 1.25 2.50 ug/kg wet 1 Dibenz(a,h)anthracene ND 1.25 2.50 ug/kg wet 1 Fluoranthene ND 1.25 2.50 ug/kg wet 1 1.25 ND 2.50 Fluorene 1 ug/kg wet ---Indeno(1,2,3-cd)pyrene ND 1.25 2.50 ug/kg wet 1 ND 2.50 5.00 1-Methylnaphthalene ug/kg wet 1 2-Methylnaphthalene ND 2.50 5.00 ug/kg wet Naphthalene ND 2.50 5.00 ug/kg wet 1 ------Phenanthrene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Pyrene ug/kg wet 1 ---Carbazole ND 1.87 3.75 ug/kg wet 1 Dibenzofuran ND 1.25 2.50 ug/kg wet 1 2-Chlorophenol ND 6.25 12.5 ug/kg wet 4-Chloro-3-methylphenol ND 12.5 25.0 ug/kg wet 1 6.25 2,4-Dichlorophenol ND 12.5 ug/kg wet 2,4-Dimethylphenol ND 6.25 12.5 ug/kg wet 1 31.2 62.5 2,4-Dinitrophenol ND ug/kg wet 1 4,6-Dinitro-2-methylphenol ND 31.2 62.5 ug/kg wet 1 2-Methylphenol ND 3.12 6.25 ug/kg wet 1 3+4-Methylphenol(s) ND 3.12 6.25 ug/kg wet 1 ------2-Nitrophenol ND 12.5 25.0 ug/kg wet 1 12.5 4-Nitrophenol ND 25.0 ug/kg wet 1 ug/kg wet Pentachlorophenol (PCP) ND 12.5 25.0 1 Phenol ND 2.50 5.00 ug/kg wet 1 ND 6.25 12.5

ug/kg wet

1

Apex Laboratories

2,3,4,6-Tetrachlorophenol

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546							Sol	id				
Blank (22J0030-BLK1)			Prepared	: 10/03/22 1	0:34 Anal	yzed: 10/03/	/22 22:59					
2,3,5,6-Tetrachlorophenol	ND	6.25	12.5	ug/kg we	et 1							
2,4,5-Trichlorophenol	ND	6.25	12.5	ug/kg we	et 1							
Nitrobenzene	ND	12.5	25.0	ug/kg we	et 1							
2,4,6-Trichlorophenol	ND	6.25	12.5	ug/kg we	et 1							
Bis(2-ethylhexyl)phthalate	ND	18.7	37.5	ug/kg we	et 1							
Butyl benzyl phthalate	ND	12.5	25.0	ug/kg we	et 1							
Diethylphthalate	ND	12.5	25.0	ug/kg we	et 1							
Dimethylphthalate	ND	12.5	25.0	ug/kg we	et 1							
Di-n-butylphthalate	ND	12.5	25.0	ug/kg we	et 1							
Di-n-octyl phthalate	ND	12.5	25.0	ug/kg we	et 1							
N-Nitrosodimethylamine	ND	3.12	6.25	ug/kg we	et 1							
N-Nitroso-di-n-propylamine	ND	3.12	6.25	ug/kg we	et 1							
N-Nitrosodiphenylamine	ND	3.12	6.25	ug/kg we	et 1							
Bis(2-Chloroethoxy) methane	ND	3.12	6.25	ug/kg we								
Bis(2-Chloroethyl) ether	ND	3.12	6.25	ug/kg we	et 1							
2,2'-Oxybis(1-Chloropropane)	ND	3.12	6.25	ug/kg we								
Hexachlorobenzene	ND	1.25	2.50	ug/kg we	et 1							
Hexachlorobutadiene	ND	3.12	6.25	ug/kg we	et 1							
Hexachlorocyclopentadiene	ND	6.25	12.5	ug/kg we								
Hexachloroethane	ND	3.12	6.25	ug/kg we								
2-Chloronaphthalene	ND	1.25	2.50	ug/kg we								
1,2,4-Trichlorobenzene	ND	3.12	6.25	ug/kg we								
4-Bromophenyl phenyl ether	ND	3.12	6.25	ug/kg we								
4-Chlorophenyl phenyl ether	ND	3.12	6.25	ug/kg we								
Aniline	ND	6.25	12.5	ug/kg we								
4-Chloroaniline	ND	3.12	6.25	ug/kg we	et 1							
2-Nitroaniline	ND	25.0	50.0	ug/kg we	et 1							
3-Nitroaniline	ND	25.0	50.0	ug/kg we								
4-Nitroaniline	ND	25.0	50.0	ug/kg we								
2,4-Dinitrotoluene	ND	12.5	25.0	ug/kg we								
2,6-Dinitrotoluene	ND	12.5	25.0	ug/kg we								
Benzoic acid	ND	157	312	ug/kg we								
Benzyl alcohol	ND	6.25	12.5	ug/kg we								
Isophorone	ND	3.12	6.25	ug/kg we								
1	_			<i>6 6</i> ···								

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic (Compou	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546							So	lid				
Blank (22J0030-BLK1)			Prepared	d: 10/03/22	10:34 Ana	lyzed: 10/03	/22 22:59					
Azobenzene (1,2-DPH)	ND	3.12	6.25	ug/kg wo	et 1							
Bis(2-Ethylhexyl) adipate	ND	31.2	62.5	ug/kg we	et 1							
3,3'-Dichlorobenzidine	ND	25.0	50.0	ug/kg we	et 1							Q-5
1,2-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
1,3-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
1,4-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
Pyridine	ND	6.25	12.5	ug/kg we	et 1							
1,2-Dichlorobenzene	ND	3.12	6.25	ug/kg we	et 1							
1,3-Dichlorobenzene	ND	3.12	6.25	ug/kg we	et 1							
1,4-Dichlorobenzene	ND	3.12	6.25	ug/kg we	et 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 88 %	Limits: 37	-122 %	Dilt	ution: 1x					
2-Fluorobiphenyl (Surr)			82 %	44	-120 %		"					
Phenol-d6 (Surr)			88 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			90 %	54	-127 %		"					
2-Fluorophenol (Surr)			88 %	35	-120 %		"					
2,4,6-Tribromophenol (Surr)			75 %	39	-132 %		"					
LCS (22J0030-BS1)			Prepared	d: 10/03/22	10:34 Ana	alyzed: 10/03	/22 23:34					
EPA 8270E												
Acenaphthene	464	2.66	5.34	ug/kg we	et 2	533		87	40-123%			
Acenaphthylene	495	2.66	5.34	ug/kg we	et 2	533		93	32-132%			
Anthracene	500	2.66	5.34	ug/kg we	et 2	533		94	47-123%			
Benz(a)anthracene	500	2.66	5.34	ug/kg we	et 2	533		94	49-126%			
Benzo(a)pyrene	517	4.00	8.00	ug/kg we	et 2	533		97	45-129%			
Benzo(b)fluoranthene	523	4.00	8.00	ug/kg we	et 2	533		98	45-132%			
Benzo(k)fluoranthene	506	4.00	8.00	ug/kg we		533		95	47-132%			
Benzo(g,h,i)perylene	432	2.66	5.34	ug/kg w		533		81	43-134%			
Chrysene	482	2.66	5.34	ug/kg we		533		90	50-124%			
Dibenz(a,h)anthracene	494	2.66	5.34	ug/kg w		533		93	45-134%			
Fluoranthene	499	2.66	5.34	ug/kg we		533		94	50-127%			
Fluorene	481	2.66	5.34	ug/kg we		533		90	43-125%			
Indeno(1,2,3-cd)pyrene	468	2.66	5.34	ug/kg we		533		88	45-133%			
1-Methylnaphthalene	471	5.34	10.7	ug/kg we		533		88	40-120%			
2-Methylnaphthalene	474	5.34	10.7	ug/kg w		533		89	38-122%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546							Sol	lid				
LCS (22J0030-BS1)			Prepared	: 10/03/22 1	0:34 Anal	yzed: 10/03/	/22 23:34					
Naphthalene	467	5.34	10.7	ug/kg we	t 2	533		87	35-123%			
Phenanthrene	466	2.66	5.34	ug/kg we	t 2	533		87	50-121%			
Pyrene	494	2.66	5.34	ug/kg we	t 2	533		93	47-127%			
Carbazole	488	4.00	8.00	ug/kg we	t 2	533		92	50-123%			
Dibenzofuran	475	2.66	5.34	ug/kg we	t 2	533		89	44-120%			
2-Chlorophenol	520	13.3	26.6	ug/kg we	t 2	533		98	34-121%			
1-Chloro-3-methylphenol	517	26.6	53.4	ug/kg we	t 2	533		97	45-122%			
2,4-Dichlorophenol	510	13.3	26.6	ug/kg we	t 2	533		96	40-122%			
2,4-Dimethylphenol	534	13.3	26.6	ug/kg we	t 2	533		100	30-127%			
2,4-Dinitrophenol	411	66.6	133	ug/kg we	t 2	533		77	10-137%			
1,6-Dinitro-2-methylphenol	461	66.6	133	ug/kg we	t 2	533		86	29-132%			
2-Methylphenol	530	6.66	13.3	ug/kg we	t 2	533		99	32-122%			
3+4-Methylphenol(s)	545	6.66	13.3	ug/kg we	t 2	533		102	34-120%			
2-Nitrophenol	470	26.6	53.4	ug/kg we		533		88	36-123%			
I-Nitrophenol	460	26.6	53.4	ug/kg we		533		86	30-132%			
Pentachlorophenol (PCP)	446	26.6	53.4	ug/kg we		533		84	25-133%			
Phenol	541	5.34	10.7	ug/kg we	t 2	533		101	34-121%			
2,3,4,6-Tetrachlorophenol	509	13.3	26.6	ug/kg we	t 2	533		95	44-125%			
2,3,5,6-Tetrachlorophenol	477	13.3	26.6	ug/kg we		533		89	40-120%			
2,4,5-Trichlorophenol	501	13.3	26.6	ug/kg we		533		94	41-124%			
Nitrobenzene	505	26.6	53.4	ug/kg we		533		95	34-122%			
2,4,6-Trichlorophenol	511	13.3	26.6	ug/kg we		533		96	39-126%			
Bis(2-ethylhexyl)phthalate	509	40.0	80.0	ug/kg we		533		95	51-133%			
Butyl benzyl phthalate	527	26.6	53.4	ug/kg we		533		99	48-132%			
Diethylphthalate	490	26.6	53.4	ug/kg we		533		92	50-124%			
Dimethylphthalate	482	26.6	53.4	ug/kg we		533		90	48-124%			
Di-n-butylphthalate	534	26.6	53.4	ug/kg we		533		100	51-128%			
Di-n-octyl phthalate	576	26.6	53.4	ug/kg we		533		108	45-140%			
N-Nitrosodimethylamine	473	6.66	13.3	ug/kg we		533		89	23-120%			
N-Nitroso-di-n-propylamine	513	6.66	13.3	ug/kg we		533		96	36-120%			
N-Nitrosodiphenylamine	508	6.66	13.3	ug/kg we		533		95	38-127%			
Bis(2-Chloroethoxy) methane	479	6.66	13.3	ug/kg we		533		90	36-121%			
Bis(2-Chloroethyl) ether	505	6.66	13.3	ug/kg we		533		95	31-120%			
2,2'-Oxybis(1-Chloropropane)	494	6.66	13.3	ug/kg we		533		93	39-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid LCS (22J0030-BS1) Prepared: 10/03/22 10:34 Analyzed: 10/03/22 23:34 457 2.66 5.34 2 533 86 45-122% Hexachlorobenzene ug/kg wet 2 Hexachlorobutadiene 455 6.66 13.3 ug/kg wet 533 85 32-123% ---2 Hexachlorocyclopentadiene 402 13.3 26.6 ug/kg wet 533 75 10-140% Hexachloroethane 465 6.66 13.3 ug/kg wet 2 533 87 28-120% 472 89 2-Chloronaphthalene 2.66 5.34 2 533 41-120% ug/kg wet 475 1,2,4-Trichlorobenzene 6.66 13.3 ug/kg wet 2 533 89 34-120% 4-Bromophenyl phenyl ether 482 6.66 13.3 ug/kg wet 2 533 90 46-124% 2 533 89 4-Chlorophenyl phenyl ether 473 6.66 13.3 ug/kg wet 45-121% 13.3 2 Aniline 360 26.6 ug/kg wet 533 67 10-120% 4-Chloroaniline 266 6.66 13.3 ug/kg wet 2 533 50 17-120% 2 91 2-Nitroaniline 487 53.4 107 533 44-127% ug/kg wet 53.4 107 91 3-Nitroaniline 485 ug/kg wet 2 533 33-120% 478 53.4 107 2 533 90 51-125% 4-Nitroaniline ug/kg wet 2,4-Dinitrotoluene 509 26.6 53.4 ug/kg wet 2 533 96 48-126% 2,6-Dinitrotoluene 502 53.4 2 533 94 46-124% 26.6 ug/kg wet Benzoic acid 743 334 666 ug/kg wet 2 1070 70 10-140% 521 13.3 26.6 2 533 98 29-122% Benzyl alcohol ug/kg wet 503 13.3 2 533 94 30-122% Isophorone 6.66 ug/kg wet 523 6.66 13.3 2 533 98 39-125% Azobenzene (1,2-DPH) ug/kg wet ---Bis(2-Ethylhexyl) adipate 518 66.6 133 ug/kg wet 2 533 97 61-121% 2790 3,3'-Dichlorobenzidine 53.4 107 2 1070 261 22-121% Q-29, Q-41 ug/kg wet ---1,2-Dinitrobenzene 496 66.6 133 ug/kg wet 2 533 93 44-120% 43-127% 1,3-Dinitrobenzene 477 133 ug/kg wet 2 533 89 66.6 1,4-Dinitrobenzene 489 66.6 133 ug/kg wet 2 533 92 37-132% 441 13.3 2 533 83 Pyridine 26.6 ug/kg wet 10-120% ---1,2-Dichlorobenzene 463 6.66 13.3 ug/kg wet 2 533 87 33-120% 459 6.66 13.3 2 533 86 30-120% 1.3-Dichlorobenzene ug/kg wet ---1,4-Dichlorobenzene 461 6.66 13.3 ug/kg wet 2 533 87 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 95 % Limits: 37-122 % Dilution: 2x 87% 44-120 % 2-Fluorobiphenyl (Surr) Phenol-d6 (Surr) 94 % 33-122 % p-Terphenyl-d14 (Surr) 94% 54-127 % 2-Fluorophenol (Surr) 93 % 35-120 % 2,4,6-Tribromophenol (Surr) 89 % 39-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic C	ompour	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546							Sol	id				
Duplicate (22J0030-DUP1)			Prepared	l: 10/03/22 1	0:34 Ana	lyzed: 10/04	/22 00:42					
QC Source Sample: FC-091922-1	984 (A2I086	4-01)				-						
EPA 8270E	,											
Acenaphthene	5730	902	1810	ug/kg dr	y 200		4090			34	30%	Q-04
Acenaphthylene	1450	902	1810	ug/kg dr			1100			28	30%	J
Anthracene	12500	902	1810	ug/kg dr			9540			27	30%	
Benz(a)anthracene	9660	902	1810	ug/kg dr			7560			24	30%	
Benzo(a)pyrene	12400	1360	2710	ug/kg dr			9440			27	30%	
Benzo(b)fluoranthene	10300	1360	2710	ug/kg dr			7550			31	30%	Q-04
Benzo(k)fluoranthene	4170	1360	2710	ug/kg dr	y 200		3870			8	30%	M-05
Benzo(g,h,i)perylene	6420	902	1810	ug/kg dr	y 200		5040			24	30%	
Chrysene	12700	902	1810	ug/kg dr			9830			25	30%	
Dibenz(a,h)anthracene	ND	902	1810	ug/kg dr	y 200		ND				30%	
Fluoranthene	35800	902	1810	ug/kg dr	y 200		28300			23	30%	
Fluorene	5550	902	1810	ug/kg dr	y 200		4000			33	30%	Q-04
Indeno(1,2,3-cd)pyrene	7030	902	1810	ug/kg dr	y 200		5560			23	30%	
1-Methylnaphthalene	ND	1810	3620	ug/kg dr			ND				30%	
2-Methylnaphthalene	ND	1810	3620	ug/kg dr	y 200		ND				30%	
Naphthalene	ND	1810	3620	ug/kg dr	y 200		ND				30%	
Phenanthrene	51500	902	1810	ug/kg dr	y 200		40400			24	30%	
Pyrene	41200	902	1810	ug/kg dr	y 200		32200			25	30%	
Carbazole	ND	1360	2710	ug/kg dr	y 200		ND				30%	
Dibenzofuran	ND	902	1810	ug/kg dr			ND				30%	
2-Chlorophenol	ND	4530	9020	ug/kg dr	y 200		ND				30%	
4-Chloro-3-methylphenol	ND	9020	18100	ug/kg dr	y 200		ND				30%	
2,4-Dichlorophenol	ND	4530	9020	ug/kg dr	y 200		ND				30%	
2,4-Dimethylphenol	ND	4530	9020	ug/kg dr	y 200		ND				30%	
2,4-Dinitrophenol	ND	22600	45300	ug/kg dr	y 200		ND				30%	
4,6-Dinitro-2-methylphenol	ND	22600	45300	ug/kg dr	y 200		ND				30%	
2-Methylphenol	ND	2260	4530	ug/kg dr	y 200		ND				30%	
3+4-Methylphenol(s)	ND	2260	4530	ug/kg dr	y 200		ND				30%	
2-Nitrophenol	ND	9020	18100	ug/kg dr	y 200		ND				30%	
4-Nitrophenol	ND	9020	18100	ug/kg dr	y 200		ND				30%	
Pentachlorophenol (PCP)	ND	9020	18100	ug/kg dr	y 200		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Duplicate (22J0030-DUP1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 00:42 QC Source Sample: FC-091922-1984 (A2I0864-01) ug/kg dry Phenol ND 1810 3620 200 ND 30% ND 4530 9020 200 2,3,4,6-Tetrachlorophenol ug/kg dry ND 30% 2,3,5,6-Tetrachlorophenol ND 4530 9020 ug/kg dry 200 ND 30% 2,4,5-Trichlorophenol ND 4530 9020 ug/kg dry 200 ND 30% Nitrobenzene ND 9020 18100 ug/kg dry 200 ND 30% ------ND 4530 9020 2,4,6-Trichlorophenol ug/kg dry 200 ND 30% Bis(2-ethylhexyl)phthalate ND 13600 27100 ug/kg dry 200 ND 30% ND 200 ND 30% Butyl benzyl phthalate 9020 18100 ug/kg dry Diethylphthalate ND 9020 18100 ug/kg dry 200 ND 30% 9020 Dimethylphthalate ND 18100 ug/kg dry 200 ND 30% Di-n-butylphthalate ND 9020 18100 ug/kg dry 200 ND 30% 9020 Di-n-octyl phthalate ND 18100 200 ND 30% ug/kg dry N-Nitrosodimethylamine ND 2260 4530 ug/kg dry 200 ND 30% ND 2260 4530 200 ND 30% N-Nitroso-di-n-propylamine ug/kg dry N-Nitrosodiphenylamine ND 2260 4530 ug/kg dry 200 ND 30% Bis(2-Chloroethoxy) methane ND 2260 4530 ug/kg dry 200 ND ___ 30% Bis(2-Chloroethyl) ether ND 2260 4530 ug/kg dry 200 ND 30% ND 2260 4530 200 ND 30% 2,2'-Oxybis(1-Chloropropane) ug/kg dry ---ND ND Hexachlorobenzene 902 1810 ug/kg dry 200 30% 2260 4530 Hexachlorobutadiene ND ug/kg dry 200 ND 30% ND 4530 9020 ND Hexachlorocyclopentadiene ug/kg dry 200 30% Hexachloroethane ND 2260 4530 ug/kg dry 200 ND ___ ---30% 2-Chloronaphthalene ND 902 1810 ug/kg dry 200 ND 30% ND 4530 ND 30% 1,2,4-Trichlorobenzene 2260 ug/kg dry 200 ND 2260 4530 ND 30% 4-Bromophenyl phenyl ether ug/kg dry 200 ND 4-Chlorophenyl phenyl ether 2260 4530 200 ND 30% ug/kg dry ---Aniline ND 4530 9020 200 ND 30% ug/kg dry 4-Chloroaniline ND 2260 4530 ug/kg dry 200 ND ---30% 2-Nitroaniline ND 18100 36200 ug/kg dry 200 ND 30% 3-Nitroaniline ND 18100 36200 200 ND 30% ug/kg dry ---4-Nitroaniline ND 18100 36200 ug/kg dry 200 ND 30% ND 9020 ND 2,4-Dinitrotoluene 18100 200 30% ug/kg dry ---2,6-Dinitrotoluene ND 9020 18100 ug/kg dry 200 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sei	mivolatile	Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546							So	lid				
Duplicate (22J0030-DUP1)			Prepared	: 10/03/22 1	0:34 Anal	yzed: 10/04	/22 00:42					
QC Source Sample: FC-091922-19	984 (A2I086	<u>4-01)</u>										
Benzoic acid	ND	113000	226000	ug/kg dr	y 200		ND				30%	
Benzyl alcohol	ND	4530	9020	ug/kg dr	y 200		ND				30%	
Isophorone	ND	2260	4530	ug/kg dr	y 200		ND				30%	
Azobenzene (1,2-DPH)	ND	2260	4530	ug/kg dr	y 200		ND				30%	
Bis(2-Ethylhexyl) adipate	ND	22600	45300	ug/kg dr	y 200		ND				30%	
3,3'-Dichlorobenzidine	ND	18100	36200	ug/kg dr	y 200		ND				30%	Q-
1,2-Dinitrobenzene	ND	22600	45300	ug/kg dr	y 200		ND				30%	
1,3-Dinitrobenzene	ND	22600	45300	ug/kg dr	y 200		ND				30%	
1,4-Dinitrobenzene	ND	22600	45300	ug/kg dr	y 200		ND				30%	
Pyridine	ND	4530	9020	ug/kg dr	y 200		ND				30%	
1,2-Dichlorobenzene	ND	2260	4530	ug/kg dr	y 200		ND				30%	
1,3-Dichlorobenzene	ND	2260	4530	ug/kg dr	y 200		ND				30%	
1,4-Dichlorobenzene	ND	2260	4530	ug/kg dr	y 200		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 60 %	Limits: 37-	-122 %	Dilt	ution: 200x	c				S-05
2-Fluorobiphenyl (Surr)			80 %	44-	120 %		"					S-05
Phenol-d6 (Surr)			61 %	33-	122 %		"					S-05
p-Terphenyl-d14 (Surr)			91 %	54-	127 %		"					S-05
2-Fluorophenol (Surr)			72 %	35-	120 %		"					S-05
2,4,6-Tribromophenol (Surr)			127 %	39-	132 %		"					S-05
Matrix Spike (22J0030-MS1)			Prepared	: 10/03/22 1	0:34 Ana	yzed: 10/04	/22 21:39					
QC Source Sample: Non-SDG (A2	210874-01RE	<u> </u>										
EPA 8270E												
Acenaphthene	6150	332	666	ug/kg dr	y 20	6660	ND	92	40-123%			
Acenaphthylene	6480	332	666	ug/kg dr		6660	394	91	32-132%			
Anthracene	6700	332	666	ug/kg dr		6660	339	96	47-123%			
Benz(a)anthracene	7030	332	666	ug/kg dr	,	6660	523	98	49-126%			
Benzo(a)pyrene	7300	499	998	ug/kg dr		6660	611	100	45-129%			
Benzo(b)fluoranthene	8720	499	998	ug/kg dr	,	6660	1050	115	45-132%			
Benzo(k)fluoranthene	7380	499	998	ug/kg dr		6660	ND	111	47-132%			
Benzo(g,h,i)perylene	6910	332	666	ug/kg dr	,	6660	334	99	43-134%			
Chrysene	8270	332	666	ug/kg dr		6660	1440	103	50-124%			
Dibenz(a,h)anthracene	6520	332	666	ug/kg dr		6660	ND	98	45-134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darwin Thomas, Business Development Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution Result % REC RPD Limit Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Matrix Spike (22J0030-MS1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 21:39 QC Source Sample: Non-SDG (A2I0874-01RE1) ug/kg dry Fluoranthene 8780 332 666 20 6660 1420 111 50-127% 332 Fluorene 11100 666 ug/kg dry 20 6660 3340 117 43-125% Indeno(1,2,3-cd)pyrene 6910 332 666 ug/kg dry 20 6660 415 98 45-133% 1-Methylnaphthalene 5710 666 1330 ug/kg dry 20 6660 ND 86 40-120% 2-Methylnaphthalene 5760 666 1330 ug/kg dry 20 6660 ND 87 38-122% 1330 6660 ND Naphthalene 5510 666 ug/kg dry 20 83 35-123% Phenanthrene 9400 332 666 20 6660 2160 109 50-121% ug/kg dry 332 20 6660 495 103 47-127% Pyrene 7350 666 ug/kg dry Q-01 Carbazole 16000 499 998 ug/kg dry 20 6660 6110 148 50-123% Dibenzofuran 6940 332 666 ug/kg dry 20 6660 746 93 44-120% 2-Chlorophenol 4890 1660 3320 ug/kg dry 20 6660 ND 74 34-121% 5950 3320 6660 20 6660 ND 89 45-122% 4-Chloro-3-methylphenol ug/kg dry 6660 40-122% 2,4-Dichlorophenol 5670 1660 3320 ug/kg dry 20 ND 85 J, Q-01 2,4-Dimethylphenol 1740 1660 3320 6660 ND 30-127% ug/kg dry 20 26 J, Q-01 2,4-Dinitrophenol 11600 8310 16600 ug/kg dry 20 6660 ND 174 10-137% 4,6-Dinitro-2-methylphenol 8410 8310 16600 ug/kg dry 20 6660 ND 126 29-132% ___ J 2-Methylphenol 4220 831 1660 ug/kg dry 20 6660 ND 63 32-122% 4570 831 6660 ND 69 3+4-Methylphenol(s) 1660 20 34-120% ug/kg dry 3320 6660 ND 36-123% J 2-Nitrophenol 6370 6660 ug/kg dry 20 96 3320 4-Nitrophenol 6660 20 6660 ND 88 30-132% 5860 ug/kg dry Pentachlorophenol (PCP) 3320 6660 ND Q-01 9120 6660 ug/kg dry 20 137 25-133% Phenol 4600 666 1330 ug/kg dry 20 6660 ND 69 34-121% ---2,3,4,6-Tetrachlorophenol 7270 1660 3320 ug/kg dry 20 6660 ND 109 44-125% 3320 20 6660 ND 101 40-120% 2,3,5,6-Tetrachlorophenol 6730 1660 ug/kg dry 1660 3320 ND 94 41-124% 2,4,5-Trichlorophenol 6270 ug/kg dry 20 6660 83 5500 3320 20 6660 ND 34-122% Nitrobenzene 6660 ug/kg dry 2,4,6-Trichlorophenol 6900 1660 3320 20 6660 ND 104 39-126% ug/kg dry 9980 4990 ND Bis(2-ethylhexyl)phthalate 7310 ug/kg dry 20 6660 110 51-133% Butyl benzyl phthalate 8310 3320 6660 ug/kg dry 20 6660 ND 125 48-132% Diethylphthalate 6330 3320 6660 20 6660 ND 95 ug/kg dry 50-124% Dimethylphthalate 6150 3320 6660 ug/kg dry 20 6660 ND 92 48-124% 3320 20 ND Di-n-butylphthalate 7150 6660 6660 107 51-128% ug/kg dry

Apex Laboratories

Di-n-octyl phthalate

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

45-140%

154

10300

3320

6660

ug/kg dry

20

6660

ND

Q-01

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Matrix Spike (22J0030-MS1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 21:39 QC Source Sample: Non-SDG (A2I0874-01RE1) N-Nitrosodimethylamine 4590 831 1660 ug/kg dry 20 6660 ND 69 23-120% 831 1660 N-Nitroso-di-n-propylamine 7650 ug/kg dry 20 6660 ND 115 36-120% N-Nitrosodiphenylamine 5350 831 1660 ug/kg dry 20 6660 ND 80 38-127% Bis(2-Chloroethoxy) methane 5370 831 1660 ug/kg dry 20 6660 ND 81 36-121% Bis(2-Chloroethyl) ether 4650 831 1660 ug/kg dry 20 6660 ND 70 31-120% 1660 6660 ND 2,2'-Oxybis(1-Chloropropane) 5470 831 ug/kg dry 20 82 39-120% Hexachlorobenzene 6410 332 666 ug/kg dry 20 6660 ND 96 45-122% 5190 6660 ND 78 Hexachlorobutadiene 831 1660 ug/kg dry 20 32-123% Hexachlorocyclopentadiene 6310 1660 3320 ug/kg dry 20 6660 ND 95 10-140% Hexachloroethane 4800 831 1660 ug/kg dry 20 6660 ND 72 28-120% 2-Chloronaphthalene 5570 332 666 ug/kg dry 20 6660 ND 84 41-120% 831 1660 20 6660 ND 78 34-120% 1,2,4-Trichlorobenzene 5170 ug/kg dry 6660 4-Bromophenyl phenyl ether 6400 831 1660 ug/kg dry 20 ND 96 46-124% 1660 4-Chlorophenyl phenyl ether 6250 831 6660 ND 94 45-121% ug/kg dry 20 Q-01 Aniline ND 1660 3320 ug/kg dry 20 6660 ND 10-120% 20 4-Chloroaniline ND 831 1660 ug/kg dry 6660 ND 17-120% ___ O - 0.12-Nitroaniline ND 6660 13300 ug/kg dry 20 6660 ND 44-127% Q-11 3-Nitroaniline ND 13300 6660 ND 0-11 6660 20 33-120% ug/kg dry 6660 51-125% Q-11 4-Nitroaniline ND 6660 13300 ug/kg dry 20 ND 3320 2,4-Dinitrotoluene 6900 6660 20 6660 ND 104 48-126% ug/kg dry 2.6-Dinitrotoluene 3320 6660 ND 103 46-124% 6860 6660 ug/kg dry 20 Q-11 Benzoic acid ND 41700 83100 ug/kg dry 20 13300 ND 10-140% ---Benzyl alcohol 3670 1660 3320 ug/kg dry 20 6660 ND 55 29-122% 7480 2500 2500 20 ND 112 30-122% Isophorone ug/kg dry 6660 ---831 ND 95 39-125% Azobenzene (1,2-DPH) 6310 1660 ug/kg dry 20 6660 8310 Q-11 ND 16600 20 6660 ND Bis(2-Ethylhexyl) adipate ug/kg dry 61-121% 3,3'-Dichlorobenzidine ND 6660 13300 20 13300 ND 22-121% Q-01, Q-41 ug/kg dry Q-11 1,2-Dinitrobenzene ND 8310 16600 ug/kg dry 20 6660 ND 44-120% ---Q-11 1,3-Dinitrobenzene ND 8310 16600 ug/kg dry 20 6660 ND 43-127% ND 8310 16600 20 6660 ND 37-132% Q-11 1,4-Dinitrobenzene ug/kg dry ---Pyridine 3490 1660 3320 ug/kg dry 20 6660 ND 52 10-120%

20

20

ug/kg dry

ug/kg dry

Apex Laboratories

1.2-Dichlorobenzene

1,3-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

69

67

33-120%

30-120%

ND

ND

6660

6660

831

831

1660

1660

4580

4440

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 22J0030 - EPA 3546 Solid Matrix Spike (22J0030-MS1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 21:39 QC Source Sample: Non-SDG (A2I0874-01RE1) 6660 1,4-Dichlorobenzene 831 1660 ug/kg dry 20 ND 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 74 % Limits: 37-122 % Dilution: 20x 2-Fluorobiphenyl (Surr) 44-120 % 54 % Phenol-d6 (Surr) 33-122 % 68 % p-Terphenyl-d14 (Surr) 54-127 % 66 % 2-Fluorophenol (Surr) 62 % 35-120 % 2,4,6-Tribromophenol (Surr) 75 % 39-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l0998 - EPA 3051A							Sol	id				
Blank (22I0998-BLK1)			Prepared	: 09/29/22	15:36 Ana	yzed: 09/30	/22 12:51					
EPA 6020B												
Arsenic	ND	481	962	ug/kg we	et 10							
Barium	ND	481	962	ug/kg we	et 10							
Cadmium	ND	96.2	192	ug/kg we	et 10							
Chromium	ND	481	962	ug/kg we	et 10							
Lead	ND	96.2	192	ug/kg we	et 10							
Mercury	ND	38.5	76.9	ug/kg we	et 10							
Selenium	ND	481	962	ug/kg we	et 10							
Silver	ND	96.2	192	ug/kg we	et 10							
LCS (22I0998-BS1)			Prepared	: 09/29/22 1	15:36 Ana	lyzed: 09/30	/22 12:57					
EPA 6020B						-						
Arsenic	52700	500	1000	ug/kg we	et 10	50000		105	80-120%			
Barium	53700	500	1000	ug/kg we		50000		107	80-120%			
Cadmium	53300	100	200	ug/kg we		50000		107	80-120%			
Chromium	54300	500	1000	ug/kg we		50000		109	80-120%			
Lead	51900	100	200	ug/kg we		50000		104	80-120%			
Mercury	1030	40.0	80.0	ug/kg we		1000		103	80-120%			
Selenium	27200	500	1000	ug/kg we		25000		109	80-120%			
LCS (2210998-BS2)			Prepared	: 09/29/22 1	15:36 Ana	yzed: 10/03	/22 14:18					
EPA 6020B												
Silver	27500	100	200	ug/kg we	et 10	25000		110	80-120%			Q-1
Duplicate (22I0998-DUP1)			Prepared	: 09/29/22 1	15:36 Ana	yzed: 09/30	/22 13:07					
QC Source Sample: Non-SDG (A	210620-01)											
Arsenic	9600	539	1080	ug/kg we	et 10		7600			23	20%	Q-0
Barium	60200	539	1080	ug/kg we			71900			18	20%	Ψ.
Cadmium	1020	108	216	ug/kg we			867			17	20%	
Chromium	91600	539	1080	ug/kg we			76600			18	20%	
Lead	19500	108	216	ug/kg we			19900			2	20%	
Mercury	1320	43.1	86.2	ug/kg we			2320			55	20%	Q-0
Selenium	699	539	1080	ug/kg we			1230			55	20%	Q-05,
Silver	493	108	216	ug/kg we			696			34	20%	Q-0

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

ental Services, Inc.

Project: Gasco Project Number: 111323

2749 Lockport Road Project Number: 111323
Niagara Falls, NY 14305 Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filtercake

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 2210998 - EPA 3051A Solid Matrix Spike (22I0998-MS1) Prepared: 09/29/22 15:36 Analyzed: 09/30/22 13:12 QC Source Sample: Non-SDG (A2I0620-01) EPA 6020B 58400 503 1010 10 50300 7600 101 75-125% Arsenic ug/kg wet Barium 121000 503 1010 ug/kg wet 10 50300 71900 99 75-125% Cadmium 101 201 50300 103 75-125% 52700 ug/kg wet 10 867 Chromium 138000 503 1010 ug/kg wet 10 50300 76600 122 75-125% Lead 69100 101 201 10 50300 19900 98 75-125% ug/kg wet Mercury 2630 40.2 80.5 ug/kg wet 10 1010 2320 31 75-125% Q-04 Selenium 25500 503 1010 10 25200 1230 96 75-125% ug/kg wet ---28800 101 201 Silver ug/kg wet 10 25200 696 112 75-125%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco -- Filtercake
Project Number: 111323

Report ID:

2749 Lockport Road Niagara Falls, NY 14305

Project Manager: Chip Byrd

A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0976 - EPA 1311/30	15A						Soi	I				
Blank (22I0976-BLK1)			Prepared	09/29/22	15:02 Ana	yzed: 09/30	/22 01:51					
1311/6020B												
Arsenic	ND		0.100	mg/L	10							TCL
Barium	ND		5.00	mg/L	10							TCL
Cadmium	ND		0.100	mg/L	10							TCL
Chromium	ND		0.100	mg/L	10							TCL
Lead	ND		0.0500	mg/L	10							TCL
Mercury	ND		0.00700	mg/L	10							TCL
Selenium	ND		0.100	mg/L	10							TCL
Silver	ND		0.100	mg/L	10							TCL
LCS (2210976-BS1)			Prepared	09/29/22	15:02 Anal	yzed: 09/30	/22 01:56					
1311/6020B												
Arsenic	5.09		0.100	mg/L	10	5.00		102	80-120%			TCL
Barium	10.1		5.00	mg/L	10	10.0		101	80-120%			TCL
Cadmium	1.02		0.100	mg/L	10	1.00		102	80-120%			TCL
Chromium	5.01		0.100	mg/L	10	5.00		100	80-120%			TCL
Lead	5.05		0.0500	mg/L	10	5.00		101	80-120%			TCL
Mercury	0.102		0.00700	mg/L	10	0.100		102	80-120%			TCL
Selenium	1.00		0.100	mg/L	10	1.00		100	80-120%			TCL
Silver	1.04		0.100	mg/L	10	1.00		104	80-120%			TCL
Matrix Spike (2210976-MS1)			Prepared	09/29/22	15:02 Anal	yzed: 09/30	/22 02:06					
QC Source Sample: Non-SDG (A	<u> </u>											
1311/6020B												
Arsenic	5.05		0.100	mg/L	10	5.00	0.0942	99	50-150%			TCLF
Barium	10.1		5.00	mg/L	10	10.0	ND	101	50-150%			TCLF
Cadmium	0.993		0.100	mg/L	10	1.00	ND	99	50-150%			TCLF
Chromium	5.08		0.100	mg/L	10	5.00	0.153	98	50-150%			TCLF
Lead	5.06		0.0500	mg/L	10	5.00	ND	101	50-150%			TCLF
Mercury	0.101		0.00700	mg/L	10	0.100	ND	101	50-150%			TCLF
Selenium	0.972		0.100	mg/L	10	1.00	ND	97	50-150%			TCLF
Silver	1.03		0.100	mg/L	10	1.00	ND	103	50-150%			TCLF

Prepared: 09/29/22 15:02 Analyzed: 09/30/22 02:22

Apex Laboratories

Matrix Spike (22I0976-MS2)

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0976 - EPA 1311/3015	5A						Soi	il				
Matrix Spike (22I0976-MS2)			Prepared:	09/29/22	15:02 Anal	yzed: 09/30	/22 02:22					
QC Source Sample: Non-SDG (A2	10852-01)											
1311/6020B												
Arsenic	4.94		0.100	mg/L	10	5.00	ND	99	50-150%			
Barium	10.2		5.00	mg/L	10	10.0	ND	102	50-150%			
Cadmium	0.998		0.100	mg/L	10	1.00	ND	100	50-150%			
Chromium	4.91		0.100	mg/L	10	5.00	ND	98	50-150%			
Lead	4.99		0.0500	mg/L	10	5.00	ND	100	50-150%			
Mercury	0.0999		0.00700	mg/L	10	0.100	ND	100	50-150%			
Selenium	0.995		0.100	mg/L	10	1.00	ND	99	50-150%			
Silver	1.04		0.100	mg/L	10	1.00	ND	104	50-150%			
Matrix Spike (22I0976-MS3)			Prepared:	09/29/22	15:02 Anal	yzed: 09/30	/22 02:48					
QC Source Sample: FC-091922-19	84 (A2I086	<u>4-01)</u>										
1311/6020B												
Arsenic	4.91		0.100	mg/L	10	5.00	ND	98	50-150%			
Barium	10.1		5.00	mg/L	10	10.0	ND	101	50-150%			
Cadmium	0.980		0.100	mg/L	10	1.00	ND	98	50-150%			
Chromium	4.93		0.100	mg/L	10	5.00	ND	99	50-150%			
Lead	4.90		0.0500	mg/L	10	5.00	ND	98	50-150%			
Mercury	0.0994		0.00700	mg/L	10	0.100	ND	99	50-150%			
Selenium	0.972		0.100	mg/L	10	1.00	ND	97	50-150%			
Silver	1.02		0.100	mg/L	10	1.00	ND	102	50-150%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

	Solu	ıble Cyanic	de by UV D	igestion/	Gas Diffu	sion/Amp	perometri	ic Detecti	on			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0022 - ASTM D7511	-12mod (S)					Soi	I				
Blank (22J0022-BLK1)			Prepared	: 10/03/22	09:31 Ana	yzed: 10/03	3/22 14:50					
D7511-12 Total Cyanide	ND	50.0	100	ug/kg w	ret 1							
LCS (22J0022-BS1)			Prepared	: 10/03/22	09:31 Ana	lyzed: 10/03	3/22 14:52					
<u>D7511-12</u>												
Total Cyanide	406	50.0	100	ug/kg w	ret 1	400		101	84-116%			
Matrix Spike (22J0022-MS2)			Prepared	: 10/03/22	09:31 Ana	yzed: 10/03	3/22 15:38					
QC Source Sample: FC-091922-19	984 (A2I086	<u>4-01)</u>										
Total Cyanide	7530	662	1320	ug/kg d	ry 4	1320	5370	164	64-136%			Q-01, Q-1
Matrix Spike Dup (22J0022-M	(SD2)		Prepared	: 10/03/22	09:31 Ana	lyzed: 10/03	3/22 15:40					
OC Source Sample: FC-091922-19	984 (A21086	4-01)										
Total Cyanide	6990	661	1320	ug/kg d	rv 4	1320	5370	123	64-136%	8	47%	Q-1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l1046 - Total Solids (Dry	Weigh	t)					Soi					
Duplicate (22I1046-DUP1)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	22 06:52					PRO
QC Source Sample: Non-SDG (A2I06	71-02)											
% Solids	97.6		1.00	%	1		97.7			0.2	10%	
Duplicate (22I1046-DUP2)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	/22 06:52					PRO
QC Source Sample: Non-SDG (A2I06	71-04)											
% Solids	97.8		1.00	%	1		97.7			0.08	10%	
Duplicate (22I1046-DUP3)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	22 06:52					PRO
QC Source Sample: Non-SDG (A2I07	08-02)											
% Solids	98.4		1.00	%	1		98.4			0.03	10%	
Duplicate (22I1046-DUP4)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	/22 06:52					PRO
QC Source Sample: Non-SDG (A2I07	<u>08-04)</u>											
% Solids	97.7		1.00	%	1		97.7			0.04	10%	
Duplicate (22I1046-DUP5)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	22 06:52					PRO
QC Source Sample: Non-SDG (A2I07	<u>08-06)</u>											
% Solids	96.7		1.00	%	1		96.9			0.1	10%	
Duplicate (22I1046-DUP6)			Prepared	: 09/30/22	19:20 Anal	yzed: 10/03/	22 06:52					
QC Source Sample: Non-SDG (A2I09	<u>81-01)</u>											
% Solids	88.6		1.00	%	1		89.1			0.6	10%	
Duplicate (22I1046-DUP7)			Prepared	: 09/30/22	19:20 Anal	yzed: 10/03/	22 06:52					
QC Source Sample: Non-SDG (A2109	81-02)											
% Solids	77.7		1.00	%	1		83.6			7	10%	
Duplicate (22I1046-DUP8)			Prepared	: 09/30/22	19:20 Anal	yzed: 10/03/	22 06:52					
QC Source Sample: Non-SDG (A2109	81-03)											
% Solids	89.0		1.00	%	1		88.0			1	10%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 22l1046 - Total Solids (Dry Weigh	t)					Soil					
Duplicate (22I1046-DUP9)			Prepared	: 09/30/22	19:20 Anal	lyzed: 10/03/	/22 06:52					
QC Source Sample: Non-SDG (A	210986-01)											
% Solids	79.4		1.00	%	1		78.8			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbon	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	ls)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0032							
A2I0864-01	Solid	NWTPH-Dx	09/19/22 17:30	10/03/22 18:52	10.22g/5mL	10g/5mL	0.98
	Gasol	ine Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I1017							
A2I0864-01RE1	Solid	NWTPH-Gx (MS)	09/19/22 17:30	09/28/22 14:28	5.59g/5mL	5g/5mL	0.89
		Volatile C	Organic Compounds	by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I1017			*				
A2I0864-01RE1	Solid	5035A/8260D	09/19/22 17:30	09/28/22 14:28	5.59g/5mL	5g/5mL	0.89
		Regulated TCLP Vol	atile Organic Comp	ounds by EPA 1311	/8260D		
Prep: EPA 1311/5030E	3 TCLP Volatiles				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0268			•	*			
A2I0864-01	Solid	1311/8260D	09/19/22 17:30	10/07/22 10:23	5mL/5mL	5mL/5mL	1.00
		Semivolatile	e Organic Compour	ds by EPA 8270E			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0030			1	1			
A2I0864-01	Solid	EPA 8270E	09/19/22 17:30	10/03/22 10:34	15.03g/2mL	15g/2mL	1.00
		Total	Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3051A				•	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I0998			p	Farea			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

SAMPLE PREPARATION INFORMATION

		Tota	Metals by EPA 6020	OB (ICPMS)			
Prep: EPA 3051A Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
		TCLF	P Metals by EPA 602	OB (ICPMS)			
Prep: EPA 1311/3015	<u>A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 2210976 A210864-01	Solid	1311/6020B	09/19/22 17:30	09/29/22 15:02	10mL/50mL	10mL/50mL	1.00
	S	oluble Cyanide by U\	/ Digestion/Gas Diffu	usion/Amperometric	Detection		
Prep: ASTM D7511-12	2mod (S)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0022 A2I0864-01RE1	Solid	D7511-12	09/19/22 17:30	10/03/22 09:31	2.5942g/50mL	2.5g/50mL	0.96
			Percent Dry Wei	ght			
Prep: Total Solids (Dr	y Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I1046 A2I0864-01	Solid	EPA 8000D	09/19/22 17:30	09/30/22 13:07			NA
		T	CLP Extraction by E	PA 1311			
Prep: EPA 1311 (TCL	<u>P)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 2210935							
A2I0864-01	Solid	EPA 1311	09/19/22 17:30	09/28/22 16:22	100g/2000g	100g/2000g	NA
Prep: EPA 1311 TCLF	P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0107 A2I0864-01	Solid	EPA 1311 ZHE	09/19/22 17:30	10/04/22 15:01	24.8g/497g	25g/500g	NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport Road Project Number: 111323 Report ID: Niagara Falls, NY 14305 Project Manager: Chip Byrd A2I0864 - 10 28 22 0608

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

nex Labora	The results in this report apply to the samples analyzed in accordance with the chain of
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +17%. The results are reported as Estimated Values.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +14%. The results are reported as Estimated Values.
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-16	Reanalysis of an original Batch QC sample.
Q-11	Spike recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
PRO	Sample has undergone sample processing prior to extraction and analysis.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
ICV-02	Estimated Result. Initial Calibration Verification (ICV) failed low.
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
H-01	This sample was analyzed outside the recommended holding time.
F-17	No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
EST	Result reported as an Estimated Value. Failed inital calabration criteria

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Sevenson Environmental Services, Inc.</u> Project: <u>Gasco -- Filtercake</u>

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

O .	, , , ,
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +60%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +9%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -12%. The results are reported as Estimated Values.
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
Q-54j	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -7%. The results are reported as Estimated Values.
Q-54k	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -7% The results are reported as Estimated Values.
Q-54l	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -9%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
TCLP	This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 22i0935.
TCLPa	Limited sample volume. Leachate was prepared using less than the recommended amount of sample per EPA 1311 or 1312. To maintain consistency in leaching, the standard ratio of sample to leachate fluid was maintained.
TCLPb	This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 22J0107.
TCLPc	This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 22J0233.
V-15	Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Sample aliquot was subsampled from the sample container in the laboratory. The subsampled aliquot was not preserved within 48 hours of

Apex Laboratories

V-16

sampling.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210864 - 10 28 22 0608

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

<u>Detection Limits:</u> Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex :	La	bora	tor	ies
riper.	டய	oora	tOI	CS

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filtercake

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filtercake

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210864 - 10 28 22 0608

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, NY 14305

Project: Gasco -- Filtercake

Project Number: 111323

Project Manager: Chip Byrd

Report ID: A2I0864 - 10 28 22 0608

										ŀ											
Company: Sevenson Environmental Services, Inc.	ces, Inc.			Ę	Project Mgr. Chip Byrd	D ::	ıp Byr	ارم ا			Project	t Nam	e. Ga	Project Name: Gasco Filtercake	rcake			Proje	Project # 111323		
Address: 2749 Lockport Road, Niagara Falls, NY 14305	agara F	alls, NY 143	305			ŀ		Pho	.ie: (7	16) 58:	Phone: (716) 583-2754		IL.	Fax:		E-ma	l. wb	yrd@se	E-mail: wbyrd@sevenson.com		
Sampled by: Heartstone Sound	OUR													ANA	ANALYSIS REQUEST	REGUES					
SAMPLE ID	# dl 8AJ	DATE.	TIME	XISTAM	# OF CONTAINERS	SS60 VOC≤	1311/8260 TCPL VOCs	3270D LL Full List	Melght vic	Netals, RCRA 8	Metals, TPCL	Cotal Cyanide	xd- H9TWI	x5-H9TWV			and the second s				
FC-091922-1984		9/12/9	1730	30 8	╀	-	 >	>	ı >	v >		-	+-	\	\vdash		+			-	1
		,					_					-	-				-				
										-		-	-			<u> </u>	-				-
and the state of t				\vdash								\vdash									
				-	-	-	_					+	+			_	-				
	-		_	+	-		_			+	+	_	+		-	_	-				
	\vdash						4		1 1	\Box		\vdash	+		+		+	7	.,		
	+	_				-				-	-	+	-		+		\dashv				
Normal Turn Around Time (TAT) = 6-10 Business Days	Aroun	d Time (TAT) = 6-10	Busine	ss Days	- "	_		Ĭ	SPECI	SPECIAL INSTRUCTIONS:	STRU	- E	- SN	-	1	+			1	
TAT Requested (circle)	1 DAY	}	XPOZ (≱(3 DAY	>	4 DAY	>													
	5 DAY	47	S		Other:	je i			ı												
	MPLE	S ARE HELI	D FOR 3	30 DAY	6				П												2/16/14 BC
HED BY:	9/;	RECEIVED BY: Signature: 9/28/22 St.	S S S	EIVED B sture:	* >		Darte	Date9/28/22 Signature:	2	RELINK	e:	D BY:			Date:	, i	S S	RECEIVED BY: Signature:	BY:	Date:	
Printed Name: Heritano Sound	Time	005	T. J.	Name	N X		Time:	Time: (COS	5	Printed Name:	Name:				Time:	is is	E.	Printed Name	és :	Time:	92
Company: SES			wo S	PAEX	- بح	75~~	24-05			Company:	Ye						ਤੌ	Company:	51 Table 1 Tab		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filtercake

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323

Project Manager: Chip Byrd

Report ID:

A2I0864 - 10 28 22 0608

CI ! (
Chent:	Sevenson Envenmental Services the. Element WO#: A2 10864
	Project #: 6asco - Filtercate 111323
Delivery	
	e received: 9/20/27 @ 1005 By: 57
	d by: Apex Client ESS FedEx, UPS Swift Senvoy SDS Other
	nspection Date/time inspected: 9/20/27 @ 11/2 By: ET
	Custody included? Yes No Custody seals? Yes No
	ated by client? Yes No
_	ated by Apex? Yes No No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Гетрега	ture (°C) 1.6
•	l on ice? (Y/N)
Гетр. bl	anks? (Y/N)
ce type:	(Gel/Real/Other) 6 L
Condition	
	Inspection: Date/time inspected: 1812 12@ 1300 By:
3ottle lab	pels/COCs agree? Yes No Comments:
COC/con	pels/COCs agree? Yes No Comments:
COC/con	rels/COCs agree? Yes No Comments: tainer discrepancies form initiated? Yes No
COC/con Contained Do VOA Comment	rels/COCs agree? Yes No Comments:
COC/con Contained Do VOA Comment	rs/volumes received appropriate for analysis? Yes No Comments:
COC/con Container Do VOA Comment Water sar	rels/COCs agree? Yes No Comments:
COC/con Container Do VOA Comment Water sar	rels/COCs agree? Yes No Comments:
COC/con Container Do VOA Comment Water sar	rels/COCs agree? Yes No Comments:
COC/con Container Do VOA Comment Water sar	rels/COCs agree? Yes No Comments:

Apex Laboratories