

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Saturday, December 3, 2022 Chip Byrd Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, NY 14305

RE: A2K0621 - Gasco -- Filter Bags - 111323

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2K0621, which was received by the laboratory on 11/16/2022 at 9:40:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 3.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco Project Number: 111323

Gasco -- Filter Bags

2749 Lockport RoadProject Number: 111323Niagara Falls, NY 14305Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFOR	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BF-111622-146	A2K0621-01	Solid	11/16/22 07:45	11/16/22 09:40

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport RoadProject Number: 111323Niagara Falls, NY 14305Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

Gasco -- Filter Bags

Project:

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
BF-111622-146 (A2K0621-01)				Matrix: Solid Batch: 22K0987							
Diesel	5200000	99800	200000	ug/kg	10	11/30/22 23:36	NWTPH-Dx	Q-42			
Oil	4220000	200000	399000	ug/kg	10	11/30/22 23:36	NWTPH-Dx	Q-42			
Surrogate: o-Terphenyl (Surr)		Reco	very: 70 %	Limits: 50-150 %	6 10	11/30/22 23:36	NWTPH-Dx	S-05			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

Gasol	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BF-111622-146 (A2K0621-01RE1)			Matrix: Solid Batch: 22K0775				22K0775	V-15			
Gasoline Range Organics	512000	59000	118000	ug/kg dry	50	11/21/22 13:37	NWTPH-Gx (MS)				
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ry: 119 % 94 %	Limits: 50-150 % 50-150 %	-	11/21/22 13:37 11/21/22 13:37	NWTPH-Gx (MS) NWTPH-Gx (MS)				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
	Sample	Detection	Reporting			Date	<u> </u>	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BF-111622-146 (A2K0621-01RE1)				Matrix: Sol	id	Batch:	22K0775	V-15
Acetone	ND	23600	23600	ug/kg dry	50	11/21/22 13:37	5035A/8260D	Q-30
Acrylonitrile	ND	2360	2360	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Benzene	ND	118	236	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Bromobenzene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Bromochloromethane	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Bromodichloromethane	5670	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Bromoform	ND	1180	2360	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Bromomethane	ND	11800	11800	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
2-Butanone (MEK)	ND	11800	11800	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
n-Butylbenzene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
sec-Butylbenzene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
tert-Butylbenzene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Carbon disulfide	ND	5900	11800	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Carbon tetrachloride	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Chlorobenzene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Chloroethane	ND	5900	11800	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Chloroform	33500	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Chloromethane	ND	2950	5900	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
2-Chlorotoluene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
4-Chlorotoluene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Dibromochloromethane	ND	1180	2360	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	2950	5900	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Dibromomethane	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,2-Dichlorobenzene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,3-Dichlorobenzene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,4-Dichlorobenzene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Dichlorodifluoromethane	ND	2360	2360	ug/kg dry	50	11/21/22 13:37	5035A/8260D	ICV-02
1,1-Dichloroethane	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,1-Dichloroethene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
cis-1,2-Dichloroethene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
trans-1,2-Dichloroethene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

	v	Jiaule Organ	compoun	ds by EPA 82	<u></u>			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BF-111622-146 (A2K0621-01RE1)				Matrix: Soli	id	Batch:	22K0775	V-15
1,2-Dichloropropane	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,3-Dichloropropane	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
2,2-Dichloropropane	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,1-Dichloropropene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
cis-1,3-Dichloropropene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
trans-1,3-Dichloropropene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Ethylbenzene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Hexachlorobutadiene	ND	1180	2360	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
2-Hexanone	ND	11800	11800	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Isopropylbenzene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
4-Isopropyltoluene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Methylene chloride	ND	5900	11800	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	11800	11800	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Naphthalene	61600	1180	2360	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
n-Propylbenzene	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Styrene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Tetrachloroethene (PCE)	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Toluene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,2,3-Trichlorobenzene	ND	2950	5900	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,2,4-Trichlorobenzene	ND	2950	5900	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,1,1-Trichloroethane	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
1,1,2-Trichloroethane	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Trichloroethene (TCE)	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Trichlorofluoromethane	ND	2360	2360	ug/kg dry	50	11/21/22 13:37	5035A/8260D	Q-52
,2,3-Trichloropropane	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
,2,4-Trimethylbenzene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
,3,5-Trimethylbenzene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
Vinyl chloride	ND	295	590	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
n,p-Xylene	ND	590	1180	ug/kg dry	50	11/21/22 13:37	5035A/8260D	
o-Xylene	ND	295	590	ug/kg dry ug/kg dry	50	11/21/22 13:37	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	Uni	ts	Dilution	Date Analyzed	Method Ref.	Notes	
BF-111622-146 (A2K0621-01RE1)		Matrix: Solid				Batch:	V-15			
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 8	80-120 %	I	11/21/22 13:37	5035A/8260D		
Toluene-d8 (Surr)			91 %	8	80-120 %	1	11/21/22 13:37	5035A/8260D		
4-Bromofluorobenzene (Surr)			102 %	7	79-120 %	1	11/21/22 13:37	5035A/8260D		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

	Regulated TCLP Volatile Organic Compounds by EPA 1311/8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
BF-111622-146 (A2K0621-01)					d	Batch: 2	22K1007						
Benzene	ND	6.25	12.5	ug/L	50	11/30/22 14:02	1311/8260D						
2-Butanone (MEK)	ND	250	500	ug/L	50	11/30/22 14:02	1311/8260D						
Carbon tetrachloride	ND	25.0	50.0	ug/L	50	11/30/22 14:02	1311/8260D						
Chlorobenzene	ND	12.5	25.0	ug/L	50	11/30/22 14:02	1311/8260D						
Chloroform	85.0	25.0	50.0	ug/L	50	11/30/22 14:02	1311/8260D						
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50	11/30/22 14:02	1311/8260D						
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50	11/30/22 14:02	1311/8260D						
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50	11/30/22 14:02	1311/8260D						
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50	11/30/22 14:02	1311/8260D						
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50	11/30/22 14:02	1311/8260D						
Vinyl chloride	ND	12.5	25.0	ug/L	50	11/30/22 14:02	1311/8260D						
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 117 %	Limits: 80-120 %	6 1	11/30/22 14:02	1311/8260D						
Toluene-d8 (Surr)			100 %	80-120 %	. I	11/30/22 14:02	1311/8260D						
4-Bromofluorobenzene (Surr)			99 %	80-120 %	. 1	11/30/22 14:02	1311/8260D						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Compou	unds by EPA	8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BF-111622-146 (A2K0621-01)				Matrix: Soli	id	Batch:	22K0908	
Acenaphthene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Acenaphthylene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Anthracene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Benz(a)anthracene	ND	10500	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Benzo(a)pyrene	9680	7840	15700	ug/kg dry	200	11/28/22 18:02	EPA 8270E	J
Benzo(b)fluoranthene	13600	7840	15700	ug/kg dry	200	11/28/22 18:02	EPA 8270E	J
Benzo(k)fluoranthene	7910	7840	15700	ug/kg dry	200	11/28/22 18:02	EPA 8270E	J
Benzo(g,h,i)perylene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Chrysene	ND	23500	23500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	R-02
Dibenz(a,h)anthracene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Fluoranthene	81600	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Fluorene	114000	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1-Methylnaphthalene	16100	10500	20900	ug/kg dry	200	11/28/22 18:02	EPA 8270E	J
2-Methylnaphthalene	12900	10500	20900	ug/kg dry	200	11/28/22 18:02	EPA 8270E	J
Naphthalene	115000	10500	20900	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Phenanthrene	232000	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Pyrene	6390	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	J
Carbazole	144000	7840	15700	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Dibenzofuran	17100	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2-Chlorophenol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
4-Chloro-3-methylphenol	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2,4-Dichlorophenol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2,4-Dimethylphenol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2,4-Dinitrophenol	ND	131000	261000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	131000	261000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2-Methylphenol	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
3+4-Methylphenol(s)	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2-Nitrophenol	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
4-Nitrophenol	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Pentachlorophenol (PCP)	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Phenol	ND	10500	20900	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
				· ·				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
BF-111622-146 (A2K0621-01)				Matrix: Soli	id	Batch:	22K0908	
2,3,5,6-Tetrachlorophenol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2,4,5-Trichlorophenol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Nitrobenzene	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2,4,6-Trichlorophenol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	78400	157000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Butyl benzyl phthalate	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Diethylphthalate	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Dimethylphthalate	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Di-n-butylphthalate	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Di-n-octyl phthalate	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
N-Nitrosodimethylamine	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	26100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
N-Nitrosodiphenylamine	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Hexachlorobenzene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Hexachlorobutadiene	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Hexachlorocyclopentadiene	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Hexachloroethane	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
2-Chloronaphthalene	ND	5210	10500	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1,2,4-Trichlorobenzene	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1-Bromophenyl phenyl ether	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Aniline	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1-Chloroaniline	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
-Nitroaniline	ND	105000	209000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
-Nitroaniline	ND	105000	209000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
-Nitroaniline	ND	105000	209000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
,4-Dinitrotoluene	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
,6-Dinitrotoluene	ND	52100	105000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Benzoic acid	ND	655000	1310000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
enzyl alcohol	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Niagara Falls, NY 14305

2749 Lockport Road

Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
BF-111622-146 (A2K0621-01)				Matrix: Solid	d	Batch:	22K0908	
Isophorone	ND	45900	45900	ug/kg dry	200	11/28/22 18:02	EPA 8270E	R-02
Azobenzene (1,2-DPH)	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	131000	261000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
3,3'-Dichlorobenzidine	ND	105000	209000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	131000	261000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1,3-Dinitrobenzene	ND	131000	261000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1,4-Dinitrobenzene	ND	131000	261000	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Pyridine	ND	26100	52100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1,2-Dichlorobenzene	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1,3-Dichlorobenzene	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
1,4-Dichlorobenzene	ND	13100	26100	ug/kg dry	200	11/28/22 18:02	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ery: 150 %	Limits: 37-122 %	6 200	11/28/22 18:02	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			69 %	44-120 %	6 200	11/28/22 18:02	EPA 8270E	S-05
Phenol-d6 (Surr)			9 %	33-122 %		11/28/22 18:02	EPA 8270E	S-03
p-Terphenyl-d14 (Surr)			89 %	54-127 %		11/28/22 18:02	EPA 8270E	S-0.
2-Fluorophenol (Surr)			10 %	35-120 %		11/28/22 18:02	EPA 8270E	S-0
2,4,6-Tribromophenol (Surr)			114 %	39-132 %	6 200	11/28/22 18:02	EPA 8270E	S-0.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BF-111622-146 (A2K0621-01)		Matrix: Solid									
Batch: 22K0881											
Arsenic	90600	6600	13200	ug/kg dry	10	11/28/22 21:17	EPA 6020B				
Barium	257000	6600	13200	ug/kg dry	10	11/28/22 21:17	EPA 6020B				
Cadmium	ND	1320	2640	ug/kg dry	10	11/28/22 21:17	EPA 6020B				
Chromium	202000	6600	13200	ug/kg dry	10	11/28/22 21:17	EPA 6020B				
Lead	17300	1320	2640	ug/kg dry	10	11/28/22 21:17	EPA 6020B				
Mercury	ND	528	1060	ug/kg dry	10	11/28/22 21:17	EPA 6020B				
Selenium	ND	6600	13200	ug/kg dry	10	11/28/22 21:17	EPA 6020B				
Silver	ND	1320	2640	ug/kg dry	10	11/28/22 21:17	EPA 6020B				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	S)						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BF-111622-146 (A2K0621-01)		Matrix: Solid									
Batch: 22K0878											
Arsenic	ND	50.0	100	ug/L	10	11/28/22 11:31	1311/6020B				
Barium	ND	2500	5000	ug/L	10	11/28/22 11:31	1311/6020B				
Cadmium	ND	50.0	100	ug/L	10	11/28/22 11:31	1311/6020B				
Chromium	ND	50.0	100	ug/L	10	11/28/22 11:31	1311/6020B				
Lead	ND	25.0	50.0	ug/L	10	11/28/22 11:31	1311/6020B				
Mercury	ND	3.75	7.00	ug/L	10	11/28/22 11:31	1311/6020B				
Selenium	ND	50.0	100	ug/L	10	11/28/22 11:31	1311/6020B				
Silver	ND	50.0	100	ug/L	10	11/28/22 11:31	1311/6020B				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

Gasco -- Filter Bags

Soluble Cyanide by UV Digestion/Gas Diffusion/Amperometric Detection													
Sample Detection Reporting Date													
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
BF-111622-146 (A2K0621-01)			Matrix: So	lid	Batch:	22K0777							
Total Cyanide	17000	3310	6620	ug/kg dry	5	11/21/22 13:50	D7511-12						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BF-111622-146 (A2K0621-01)			Matrix: S	olid	Batch:	22K0693					
% Solids	7.50		1.00	%	1	11/18/22 05:28	EPA 8000D				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

ANALYTICAL SAMPLE RESULTS

TCLP Extraction by EPA 1311												
Sample Detection Reporting Date Analyte Result Limit Limit Units Dilution Analyzed Method Ref. Notes												
BF-111622-146 (A2K0621-01)				olid	Batch:	22K0795						
TCLP Extraction TCLP ZHE Extraction	PREP PREP			N/A N/A	1 1	11/22/22 14:00 11/29/22 16:55	EPA 1311 EPA 1311 ZHE					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note	es
Batch 22K0987 - EPA 3546 (F	uels)						Sol	id					
Blank (22K0987-BLK1)			Prepared	l: 11/30/22	07:44 Ana	lyzed: 11/30	/22 22:56						
NWTPH-Dx													
Diesel	ND	9090	18200	ug/kg	1								
Oil	ND	18200	36400	ug/kg	1								
Surr: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50	0-150 %	Dil	ution: 1x						
LCS (22K0987-BS1)			Prepared	l: 11/30/22 (07:44 Ana	lyzed: 11/30	/22 23:16						
NWTPH-Dx													
Diesel	119000	10000	20000	ug/kg	1	125000		95	38-132%				
Surr: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50	0-150 %	Dil	ution: 1x						
Duplicate (22K0987-DUP1)			Prepared	l: 11/30/22 (07:44 Ana	lyzed: 11/30	/22 23:57						
QC Source Sample: BF-111622-14	6 (A2K0621	<u>-01)</u>											
NWTPH-Dx													
Diesel	1670000	99800	200000	ug/kg	10		5200000			103	30%		Q-0
Oil	1100000	200000	399000	ug/kg	10		4220000			117	30%		Q-0
Surr: o-Terphenyl (Surr)		Reco	very: 55 %	Limits: 50	0-150 %	Dil	ution: 10x					S-05	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project:

2749 Lockport Road Project Number: 111323
Niagara Falls, NY 14305 Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filter Bags

	Gasolir	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0725 - EPA 5035A							Soi	I.				
Blank (22K0725-BLK1)			Prepared	d: 11/18/22	10:21 Ana	lyzed: 11/18/	/22 14:41					
NWTPH-Gx (MS) Gasoline Range Organics	ND	1670	3330	ug/kg w	vet 50							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 96 % 98 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					
LCS (22K0725-BS2)			Prepareo	d: 11/18/22	10:21 Ana	lyzed: 11/18/	/22 12:53					
NWTPH-Gx (MS) Gasoline Range Organics	20400	2500	5000	ug/kg w	vet 50	25000		81	80-120%			
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 96 % 105 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					
Duplicate (22K0725-DUP1)			Prepared	d: 11/08/22	12:35 Ana	lyzed: 11/18/	/22 16:29					
QC Source Sample: Non-SDG (A2	2K0385-02)											
Gasoline Range Organics	16600	4670	9330	ug/kg d	ry 50		20600			22	30%	
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 108 % 99 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project:

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filter Bags

	Gasolir	ne Range H	ydrocarbo	ons (Ben	zene thro	igh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0775 - EPA 5035A							So	il				
Blank (22K0775-BLK1)			Prepared	d: 11/21/22	10:00 Ana	yzed: 11/21	/22 12:46					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	1670	3330	ug/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 108 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	5	0-150 %		"					
LCS (22K0775-BS2)			Prepared	d: 11/21/22	10:00 Ana	yzed: 11/21	/22 12:21					
NWTPH-Gx (MS)												
Gasoline Range Organics	21300	2500	5000	ug/kg v	vet 50	25000		85	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 106 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	5	0-150 %		"					
Duplicate (22K0775-DUP1)			Prepared	d: 11/17/22	19:30 Anal	yzed: 11/21	/22 15:19					V-15
QC Source Sample: Non-SDG (A2	K0693-01)											
Gasoline Range Organics	39600	10200	20300	ug/kg d	lry 50		40100			1	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 110 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			93 %	5	0-150 %		"					
Duplicate (22K0775-DUP2)			Prepared	d: 11/17/22	09:50 Anal	yzed: 11/21	/22 17:01					
QC Source Sample: Non-SDG (A2	K0704-58)											
Gasoline Range Organics	3600	2840	5670	ug/kg d	lry 50		4010			11	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 105 %	Limits: 5	0-150 %	Dilı	ution: 1x					_
1,4-Difluorobenzene (Sur)			93 %	5	0-150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22K0725 - EPA 5035A Soil Blank (22K0725-BLK1) Prepared: 11/18/22 10:21 Analyzed: 11/18/22 14:41 5035A/8260D ND 333 ug/kg wet 50 Acetone ND 33.3 66.7 50 Acrylonitrile ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 50 ug/kg wet ND Bromodichloromethane 16.7 33.3 ug/kg wet 50 Bromoform ND 33.3 ug/kg wet 50 66.7 333 333 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 tert-Butylbenzene 16.7 50 ug/kg wet ---Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 Dichlorodifluoromethane ND 33.3 66.7 ug/kg wet 50 ---ND 8.33 1,1-Dichloroethane 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 ND 8.33 16.7 trans-1,2-Dichloroethene ug/kg wet 50

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22K0725 - EPA 5035A Soil Blank (22K0725-BLK1) Prepared: 11/18/22 10:21 Analyzed: 11/18/22 14:41 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane 2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 333 2-Hexanone ND 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 4-Isopropyltoluene ug/kg wet 333 Methylene chloride ND 167 ug/kg wet 50 ND 333 4-Methyl-2-pentanone (MiBK) 167 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 ND 66.7 Naphthalene 66.7 ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 50 ug/kg wet 1.1.2.2-Tetrachloroethane ND 16.7 33.3 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 50 ug/kg wet 16.7 ND 1,1,2-Trichloroethane 8.33 50 ug/kg wet ---Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 33.3 66.7 50 ug/kg wet 1,2,3-Trichloropropane ND 16.7 33.3 ug/kg wet 50 1,2,4-Trimethylbenzene ND 16.7 33.3 50 ug/kg wet 1,3,5-Trimethylbenzene ND 16.7 33.3 ug/kg wet 50 Vinyl chloride ND 8.33 16.7 ug/kg wet 50 m,p-Xylene ND 16.7 33.3 ug/kg wet 50 o-Xylene ND 8.33 16.7 ug/kg wet 50

Limits: 80-120 %

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

Daum Ilum

Recovery: 105 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0725 - EPA 5035A							Soi	il				
Blank (22K0725-BLK1)			Prepared	1: 11/18/22 1	0:21 Ana	lyzed: 11/18	/22 14:41					
Surr: Toluene-d8 (Surr)		Rece	overy: 99 %	Limits: 80-	120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					
LCS (22K0725-BS1)			Prepared	d: 11/18/22 1	0:21 Ana	lyzed: 11/18	/22 13:47					
5035A/8260D												
Acetone	2070	500	1000	ug/kg we	t 50	2000		104	80-120%			
Acrylonitrile	1020	50.0	100	ug/kg we	t 50	1000		102	80-120%			
Benzene	972	5.00	10.0	ug/kg we	t 50	1000		97	80-120%			
Bromobenzene	936	12.5	25.0	ug/kg we	t 50	1000		94	80-120%			
Bromochloromethane	1040	25.0	50.0	ug/kg we	t 50	1000		104	80-120%			
Bromodichloromethane	1140	25.0	50.0	ug/kg we	t 50	1000		114	80-120%			
Bromoform	1340	50.0	100	ug/kg we	t 50	1000		134	80-120%			Q-5
Bromomethane	1670	500	500	ug/kg we	t 50	1000		167	80-120%			Q-5
2-Butanone (MEK)	1740	250	500	ug/kg we	t 50	2000		87	80-120%			
n-Butylbenzene	836	25.0	50.0	ug/kg we	t 50	1000		84	80-120%			
sec-Butylbenzene	848	25.0	50.0	ug/kg we	t 50	1000		85	80-120%			
tert-Butylbenzene	796	25.0	50.0	ug/kg we	t 50	1000		80	80-120%			
Carbon disulfide	1400	250	500	ug/kg we	t 50	1000		140	80-120%			Q-5
Carbon tetrachloride	1260	25.0	50.0	ug/kg we	t 50	1000		126	80-120%			Q-5
Chlorobenzene	964	12.5	25.0	ug/kg we	t 50	1000		96	80-120%			
Chloroethane	1550	250	500	ug/kg we	t 50	1000		155	80-120%			Q-5
Chloroform	1080	25.0	50.0	ug/kg we	t 50	1000		108	80-120%			
Chloromethane	1080	125	250	ug/kg we	t 50	1000		108	80-120%			
2-Chlorotoluene	893	25.0	50.0	ug/kg we	t 50	1000		89	80-120%			
4-Chlorotoluene	862	25.0	50.0	ug/kg we		1000		86	80-120%			
Dibromochloromethane	1160	50.0	100	ug/kg we	t 50	1000		116	80-120%			
1,2-Dibromo-3-chloropropane	878	125	250	ug/kg we	t 50	1000		88	80-120%			
1,2-Dibromoethane (EDB)	972	25.0	50.0	ug/kg we	t 50	1000		97	80-120%			
Dibromomethane	1110	25.0	50.0	ug/kg we		1000		111	80-120%			
1,2-Dichlorobenzene	950	12.5	25.0	ug/kg we		1000		95	80-120%			
1,3-Dichlorobenzene	964	12.5	25.0	ug/kg we		1000		96	80-120%			
1,4-Dichlorobenzene	952	12.5	25.0	ug/kg we		1000		95	80-120%			
Dichlorodifluoromethane	1230	50.0	100	ug/kg we		1000		123	80-120%			Q-56, ICV-0
1.1-Dichloroethane	1090	12.5	25.0	ug/kg we		1000		109	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22K0725 - EPA 5035A Soil LCS (22K0725-BS1) Prepared: 11/18/22 10:21 Analyzed: 11/18/22 13:47 1000 1,2-Dichloroethane (EDC) 1110 12.5 25.0 ug/kg wet 50 111 80-120% Q-56 1,1-Dichloroethene 1430 12.5 25.0 ug/kg wet 50 1000 143 80-120% ------1000 cis-1.2-Dichloroethene 1000 12.5 25.0 ug/kg wet 50 100 80-120% trans-1,2-Dichloroethene 1150 12.5 25.0 ug/kg wet 50 1000 115 80-120% 1000 1000 12.5 25.0 50 100 80-120% 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane 952 25.0 50.0 ug/kg wet 50 1000 95 80-120% 80-120% 2,2-Dichloropropane 1130 25.0 50.0 ug/kg wet 50 1000 113 959 1000 1,1-Dichloropropene 25.0 50.0 ug/kg wet 50 96 80-120% 25.0 50.0 1000 cis-1,3-Dichloropropene 962 ug/kg wet 50 96 80-120% trans-1,3-Dichloropropene 1030 25.0 50.0 ug/kg wet 50 1000 103 80-120% Ethylbenzene 1000 92 916 25.0 50 80-120% 12.5 ug/kg wet 50.0 100 99 Hexachlorobutadiene 986 ug/kg wet 50 1000 80-120% 1540 500 500 2000 77 O-55 2-Hexanone ug/kg wet 50 80-120% ---Isopropylbenzene 869 25.0 50.0 ug/kg wet 50 1000 87 80-120% 821 50.0 50 1000 82 80-120% 4-Isopropyltoluene 25.0 ug/kg wet Methylene chloride 1140 250 500 ug/kg wet 50 1000 114 80-120% 250 500 2000 4-Methyl-2-pentanone (MiBK) 1610 ug/kg wet 50 81 80-120% Methyl tert-butyl ether (MTBE) 1050 25.0 50.0 50 1000 105 80-120% ug/kg wet Q-55 Naphthalene 767 100 100 50 1000 77 80-120% ug/kg wet --n-Propylbenzene 834 12.5 25.0 ug/kg wet 50 1000 83 80-120% 896 25.0 50.0 50 1000 90 80-120% Styrene ug/kg wet 1,1,1,2-Tetrachloroethane 1130 12.5 25.0 ug/kg wet 50 1000 113 80-120% 1,1,2,2-Tetrachloroethane 866 25.0 50.0 ug/kg wet 50 1000 87 80-120% Tetrachloroethene (PCE) 1050 12.5 25.0 ug/kg wet 50 1000 105 80-120% Toluene 932 25.0 50.0 ug/kg wet 1000 93 50 80-120% ------1,2,3-Trichlorobenzene 958 125 250 ug/kg wet 50 1000 96 80-120% 1,2,4-Trichlorobenzene 894 125 250 50 1000 89 80-120% ug/kg wet 1,1,1-Trichloroethane 1100 12.5 25.0 ug/kg wet 50 1000 110 80-120% 1.1.2-Trichloroethane 993 12.5 25.0 50 1000 99 80-120% ug/kg wet Trichloroethene (TCE) 1100 12.5 25.0 ug/kg wet 50 1000 110 80-120% Trichlorofluoromethane 1410 50.0 100 50 1000 141 80-120% Q-56 ug/kg wet 1,2,3-Trichloropropane 970 25.0 50.0 ug/kg wet 50 1000 97 80-120% 1,2,4-Trimethylbenzene 896 25.0 50.0 ug/kg wet 50 1000 90 80-120%

Apex Laboratories

1,3,5-Trimethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

80-120%

90

895

25.0

50.0

ug/kg wet

50

1000

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0725 - EPA 5035A							So	il				
LCS (22K0725-BS1)			Prepared	l: 11/18/22 1	0:21 Ana	lyzed: 11/18	/22 13:47					
Vinyl chloride	1340	12.5	25.0	ug/kg we	t 50	1000		134	80-120%			Q-5
m,p-Xylene	1810	25.0	50.0	ug/kg we	t 50	2000		91	80-120%			
o-Xylene	814	12.5	25.0	ug/kg we	t 50	1000		81	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			93 %	79-	120 %		"					
Duplicate (22K0725-DUP1)			Prepared	l: 11/08/22 1	2:35 Ana	lyzed: 11/18	/22 16:29					
OC Source Sample: Non-SDG (A2	K0385-02)											
Acetone	ND	933	1870	ug/kg dry	y 50		ND				30%	
Acrylonitrile	ND	93.3	187	ug/kg dry	y 50		ND				30%	
Benzene	ND	9.33	18.7	ug/kg dry	y 50		ND				30%	
Bromobenzene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
Bromochloromethane	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Bromodichloromethane	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Bromoform	ND	93.3	187	ug/kg dry	y 50		ND				30%	
Bromomethane	ND	933	933	ug/kg dry	y 50		ND				30%	
2-Butanone (MEK)	ND	467	933	ug/kg dry	y 50		ND				30%	
n-Butylbenzene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
sec-Butylbenzene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
tert-Butylbenzene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Carbon disulfide	ND	467	933	ug/kg dry	y 50		ND				30%	
Carbon tetrachloride	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Chlorobenzene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
Chloroethane	ND	467	933	ug/kg dry	y 50		ND				30%	
Chloroform	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Chloromethane	ND	233	467	ug/kg dry	y 50		ND				30%	
2-Chlorotoluene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
4-Chlorotoluene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Dibromochloromethane	ND	93.3	187	ug/kg dry	y 50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	233	467	ug/kg dry	y 50		ND				30%	
1,2-Dibromoethane (EDB)	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Dibromomethane	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
1,2-Dichlorobenzene	ND	23.3	46.7	ug/kg dry			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0725 - EPA 5035A							Soi	l				
Duplicate (22K0725-DUP1)			Prepared	: 11/08/22 1	2:35 Anal	yzed: 11/18/	/22 16:29					
QC Source Sample: Non-SDG (A2	K0385-02)											
1,3-Dichlorobenzene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
1,4-Dichlorobenzene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
Dichlorodifluoromethane	ND	93.3	187	ug/kg dry	y 50		ND				30%	
,1-Dichloroethane	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
,2-Dichloroethane (EDC)	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
,1-Dichloroethene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
ris-1,2-Dichloroethene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
rans-1,2-Dichloroethene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
,2-Dichloropropane	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
,3-Dichloropropane	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
,2-Dichloropropane	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
,1-Dichloropropene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
is-1,3-Dichloropropene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
rans-1,3-Dichloropropene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
thylbenzene	ND	23.3	46.7	ug/kg dry	y 50		ND				30%	
Iexachlorobutadiene	ND	93.3	187	ug/kg dry	y 50		ND				30%	
-Hexanone	ND	933	933	ug/kg dry	y 50		ND				30%	
sopropylbenzene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
l-Isopropyltoluene	ND	46.7	93.3	ug/kg dry	y 50		ND				30%	
Methylene chloride	ND	467	933	ug/kg dry			ND				30%	
-Methyl-2-pentanone (MiBK)	ND	467	933	ug/kg dry	y 50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	46.7	93.3	ug/kg dry			ND				30%	
Vaphthalene	ND	187	187	ug/kg dry	y 50		ND				30%	
-Propylbenzene	ND	23.3	46.7	ug/kg dry			ND				30%	
ltyrene	ND	46.7	93.3	ug/kg dry			ND				30%	
,1,1,2-Tetrachloroethane	ND	23.3	46.7	ug/kg dry			ND				30%	
,1,2,2-Tetrachloroethane	ND	46.7	93.3	ug/kg dry			ND				30%	
etrachloroethene (PCE)	ND	23.3	46.7	ug/kg dry			ND				30%	
oluene	ND	46.7	93.3	ug/kg dry			ND				30%	
,2,3-Trichlorobenzene	ND	233	467	ug/kg dry			ND				30%	
,2,4-Trichlorobenzene	ND	233	467	ug/kg dry			ND				30%	
,1,1-Trichloroethane	ND	23.3	46.7	ug/kg dry			ND				30%	
,1,2-Trichloroethane	ND	23.3	46.7	ug/kg dry			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0725 - EPA 5035A							Soi	il				
Duplicate (22K0725-DUP1)			Prepare	d: 11/08/22 1	2:35 Ana	lyzed: 11/18	/22 16:29					
QC Source Sample: Non-SDG (A2	K0385-02)											
Trichloroethene (TCE)	ND	23.3	46.7	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	93.3	187	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	46.7	93.3	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	86.8	46.7	93.3	ug/kg dr	y 50		84.9			2	30%	
1,3,5-Trimethylbenzene	ND	46.7	93.3	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	23.3	46.7	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	46.7	93.3	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	23.3	46.7	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					
QC Source Sample: Non-SDG (A2 5035A/8260D	K0532-35)											
Acetone	4530	1040	2080	ug/kg dr	y 100	4160	ND	109	36-164%			
Acrylonitrile	2660	1040	208	ug/kg dr	•	2080	ND	100	65-134%			
Benzene	2290	10.4	20.8	ug/kg dr		2080	134	104	77-121%			
Bromobenzene	2020	25.9	51.9	ug/kg dr	,	2080	ND	97	78-121%			
Bromochloromethane	2170	51.9	104	ug/kg dr		2080	ND	105	78-125%			
Bromodichloromethane	2380	51.9	104	ug/kg dr		2080	ND	114	75-127%			
Bromoform	2830	104	208	ug/kg dr		2080	ND	136	67-132%			Q-5
Bromomethane	3480	1040	1040	ug/kg dr		2080	ND	167	53-143%			Q-5
2-Butanone (MEK)	4480	519	1040	ug/kg dr		4160	ND	94	51-148%			
n-Butylbenzene	2960	51.9	104	ug/kg dr		2080	394	123	70-128%			
sec-Butylbenzene	2210	51.9	104	ug/kg dr		2080	139	99	73-126%			
tert-Butylbenzene	1910	51.9	104	ug/kg dr		2080	ND	92	73-125%			
Carbon disulfide	2940	519	1040	ug/kg dr	y 100	2080	ND	141	63-132%			Q-54
Carbon tetrachloride	2750	51.9	104	ug/kg dr	y 100	2080	ND	132	70-135%			Q-54
Chlandana.	2070	25.9	51.9	ug/kg dr		2080	ND	100	79-120%			
Chlorobenzene	2070											
Chloroethane	2510	519	1040	ug/kg dr	y 100	2080	ND	121	59-139%			Q-54
				ug/kg dr ug/kg dr	,	2080 2080	ND ND	121 112	59-139% 78-123%			Q-54

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Sevenson Environmental Services, Inc.</u> Project: <u>Gasco -- Filter Bags</u>

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22K0725 - EPA 5035A							So	il					
Matrix Spike (22K0725-MS1)			Prepared	l: 11/11/22 0	9:40 Ana	lyzed: 11/18/	/22 20:59						
QC Source Sample: Non-SDG (A2)	K0532-35)												
2-Chlorotoluene	2120	51.9	104	ug/kg dry	100	2080	ND	102	75-122%				
4-Chlorotoluene	1940	51.9	104	ug/kg dry	100	2080	ND	93	72-124%				
Dibromochloromethane	2410	104	208	ug/kg dry	100	2080	ND	116	74-126%				
1,2-Dibromo-3-chloropropane	2090	259	519	ug/kg dry	100	2080	ND	101	61-132%				
1,2-Dibromoethane (EDB)	2110	51.9	104	ug/kg dry	100	2080	ND	102	78-122%				
Dibromomethane	2340	51.9	104	ug/kg dry	100	2080	ND	113	78-125%				
1,2-Dichlorobenzene	2040	25.9	51.9	ug/kg dry	100	2080	ND	98	78-121%				
1,3-Dichlorobenzene	2120	25.9	51.9	ug/kg dry	100	2080	ND	102	77-121%				
1,4-Dichlorobenzene	2040	25.9	51.9	ug/kg dry	100	2080	ND	98	75-120%				
Dichlorodifluoromethane	2800	104	208	ug/kg dry	100	2080	ND	135	29-149%			ICV-01 Q-54	
1,1-Dichloroethane	2230	25.9	51.9	ug/kg dry	100	2080	ND	107	76-125%				
1,2-Dichloroethane (EDC)	2300	25.9	51.9	ug/kg dry	100	2080	ND	111	73-128%				
1,1-Dichloroethene	3080	25.9	51.9	ug/kg dry	100	2080	ND	148	70-131%			Q-54	
cis-1,2-Dichloroethene	2170	25.9	51.9	ug/kg dry	100	2080	ND	104	77-123%				
trans-1,2-Dichloroethene	2380	25.9	51.9	ug/kg dry	100	2080	ND	115	74-125%				
1,2-Dichloropropane	2190	25.9	51.9	ug/kg dry	100	2080	ND	105	76-123%				
1,3-Dichloropropane	2000	51.9	104	ug/kg dry		2080	ND	96	77-121%				
2,2-Dichloropropane	2230	51.9	104	ug/kg dry		2080	ND	108	67-133%				
1,1-Dichloropropene	2190	51.9	104	ug/kg dry		2080	ND	105	76-125%				
cis-1,3-Dichloropropene	1980	51.9	104	ug/kg dry		2080	ND	95	74-126%				
trans-1,3-Dichloropropene	2090	51.9	104	ug/kg dry		2080	ND	100	71-130%				
Ethylbenzene	5470	25.9	51.9	ug/kg dry		2080	3230	108	76-122%				
Hexachlorobutadiene	2370	104	208	ug/kg dry		2080	ND	114	61-135%				
2-Hexanone	3470	1040	1040	ug/kg dry		4160	ND	83	53-145%			Q-5	
Isopropylbenzene	2460	51.9	104	ug/kg dry		2080	324	103	68-134%				
4-Isopropyltoluene	2320	51.9	104	ug/kg dry		2080	ND	112	73-127%				
Methylene chloride	2280	519	1040	ug/kg dry		2080	ND	110	70-128%				
4-Methyl-2-pentanone (MiBK)	3540	519	1040	ug/kg dry		4160	ND	85	65-135%				
Methyl tert-butyl ether (MTBE)	2000	51.9	104	ug/kg dry		2080	ND	96	73-125%				
Naphthalene	3100	208	208	ug/kg dry		2080	958	103	62-129%			Q-5	
n-Propylbenzene	3470	25.9	51.9	ug/kg dry		2080	1330	103	73-125%				
Styrene	2030	51.9	104	ug/kg dry		2080	ND	97	76-124%				
1,1,1,2-Tetrachloroethane	2390	25.9	51.9	ug/kg dry		2080	ND	115	78-12 4 %				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Ga

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22K0725 - EPA 5035A Soil Matrix Spike (22K0725-MS1) Prepared: 11/11/22 09:40 Analyzed: 11/18/22 20:59 QC Source Sample: Non-SDG (A2K0532-35) 1,1,2,2-Tetrachloroethane 1790 51.9 104 ug/kg dry 100 2080 ND 86 70-124% 25.9 51.9 2080 Tetrachloroethene (PCE) 2270 ug/kg dry 100 ND 109 73-128% 2080 77-121% Toluene 6270 51.9 104 ug/kg dry 100 4190 100 1,2,3-Trichlorobenzene 2140 259 519 ug/kg dry 100 2080 ND 103 66-130% 1,2,4-Trichlorobenzene 2200 259 519 ug/kg dry 100 2080 ND 106 67-129% 1,1,1-Trichloroethane 25.9 51.9 2080 ND 2460 ug/kg dry 100 118 73-130% 1,1,2-Trichloroethane 2100 25.9 51.9 ug/kg dry 100 2080 ND 99 78-121% Trichloroethene (TCE) 2530 25.9 51.9 2080 ND 122 77-123% ug/kg dry 100 Q-54b Trichlorofluoromethane 1730 104 208 ug/kg dry 100 2080 ND 83 62-140% 1,2,3-Trichloropropane 2040 51.9 104 ug/kg dry 100 2080 ND 98 73-125% 1,2,4-Trimethylbenzene 11500 51.9 104 ug/kg dry 100 2080 8740 132 75-123% Q-03 104 1,3,5-Trimethylbenzene 51.9 100 2080 2490 73-124% 4860 ug/kg dry 114 2960 25.9 2080 Q-54 Vinyl chloride 51.9 ug/kg dry 100 ND 142 56-135% 19700 77-124% m,p-Xylene 51.9 104 100 4160 14900 114 ug/kg dry 25.9 51.9 4590 77-123% o-Xylene 6850 ug/kg dry 100 Surr: 1,4-Difluorobenzene (Surr) 105 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 98 % 80-120 % 4-Bromofluorobenzene (Surr) 96% 79-120 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22K0775 - EPA 5035A Soil Blank (22K0775-BLK1) Prepared: 11/21/22 10:00 Analyzed: 11/21/22 12:46 5035A/8260D ND 667 ug/kg wet 50 Q-30 Acetone ND 66.7 50 Acrylonitrile 66.7 ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 50 ug/kg wet ND Bromodichloromethane 16.7 33.3 ug/kg wet 50 Bromoform ND 33.3 ug/kg wet 50 66.7 333 333 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 333 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 tert-Butylbenzene 16.7 50 ug/kg wet ---Carbon disulfide ND 167 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 167 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 ICV-02 Dichlorodifluoromethane ND 66.7 66.7 ug/kg wet 50 ------ND 1,1-Dichloroethane 8.33 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 8.33 16.7 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 22K0775 - EPA 5035A Soil Blank (22K0775-BLK1) Prepared: 11/21/22 10:00 Analyzed: 11/21/22 12:46 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane 2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 333 2-Hexanone ND 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 4-Isopropyltoluene ug/kg wet 333 Methylene chloride ND 167 ug/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 333 333 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 ND 33.3 66.7 Naphthalene ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 ug/kg wet 50 1.1.2.2-Tetrachloroethane ND 16.7 33.3 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 50 ug/kg wet 16.7 ND 1,1,2-Trichloroethane 8.33 50 ug/kg wet ------Trichloroethene (TCE) ND 8.33 16.7 ug/kg wet 50 Trichlorofluoromethane ND 66.7 66.7 50 Q-52 ug/kg wet ---1,2,3-Trichloropropane ND 16.7 33.3 ug/kg wet 50 1,2,4-Trimethylbenzene ND 16.7 33.3 50 ug/kg wet 1,3,5-Trimethylbenzene ND 16.7 33.3 ug/kg wet 50 ND 8.33 Vinyl chloride 16.7 ug/kg wet 50

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

Darem Jum

ND

ND

16.7

8.33

33.3

16.7

Recovery: 101 %

ug/kg wet

ug/kg wet

Limits: 80-120 %

50

50

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0775 - EPA 5035A							Soi	il				
Blank (22K0775-BLK1)			Prepared	d: 11/21/22 1	0:00 Ana	lyzed: 11/21/	/22 12:46					
Surr: Toluene-d8 (Surr)		Reco	overy: 94 %	Limits: 80-	120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	79-	120 %		"					
LCS (22K0775-BS1)			Prepared	d: 11/21/22 1	0:00 Ana	lyzed: 11/21	/22 11:56					Q-50
5035A/8260D												
Acetone	1240	1000	1000	ug/kg we	t 50	2000		62	80-120%			Q-3
Acrylonitrile	734	100	100	ug/kg we	t 50	1000		73	80-120%			Q-5
Benzene	958	5.00	10.0	ug/kg we	t 50	1000		96	80-120%			
Bromobenzene	972	12.5	25.0	ug/kg we	t 50	1000		97	80-120%			
Bromochloromethane	816	25.0	50.0	ug/kg we	t 50	1000		82	80-120%			
Bromodichloromethane	880	25.0	50.0	ug/kg we	t 50	1000		88	80-120%			
Bromoform	1010	50.0	100	ug/kg we	t 50	1000		101	80-120%			
Bromomethane	880	500	500	ug/kg we	t 50	1000		88	80-120%			
2-Butanone (MEK)	1430	500	500	ug/kg we	t 50	2000		72	80-120%			Q-5
n-Butylbenzene	922	25.0	50.0	ug/kg we	t 50	1000		92	80-120%			
sec-Butylbenzene	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
tert-Butylbenzene	948	25.0	50.0	ug/kg we	t 50	1000		95	80-120%			
Carbon disulfide	1120	250	500	ug/kg we	t 50	1000		112	80-120%			
Carbon tetrachloride	1020	25.0	50.0	ug/kg we	t 50	1000		102	80-120%			
Chlorobenzene	946	12.5	25.0	ug/kg we	t 50	1000		95	80-120%			
Chloroethane	804	250	500	ug/kg we	t 50	1000		80	80-120%			
Chloroform	936	25.0	50.0	ug/kg we	t 50	1000		94	80-120%			
Chloromethane	853	125	250	ug/kg we	t 50	1000		85	80-120%			
2-Chlorotoluene	971	25.0	50.0	ug/kg we	t 50	1000		97	80-120%			
4-Chlorotoluene	949	25.0	50.0	ug/kg we	t 50	1000		95	80-120%			
Dibromochloromethane	961	50.0	100	ug/kg we	t 50	1000		96	80-120%			
1,2-Dibromo-3-chloropropane	802	125	250	ug/kg we	t 50	1000		80	80-120%			
1,2-Dibromoethane (EDB)	982	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Dibromomethane	907	25.0	50.0	ug/kg we	t 50	1000		91	80-120%			
1,2-Dichlorobenzene	928	12.5	25.0	ug/kg we	t 50	1000		93	80-120%			
1,3-Dichlorobenzene	970	12.5	25.0	ug/kg we	t 50	1000		97	80-120%			
1,4-Dichlorobenzene	924	12.5	25.0	ug/kg we	t 50	1000		92	80-120%			
Dichlorodifluoromethane	1200	100	100	ug/kg we	t 50	1000		120	80-120%			ICV-0
1,1-Dichloroethane	912	12.5	25.0	ug/kg we		1000		91	80-120%			

Apex Laboratories

Analyte

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Reporting Detection Spike Source % REC **RPD** % REC Limits RPD Result Ĺimit Units Dilution Amount Result Limit Notes Limit

7 that y to	11000011	Limit						, 0 1625			2	
Batch 22K0775 - EPA 5035A							So	il				
LCS (22K0775-BS1)	Prepared: 11/21/22 10:00 Analyzed: 11/21/22 11:56											Q-50
1,2-Dichloroethane (EDC)	872	12.5	25.0	ug/kg wet	50	1000		87	80-120%			
1,1-Dichloroethene	1210	12.5	25.0	ug/kg wet	50	1000		121	80-120%			Q-56
cis-1,2-Dichloroethene	918	12.5	25.0	ug/kg wet	50	1000		92	80-120%			
trans-1,2-Dichloroethene	892	12.5	25.0	ug/kg wet	50	1000		89	80-120%			
1,2-Dichloropropane	897	12.5	25.0	ug/kg wet	50	1000		90	80-120%			
1,3-Dichloropropane	900	25.0	50.0	ug/kg wet	50	1000		90	80-120%			
2,2-Dichloropropane	1040	25.0	50.0	ug/kg wet	50	1000		104	80-120%			
1,1-Dichloropropene	996	25.0	50.0	ug/kg wet	50	1000		100	80-120%			
cis-1,3-Dichloropropene	1040	25.0	50.0	ug/kg wet	50	1000		104	80-120%			
trans-1,3-Dichloropropene	889	25.0	50.0	ug/kg wet	50	1000		89	80-120%			
Ethylbenzene	980	12.5	25.0	ug/kg wet	50	1000		98	80-120%			
Hexachlorobutadiene	974	50.0	100	ug/kg wet	50	1000		97	80-120%			
2-Hexanone	1550	500	500	ug/kg wet	50	2000		78	80-120%			Q-55
Isopropylbenzene	951	25.0	50.0	ug/kg wet	50	1000		95	80-120%			
4-Isopropyltoluene	915	25.0	50.0	ug/kg wet	50	1000		92	80-120%			
Methylene chloride	815	250	500	ug/kg wet	50	1000		82	80-120%			
4-Methyl-2-pentanone (MiBK)	1580	500	500	ug/kg wet	50	2000		79	80-120%			Q-55
Methyl tert-butyl ether (MTBE)	989	25.0	50.0	ug/kg wet	50	1000		99	80-120%			
Naphthalene	872	50.0	100	ug/kg wet	50	1000		87	80-120%			
n-Propylbenzene	900	12.5	25.0	ug/kg wet	50	1000		90	80-120%			
Styrene	886	25.0	50.0	ug/kg wet	50	1000		89	80-120%			
1,1,1,2-Tetrachloroethane	1070	12.5	25.0	ug/kg wet	50	1000		107	80-120%			
1,1,2,2-Tetrachloroethane	800	25.0	50.0	ug/kg wet	50	1000		80	80-120%			
Tetrachloroethene (PCE)	1120	12.5	25.0	ug/kg wet	50	1000		112	80-120%			
Toluene	949	25.0	50.0	ug/kg wet	50	1000		95	80-120%			
1,2,3-Trichlorobenzene	980	125	250	ug/kg wet	50	1000		98	80-120%			
1,2,4-Trichlorobenzene	1010	125	250	ug/kg wet	50	1000		101	80-120%			
1,1,1-Trichloroethane	1000	12.5	25.0	ug/kg wet	50	1000		100	80-120%			
1,1,2-Trichloroethane	919	12.5	25.0	ug/kg wet	50	1000		92	80-120%			
Trichloroethene (TCE)	1040	12.5	25.0	ug/kg wet	50	1000		104	80-120%			
Trichlorofluoromethane	148	100	100	ug/kg wet	50	1000		15	80-120%			Q-52
1,2,3-Trichloropropane	864	25.0	50.0	ug/kg wet	50	1000		86	80-120%			
1,2,4-Trimethylbenzene	904	25.0	50.0	ug/kg wet	50	1000		90	80-120%			
1,3,5-Trimethylbenzene	981	25.0	50.0	ug/kg wet	50	1000		98	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0775 - EPA 5035A							So	il				
LCS (22K0775-BS1)			Prepared	d: 11/21/22 1	0:00 Ana	lyzed: 11/21	/22 11:56					Q-50
Vinyl chloride	968	12.5	25.0	ug/kg we	t 50	1000		97	80-120%			
m,p-Xylene	1840	25.0	50.0	ug/kg we	t 50	2000		92	80-120%			
o-Xylene	927	12.5	25.0	ug/kg we	t 50	1000		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			105 %	79-	120 %		"					
Duplicate (22K0775-DUP1)			Prepared	d: 11/17/22 1	9:30 Ana	lyzed: 11/21	/22 15:19					V-15
OC Source Sample: Non-SDG (A2	2K0693-01)											
Acetone	ND	4060	4060	ug/kg dry	50		ND				30%	Q-3
Acrylonitrile	ND	406	406	ug/kg dry	50		ND				30%	
Benzene	ND	20.3	40.6	ug/kg dry	50		ND				30%	
Bromobenzene	ND	50.8	102	ug/kg dry	50		ND				30%	
Bromochloromethane	ND	102	203	ug/kg dry	50		ND				30%	
Bromodichloromethane	ND	102	203	ug/kg dry	50		ND				30%	
Bromoform	ND	203	406	ug/kg dry	50		ND				30%	
Bromomethane	ND	2030	2030	ug/kg dry	50		ND				30%	
2-Butanone (MEK)	ND	2030	2030	ug/kg dry	50		ND				30%	
n-Butylbenzene	ND	102	203	ug/kg dry	50		ND				30%	
sec-Butylbenzene	ND	102	203	ug/kg dry	50		ND				30%	
tert-Butylbenzene	ND	102	203	ug/kg dry	50		ND				30%	
Carbon disulfide	ND	1020	2030	ug/kg dry	50		ND				30%	
Carbon tetrachloride	ND	102	203	ug/kg dry	50		ND				30%	
Chlorobenzene	ND	50.8	102	ug/kg dry	50		ND				30%	
Chloroethane	ND	1020	2030	ug/kg dry	50		ND				30%	
Chloroform	ND	102	203	ug/kg dry	50		ND				30%	
Chloromethane	ND	508	1020	ug/kg dry	50		ND				30%	
2-Chlorotoluene	ND	102	203	ug/kg dry	50		ND				30%	
4-Chlorotoluene	ND	102	203	ug/kg dry	50		ND				30%	
Dibromochloromethane	ND	203	406	ug/kg dry	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	508	1020	ug/kg dry	50		ND				30%	
1,2-Dibromoethane (EDB)	ND	102	203	ug/kg dry	50		ND				30%	
Dibromomethane	ND	102	203	ug/kg dry			ND				30%	
1,2-Dichlorobenzene	ND	50.8	102	ug/kg dry			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22K0775 - EPA 5035A Soil Duplicate (22K0775-DUP1) Prepared: 11/17/22 19:30 Analyzed: 11/21/22 15:19 V-15 QC Source Sample: Non-SDG (A2K0693-01) 1,3-Dichlorobenzene ND 50.8 102 ug/kg dry 50 ND 30% ND 50.8 102 1,4-Dichlorobenzene ug/kg dry 50 ND 30% ICV-02 Dichlorodifluoromethane ND 406 406 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 50.8 102 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 50.8 102 ug/kg dry 50 ND 30% ------ND 102 1,1-Dichloroethene 50.8 ug/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 50.8 102 50 ND 30% ug/kg dry trans-1,2-Dichloroethene ND 102 ND 30% 50.8 ug/kg dry 50 1,2-Dichloropropane ND 50.8 102 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 102 203 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 102 203 ug/kg dry 50 ND 30% 102 ND 203 30% 1,1-Dichloropropene ug/kg dry 50 ND cis-1,3-Dichloropropene ND 102 203 ug/kg dry 50 ND 30% ND 102 203 30% trans-1,3-Dichloropropene ug/kg dry 50 ND 102 Ethylbenzene ND 50.8 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 203 406 ug/kg dry 50 ND ___ 30% 2-Hexanone ND 2030 2030 ug/kg dry 50 ND 30% ND 102 203 30% Isopropylbenzene 50 ND ug/kg dry 102 4-Isopropyltoluene ND 203 ug/kg dry 50 ND 30% ND 1020 2030 Methylene chloride 50 ND 30% ug/kg dry 4-Methyl-2-pentanone (MiBK) ND 2030 2030 ug/kg dry 50 ND 30% 102 Methyl tert-butyl ether (MTBE) ND 203 ug/kg dry 50 ND ___ ---30% Naphthalene 11200 203 406 ug/kg dry 50 11600 4 30% ND 50.8 102 ND 30% n-Propylbenzene ug/kg dry 50 ND 102 203 30% Styrene ug/kg dry 50 ND ND 1,1,1,2-Tetrachloroethane 50.8 102 ND 30% ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 102 203 ND 30% ug/kg dry 50 Tetrachloroethene (PCE) ND 50.8 102 ug/kg dry 50 ND 30% ND 102 203 ug/kg dry 50 ND 30% 1,2,3-Trichlorobenzene ND 508 1020 ND 30% ug/kg dry 50 1,2,4-Trichlorobenzene ND 508 1020 ug/kg dry 50 ND 30% 50.8 102 1,1,1-Trichloroethane ND 50 ND 30% ug/kg dry 1,1,2-Trichloroethane ND 50.8 102 ug/kg dry 50 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0775 - EPA 5035A							Soi	I				
Duplicate (22K0775-DUP1)			Prepared	d: 11/17/22 1	9:30 Ana	yzed: 11/21/	/22 15:19					V-15
QC Source Sample: Non-SDG (A2	K0693-01)											
Trichloroethene (TCE)	ND	50.8	102	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	406	406	ug/kg dr	y 50		ND				30%	Q-:
1,2,3-Trichloropropane	ND	102	203	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	102	203	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	102	203	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND	50.8	102	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	102	203	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	50.8	102	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			93 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	79-	120 %		"					
QC Source Sample: Non-SDG (A2		1120	1120	ua/Ira du	. 50		ND				200/	0
Acetone	ND	1130	1130	ug/kg dr	y 50		ND				30%	Q-3
Acrylonitrile	ND	113	113	ug/kg dr	y 50		ND				30%	
Benzene	582	5.67	11.3	ug/kg dr	y 50		609			5	30%	
Bromobenzene	ND	14.2	28.4	ug/kg dr	y 50		ND				30%	
Bromochloromethane	ND	28.4	56.7	ug/kg dr	y 50		ND				30%	
Bromodichloromethane	ND	28.4	56.7	ug/kg dr	y 50		ND				30%	
Bromoform	ND	56.7	113	ug/kg dr	y 50		ND				30%	
Bromomethane	ND	567	567	ug/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND	567	567	ug/kg dr	y 50		ND				30%	
n-Butylbenzene	ND	28.4	56.7	ug/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND	28.4	56.7	ug/kg dr	y 50		ND				30%	
tert-Butylbenzene	ND	28.4	56.7	ug/kg dr	y 50		ND				30%	
Carbon disulfide	ND	284	567	ug/kg dr			ND				30%	
Carbon tetrachloride	ND	28.4	56.7	ug/kg dr	y 50		ND				30%	
Chlorobenzene	ND	14.2	28.4	ug/kg dr	y 50		ND				30%	
Chloroethane	ND	284	567	ug/kg dr	y 50		ND				30%	
Chloroform	ND	28.4	56.7	ug/kg dr			ND				30%	
Chloromethane	ND	142	284	ug/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND	28.4	56.7	ug/kg dr	y 50		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22K0775 - EPA 5035A Soil Duplicate (22K0775-DUP2) Prepared: 11/17/22 09:50 Analyzed: 11/21/22 17:01 QC Source Sample: Non-SDG (A2K0704-58) 4-Chlorotoluene ND 28.4 56.7 ug/kg dry 50 ND 30% ND 56.7 Dibromochloromethane 113 ug/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 142 284 ug/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 28.4 56.7 ug/kg dry 50 ND 30% Dibromomethane ND 28.4 56.7 ug/kg dry 50 ND 30% ---ND 28.4 1,2-Dichlorobenzene 14.2 ug/kg dry 50 ND 30% 1,3-Dichlorobenzene ND 14.2 28.4 50 ND 30% ug/kg dry ND 14.2 28.4 ND 30% 1,4-Dichlorobenzene ug/kg dry 50 ICV-02 Dichlorodifluoromethane ND 113 113 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 14.2 28.4 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 14.2 28.4 ug/kg dry 50 ND 30% 1,1-Dichloroethene ND 14.2 28.4 30% ug/kg dry 50 ND cis-1,2-Dichloroethene ND 14.2 28.4 ug/kg dry 50 ND 30% ND 14.2 28.4 30% trans-1,2-Dichloroethene ug/kg dry 50 ND 14.2 28.4 1,2-Dichloropropane ND ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 28.4 56.7 ug/kg dry 50 ND ___ 30% 2,2-Dichloropropane ND 28.4 56.7 ug/kg dry 50 ND 30% ND 28.4 30% 1,1-Dichloropropene 56.7 50 ND ug/kg dry ---ND ND cis-1,3-Dichloropropene 28.4 56.7 ug/kg dry 50 30% trans-1,3-Dichloropropene ND 28.4 56.7 50 ND 30% ug/kg dry 3 Ethylbenzene 44.3 14.2 28.4 ug/kg dry 50 45.4 30% Hexachlorobutadiene ND 56.7 113 ug/kg dry 50 ND ---30% 2-Hexanone ND 567 567 ug/kg dry 50 ND 30% ND 56.7 ND 30% Isopropylbenzene 28.4 ug/kg dry 50 ND 28.4 56.7 30% 4-Isopropyltoluene ug/kg dry 50 ND ND 284 567 ND 30% Methylene chloride ug/kg dry 50 4-Methyl-2-pentanone (MiBK) ND 567 567 ND 30% ug/kg dry 50 Methyl tert-butyl ether (MTBE) ND 28.4 56.7 ug/kg dry 50 ND 30% Naphthalene ND 56.7 113 ug/kg dry 50 ND 30% ND 14.2 28.4 ND 30% n-Propylbenzene ug/kg dry 50 Styrene ND 28.4 56.7 ug/kg dry 50 ND 30% ND 14.2 28.4 50 ND 30% 1.1.1.2-Tetrachloroethane ug/kg dry 1,1,2,2-Tetrachloroethane ND 28.4 56.7 ug/kg dry 50 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 22K0775 - EPA 5035A Soil Duplicate (22K0775-DUP2) Prepared: 11/17/22 09:50 Analyzed: 11/21/22 17:01 QC Source Sample: Non-SDG (A2K0704-58) Tetrachloroethene (PCE) ND 14.2 28.4 ug/kg dry 50 ND 30% 28.4 Toluene 56.2 56.7 ug/kg dry 50 59.0 5 30% 142 1,2,3-Trichlorobenzene ND 284 ug/kg dry 50 ND 30% 1,2,4-Trichlorobenzene ND 142 284 ug/kg dry 50 ND 30% 1,1,1-Trichloroethane ND 14.2 28.4 ug/kg dry 50 ND 30% 30% 1,1,2-Trichloroethane ND 14.2 28.4 ug/kg dry 50 ND 14.2 Trichloroethene (TCE) ND 28.4 ug/kg dry 50 ND 30% Q-52 Trichlorofluoromethane ND 113 ND 30% 113 ug/kg dry 50 28.4 1,2,3-Trichloropropane ND 56.7 ug/kg dry 50 ND 30% 1,2,4-Trimethylbenzene ND 28.4 56.7 ug/kg dry 50 ND 30% 1,3,5-Trimethylbenzene ND 28.4 56.7 ug/kg dry 50 ND 30% 50 Vinyl chloride ND 14.2 28.4 ND 30% ug/kg dry 28.4 47.7 2 30% m,p-Xylene 46.5 56.7 ug/kg dry 50 30% ND 50 o-Xylene 14.2 28.4 ND ug/kg dry Surr: 1,4-Difluorobenzene (Surr) Recovery: 102 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 94% 80-120 % 106 % 79-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K1007 - EPA 1311/503	0B TCLP	Volatiles					Wa	ter				
Blank (22K1007-BLK1)			Prepared	1: 11/30/22	10:50 Ana	lyzed: 11/30/	/22 12:58					TCLPa
1311/8260D												
Benzene	ND	6.25	12.5	ug/L	50							
2-Butanone (MEK)	ND	250	500	ug/L	50							
Carbon tetrachloride	ND	25.0	50.0	ug/L	50							
Chlorobenzene	ND	12.5	25.0	ug/L	50							
Chloroform	ND	25.0	50.0	ug/L	50							
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50							
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50							
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50							
Vinyl chloride	ND	12.5	25.0	ug/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 118 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (22K1007-BS1)			Prepared	d: 11/30/22	10:50 Ana	lyzed: 11/30/	/22 12:15					TCLPa
1311/8260D												
Benzene	1250	6.25	12.5	ug/L	50	1000		125	80-120%			Q-5
2-Butanone (MEK)	1840	250	500	ug/L	50	2000		92	80-120%			
Carbon tetrachloride	1130	25.0	50.0	ug/L	50	1000		113	80-120%			
Chlorobenzene	1030	12.5	25.0	ug/L	50	1000		103	80-120%			
Chloroform	1090	25.0	50.0	ug/L	50	1000		109	80-120%			
1,4-Dichlorobenzene	1010	12.5	25.0	ug/L	50	1000		101	80-120%			
1,1-Dichloroethene	1230	12.5	25.0	ug/L	50	1000		123	80-120%			Q-5
1,2-Dichloroethane (EDC)	898	12.5	25.0	ug/L	50	1000		90	80-120%			
Tetrachloroethene (PCE)	1070	12.5	25.0	ug/L	50	1000		107	80-120%			
Trichloroethene (TCE)	1180	12.5	25.0	ug/L	50	1000		118	80-120%			
Vinyl chloride	1250	12.5	25.0	ug/L	50	1000		125	80-120%			Q-5
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
			97 %		0-120 %		,,					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K1007 - EPA 1311/503	0B TCLP	Volatiles					Wa	ter				
Duplicate (22K1007-DUP1)			Prepared	d: 11/30/22	10:50 Anal	yzed: 11/30/	/22 13:41					H-10
QC Source Sample: Non-SDG (A2	K0620-01)											
Benzene	ND	6.25	12.5	ug/L	50		ND				30%	
2-Butanone (MEK)	ND	250	500	ug/L	50		ND				30%	
Carbon tetrachloride	ND	25.0	50.0	ug/L	50		ND				30%	
Chlorobenzene	ND	12.5	25.0	ug/L	50		ND				30%	
Chloroform	ND	25.0	50.0	ug/L	50		ND				30%	
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50		ND				30%	
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50		ND				30%	
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50		ND				30%	
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50		ND				30%	
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50		ND				30%	
Vinyl chloride	ND	12.5	25.0	ug/L	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 117 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					
Matrix Spike (22K1007-MS1)			Prepared	d: 11/30/22	10:50 Anal	yzed: 11/30/	/22 14:24					
QC Source Sample: BF-111622-14	6 (A2K0621	-01)	1									
1311/8260D												
Benzene	1240	6.25	12.5	ug/L	50	1000	ND	124	79-120%			Q-54
2-Butanone (MEK)	2090	250	500	ug/L	50	2000	ND	104	56-143%			
Carbon tetrachloride	1120	25.0	50.0	ug/L	50	1000	ND	112	72-136%			
Chlorobenzene	1020	12.5	25.0	ug/L	50	1000	ND	102	80-120%			
Chloroform	1160	25.0	50.0	ug/L	50	1000	85.0	107	79-124%			
				/1	50	1000	ND	100	79-120%			
1,4-Dichlorobenzene	1000	12.5	25.0	ug/L				120				Q-54
1,4-Dichlorobenzene 1,1-Dichloroethene	1000 1200	12.5 12.5	25.0 25.0	ug/L ug/L	50	1000	ND	120	71-131%			
<i>'</i>				_		1000 1000	ND ND	92	71-131% 73-128%			
1,1-Dichloroethene	1200	12.5	25.0	ug/L	50							
1,1-Dichloroethene 1,2-Dichloroethane (EDC)	1200 920	12.5 12.5	25.0 25.0	ug/L ug/L	50 50	1000	ND	92	73-128%			
1,1-Dichloroethene 1,2-Dichloroethane (EDC) Tetrachloroethene (PCE)	1200 920 1060	12.5 12.5 12.5	25.0 25.0 25.0	ug/L ug/L ug/L	50 50 50	1000 1000	ND ND	92 106	73-128% 74-129%			Q-54
1,1-Dichloroethene 1,2-Dichloroethane (EDC) Tetrachloroethene (PCE) Trichloroethene (TCE)	1200 920 1060 1170	12.5 12.5 12.5 12.5 12.5	25.0 25.0 25.0 25.0	ug/L ug/L ug/L ug/L	50 50 50 50 50	1000 1000 1000 1000	ND ND ND	92 106 117	73-128% 74-129% 79-123%		 	Q-54
1,1-Dichloroethene 1,2-Dichloroethane (EDC) Tetrachloroethene (PCE) Trichloroethene (TCE) Vinyl chloride	1200 920 1060 1170	12.5 12.5 12.5 12.5 12.5	25.0 25.0 25.0 25.0 25.0	ug/L ug/L ug/L ug/L ug/L ug/L	50 50 50 50 50	1000 1000 1000 1000	ND ND ND ND	92 106 117	73-128% 74-129% 79-123%		 	Q-54

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Spike % REC RPD Reporting Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 22K0908 - EPA 3546 Solid Blank (22K0908-BLK1) Prepared: 11/28/22 05:50 Analyzed: 11/28/22 15:43 EPA 8270E Acenaphthene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Acenaphthylene ug/kg wet 1 Anthracene ND 1.25 2.50 ug/kg wet 1.25 ND 2.50 Benz(a)anthracene ug/kg wet 1 ND 1.87 3.75 Benzo(a)pyrene ug/kg wet 1 1.87 ND Benzo(b)fluoranthene 3.75 ug/kg wet 1 ------Benzo(k)fluoranthene ND 1.87 3.75 ug/kg wet 1.25 2.50 ND Benzo(g,h,i)perylene ug/kg wet 1 Chrysene ND 1.25 2.50 ug/kg wet 1 Dibenz(a,h)anthracene ND 1.25 2.50 1 ug/kg wet Fluoranthene ND 1.25 2.50 ug/kg wet 1 1.25 ND Fluorene 2.50 1 ug/kg wet ---Indeno(1,2,3-cd)pyrene ND 1.25 2.50 ug/kg wet 1 ND 2.50 5.00 1-Methylnaphthalene ug/kg wet 1 2-Methylnaphthalene ND 2.50 5.00 ug/kg wet Naphthalene ND 2.50 5.00 ug/kg wet 1 ------Phenanthrene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Pyrene ug/kg wet 1 ---Carbazole ND 1.87 3.75 ug/kg wet 1 Dibenzofuran ND 1.25 2.50 ug/kg wet 1 2-Chlorophenol ND 6.25 12.5 ug/kg wet 4-Chloro-3-methylphenol ND 12.5 25.0 ug/kg wet 1 6.25 2,4-Dichlorophenol ND 12.5 ug/kg wet 2,4-Dimethylphenol ND 6.25 12.5 ug/kg wet 1 31.2 62.5 2,4-Dinitrophenol ND ug/kg wet 1 4,6-Dinitro-2-methylphenol ND 31.2 62.5 ug/kg wet 1 2-Methylphenol ND 3.12 6.25 ug/kg wet 1 3+4-Methylphenol(s) ND 3.12 6.25 ug/kg wet 1 ------2-Nitrophenol ND 12.5 25.0 ug/kg wet 1 12.5 4-Nitrophenol ND 25.0 ug/kg wet 1 ug/kg wet Pentachlorophenol (PCP) ND 12.5 25.0 1 Phenol ND 2.50 5.00 ug/kg wet 1 ND 6.25 12.5 2,3,4,6-Tetrachlorophenol ug/kg wet 1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution Result % REC RPD Limit Limit Amount Limits Limit Notes Batch 22K0908 - EPA 3546 Solid Blank (22K0908-BLK1) Prepared: 11/28/22 05:50 Analyzed: 11/28/22 15:43 2,3,5,6-Tetrachlorophenol ND 6.25 12.5 ug/kg wet 2,4,5-Trichlorophenol ND 6.25 12.5 ug/kg wet 1 ------Nitrobenzene ND 12.5 25.0 ug/kg wet 1 2,4,6-Trichlorophenol ND 6.25 12.5 ug/kg wet 1 Bis(2-ethylhexyl)phthalate ND 18.7 37.5 ug/kg wet 1 Butyl benzyl phthalate ND 12.5 25.0 ug/kg wet 1 Diethylphthalate ND 12.5 25.0 ug/kg wet 1 Dimethylphthalate ND 12.5 25.0 ug/kg wet 1 12.5 25.0 Di-n-butylphthalate ND ug/kg wet 1 Di-n-octyl phthalate ND 12.5 25.0 ug/kg wet 1 N-Nitrosodimethylamine ND 3.12 6.25 ug/kg wet 1 3.12 6.25 N-Nitroso-di-n-propylamine ND ug/kg wet 1 ND 3.12 N-Nitrosodiphenylamine 6.25 ug/kg wet 1 ---Bis(2-Chloroethoxy) methane ND 3.12 6.25 ug/kg wet 1 Bis(2-Chloroethyl) ether ND 3.12 6.25 ug/kg wet 1 2,2'-Oxybis(1-Chloropropane) ND 3.12 6.25 ug/kg wet ND 1.25 2.50 Hexachlorobenzene ug/kg wet 1 Hexachlorobutadiene ND 3.12 6.25 ug/kg wet 1 6.25 ND 12.5 Hexachlorocyclopentadiene ug/kg wet 1 ---------Hexachloroethane ND 3.12 6.25 ug/kg wet ND 1.25 2.50 2-Chloronaphthalene ug/kg wet 1 ---1,2,4-Trichlorobenzene ND 3.12 6.25 ug/kg wet 1 4-Bromophenyl phenyl ether ND 3.12 6.25 ug/kg wet 1 4-Chlorophenyl phenyl ether ND 3.12 6.25 ug/kg wet ND 6.25 Aniline 12.5 ug/kg wet 1 ------4-Chloroaniline ND 3.12 6.25 ug/kg wet 1 2-Nitroaniline ND 25.0 50.0 ug/kg wet 1 ---3-Nitroaniline ND 25.0 50.0 ug/kg wet 1 4-Nitroaniline ND 25.0 50.0 1 ug/kg wet ---2,4-Dinitrotoluene ND 12.5 25.0 ug/kg wet 2,6-Dinitrotoluene ND 12.5 25.0 ug/kg wet 1 Benzoic acid ND 157 312 ug/kg wet Benzyl alcohol ND 6.25 12.5 ug/kg wet 1

Apex Laboratories

Isophorone

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

3.12

6.25

ug/kg wet

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0908 - EPA 3546							Sol	id				
Blank (22K0908-BLK1)			Prepared	d: 11/28/22 0	5:50 Anal	yzed: 11/28	/22 15:43					
Azobenzene (1,2-DPH)	ND	3.12	6.25	ug/kg we	t 1							
Bis(2-Ethylhexyl) adipate	ND	31.2	62.5	ug/kg we	t 1							
3,3'-Dichlorobenzidine	ND	25.0	50.0	ug/kg we	t 1							Q-
1,2-Dinitrobenzene	ND	31.2	62.5	ug/kg we	t 1							
1,3-Dinitrobenzene	ND	31.2	62.5	ug/kg we	t 1							
1,4-Dinitrobenzene	ND	31.2	62.5	ug/kg we	t 1							
Pyridine	ND	6.25	12.5	ug/kg we	t 1							
1,2-Dichlorobenzene	ND	3.12	6.25	ug/kg we	t 1							
1,3-Dichlorobenzene	ND	3.12	6.25	ug/kg we	t 1							
1,4-Dichlorobenzene	ND	3.12	6.25	ug/kg we	t 1							
Surr: Nitrobenzene-d5 (Surr)		Recov	very: 109 %	Limits: 37-	-122 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			93 %	44-	120 %		"					
Phenol-d6 (Surr)			107 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			109 %	54-	127 %		"					
2-Fluorophenol (Surr)			104 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			77 %	39-	132 %		"					
LCS (22K0908-BS1)			Prepared	l: 11/28/22 0	5:50 Anal	yzed: 11/28	/22 16:18					
EPA 8270E												
Acenaphthene	501	2.66	5.34	ug/kg we	t 2	533		94	40-123%			
Acenaphthylene	535	2.66	5.34	ug/kg we	t 2	533		100	32-132%			
Anthracene	539	2.66	5.34	ug/kg we	t 2	533		101	47-123%			
Benz(a)anthracene	545	2.66	5.34	ug/kg we	t 2	533		102	49-126%			
Benzo(a)pyrene	534	4.00	8.00	ug/kg we	t 2	533		100	45-129%			
Benzo(b)fluoranthene	532	4.00	8.00	ug/kg we	t 2	533		100	45-132%			
Benzo(k)fluoranthene	521	4.00	8.00	ug/kg we	t 2	533		98	47-132%			
Benzo(g,h,i)perylene	537	2.66	5.34	ug/kg we		533		101	43-134%			
Chrysene	534	2.66	5.34	ug/kg we	t 2	533		100	50-124%			
Dibenz(a,h)anthracene	544	2.66	5.34	ug/kg we	t 2	533		102	45-134%			
Fluoranthene	538	2.66	5.34	ug/kg we	t 2	533		101	50-127%			
Fluorene	518	2.66	5.34	ug/kg we		533		97	43-125%			
Indeno(1,2,3-cd)pyrene	533	2.66	5.34	ug/kg we		533		100	45-133%			
1-Methylnaphthalene	499	5.34	10.7	ug/kg we		533		94	40-120%			
2-Methylnaphthalene	501	5.34	10.7	ug/kg we		533		94	38-122%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Reporting Detection Spike Source % REC **RPD** Limit % REC Limits RPD Analyte Result Units Dilution Amount Result Limit Notes Limit

Prepared: 11/28/22 05:50 Analyzed: 11/28/22 05:38 Analyzed: 11/28/22 05:38 Analyzed: A	Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Naphthalene	Batch 22K0908 - EPA 3546							So	lid				
Parenanthrene 501 2.66 5.34 ug/kg wet 2 5.33 94 50-121%	LCS (22K0908-BS1)			Prepared	d: 11/28/22 0	5:50 Ana	yzed: 11/28/	/22 16:18					
Perpene 535 2.66 5.34 ug/kg wet 2 533 100 47-127%	Naphthalene	499	5.34	10.7	ug/kg we	t 2	533		94	35-123%			
Carbazole	Phenanthrene	501	2.66	5.34	ug/kg we	t 2	533		94	50-121%			
Dibenzofuran Substitute S	Pyrene	535	2.66	5.34	ug/kg we	t 2	533		100	47-127%			
Chlorophenol S35 13.3 26.6 ug/kg wet 2 S33 100 34-121%	Carbazole	533	4.00	8.00	ug/kg we	t 2	533		100	50-123%			
A-Chloro-3-methylphenol 565 26.6 53.4 ug/kg wet 2 533 106 45-122%	Dibenzofuran	505	2.66	5.34	ug/kg we	t 2	533		95	44-120%			
2.4-Direhtorophenol 518 13.3 26.6 ug/kg wet 2 533 97 40-122% 2.4-Direhtylphenol 570 13.3 26.6 ug/kg wet 2 533 107 30-127% 2.4-Direhtylphenol 505 66.6 133 ug/kg wet 2 533 107 30-127% 2.4-Direhtylphenol 541 66.6 133 ug/kg wet 2 533 102 29-132% 2.4-Direhtylphenol 541 66.6 133 ug/kg wet 2 533 105 32-122% 2.4-Methylphenol 559 6.66 13.3 ug/kg wet 2 533 105 32-122% 2.4-Methylphenol(s) 578 6.66 133.3 ug/kg wet 2 533 105 32-122% 2.4-Methylphenol 508 26.6 53.4 ug/kg wet 2 533 108 34-120% 2.4-Methylphenol 475 26.6 53.4 ug/kg wet 2 533 95 36-123% 2.4-Methylphenol 475 26.6 53.4 ug/kg wet 2 533 89 30-132% 2.4-Methylphenol 583 5.34 10.7 ug/kg wet 2 533 89 30-132% 2.4-Methylphenol 583 5.34 10.7 ug/kg wet 2 533 83 25-133% 2.4-Methylphenol 583 5.34 10.7 ug/kg wet 2 533 89 30-132% 2.4-Methylphenol 583 5.34 10.7 ug/kg wet 2 533 89 30-132% 2.4-Methylphenol 583 5.34 10.7 ug/kg wet 2 533 89 44-125% 2.4-Methylphenol 581 13.3 26.6 ug/kg wet 2 533 99 44-125% 2.4-Methylphenol 581 13.3 26.6 ug/kg wet 2 533 99 44-125% 2.4-Methylphenol 581 13.3 26.6 ug/kg wet 2 533 98 41-124% 2.4-Methylphenol 581 13.3 26.6 ug/kg wet 2 533 98 41-124% 2.4-Methylphenol 581 13.3 26.6 ug/kg wet 2 533 98 41-124% 2.4-Methylphenol 581 13.3 26.6 ug/kg wet 2 533 107 34-122% 2.4-Methylphenol 581 26.6 53.4 ug/kg wet 2 533 107 51-133% 2.4-Methylphenol 581 26.6 53.4 ug/kg wet 2 533 107 51-133% 2.4-Methylphenol 581 26.6 53.4 ug/kg wet 2 533 101 50-124% 2.4-Methylphenol 59 26.6 53.4 ug/kg wet 2 533 101 50-124% 2.4-Methylphenol 59 26.6 53.4 ug/kg wet 2 533 101 50-124% 2.4-Methylphenol 50-124% 2.5-Methylphenol 50-124% 2.5-Methylphenol 50-124% 2.5-Methylphenol 50-124% 2.5-Methylphenol 50-124% 2.5-Methylphenol 50-124% 2	2-Chlorophenol	535	13.3	26.6	ug/kg we	t 2	533		100	34-121%			
2,4-Dimethylphenol 570 13.3 26.6 ug/kg wet 2 533 107 30-127%	4-Chloro-3-methylphenol	565	26.6	53.4	ug/kg we	t 2	533		106	45-122%			
2.4-Dinitrophenol 505 66.6 13.3 ug/kg wet 2 533 95 10-137% 14.6-Dinitro-2-methylphenol 541 66.6 13.3 ug/kg wet 2 533 102 29-132% 24.6-Dinitro-2-methylphenol 559 6.66 13.3 ug/kg wet 2 533 105 32-122% 34.4-Methylphenol(s) 578 6.66 13.3 ug/kg wet 2 533 105 32-122% 34.4-Methylphenol(s) 578 6.66 13.3 ug/kg wet 2 533 105 32-122% 34.4-Methylphenol 508 26.6 53.4 ug/kg wet 2 533 108 34-120% 34.4-Methylphenol 475 26.6 53.4 ug/kg wet 2 533 95 36-123% 36	2,4-Dichlorophenol	518	13.3	26.6	ug/kg we	t 2	533		97	40-122%			
1.6.6-Dinitro-2-methylphenol 541 66.6 13.3 ug/kg wet 2 533 102 29-132%	2,4-Dimethylphenol	570	13.3	26.6	ug/kg we	t 2	533		107	30-127%			
13.3 ug/kg wet 2 533 105 32-122%	2,4-Dinitrophenol	505	66.6	133	ug/kg we	t 2	533		95	10-137%			
8-4-Methylphenol(s) 578 6.66 13.3 ug/kg wet 2 533 108 34-120% 2-Nitrophenol 508 26.6 53.4 ug/kg wet 2 533 95 36-123% 2-Nitrophenol 475 26.6 53.4 ug/kg wet 2 533 89 30-132% 2-Nitrophenol (PCP) 442 26.6 53.4 ug/kg wet 2 533 89 30-132% 2-Nitrophenol 583 5.34 10.7 ug/kg wet 2 533 89 30-132% 2-Nitrophenol 583 5.34 10.7 ug/kg wet 2 533 109 34-121% 2-Nitrophenol 525 13.3 26.6 ug/kg wet 2 533 99 44-125% 2-Nitrophenol 525 13.3 26.6 ug/kg wet 2 533 99 44-125% 2-Nitrophenol 521 13.3 26.6 ug/kg wet 2 533 92 40-120% 2-Nitrophenol 521 13.3 26.6 ug/kg wet 2 533 98 41-124% 2-Nitrophenol 521 13.3 26.6 ug/kg wet 2 533 98 41-124% 2-Nitrophenol 523 13.3 26.6 ug/kg wet 2 533 98 39-126% 2-Nitrophenol 523 13.3 26.6 ug/kg wet 2 533 98 39-126% 2-Nitrophenol 523 13.3 26.6 ug/kg wet 2 533 107 34-122% 2-Nitrophenol 523 13.3 26.6 ug/kg wet 2 533 107 34-122% 2-Nitrophenol 523 13.3 26.6 ug/kg wet 2 533 107 34-122% 2-Nitrophenol 523 13.3 26.6 ug/kg wet 2 533 107 51-133% 2-Nitrophenol 523 13.3 26.6 ug/kg wet 2 533 107 51-133% 2-Nitrophenol 523 13.3 ug/kg wet 2 533 107 51-133% 2-Nitrophenol 524 126.6 53.4 ug/kg wet 2 533 107 51-133% 2-Nitrophenol 534 26.6 53.4 ug/kg wet 2 533 101 50-124% 2-Nitrophenol 54 26.6 53.4 ug/kg wet 2 533 101 50-124% 2-Nitrophenol 55 26.6 53.4 ug/kg wet 2 533 101 50-124% 2-Nitrophenol 55 26.6 53.4 ug/kg wet 2 533 101 50-124% 2-Nitrophenol 55 26.6 53.4 ug/kg wet 2 533 101 50-124% 2-Nitrophenol 55 26.6 53.4 ug/kg wet 2 533 101 50-124% 2-Nitrophenol 55 26.6 53.4 ug/kg wet 2 533 101 50-124% 2-Nitrophenol 55 2 6.66 13.3 ug/kg wet 2 533 104 36-121% 2-Nitrophenol 55 2 6.66 13.3 ug/kg wet 2 533 104 36-121% 2-Nitrophenol 55 2 6.66 13.3 ug/kg wet 2 533 104 36-121% 2-Nitropheno	4,6-Dinitro-2-methylphenol	541	66.6	133	ug/kg we	t 2	533		102	29-132%			
2-Nitrophenol 508 26.6 53.4 ug/kg wet 2 533 95 36-123% 26-12-12-12-12-12-12-12-12-12-12-12-12-12-	2-Methylphenol	559	6.66	13.3	ug/kg we	t 2	533		105	32-122%			
H-Nitrophenol 475 26.6 53.4 ug/kg wet 2 533 89 30-132%	3+4-Methylphenol(s)	578	6.66	13.3	ug/kg we	t 2	533		108	34-120%			
Pentachlorophenol (PCP)	2-Nitrophenol	508	26.6	53.4	ug/kg we	t 2	533		95	36-123%			
Phenol 583 5.34 10.7 ug/kg wet 2 533 109 34-121% 2,3,4,6-Tetrachlorophenol 525 13.3 26.6 ug/kg wet 2 533 99 44-125% 2,3,5,6-Tetrachlorophenol 493 13.3 26.6 ug/kg wet 2 533 92 40-120% 2,4,5-Trichlorophenol 521 13.3 26.6 ug/kg wet 2 533 98 41-124%	4-Nitrophenol	475	26.6	53.4	ug/kg we	t 2	533		89	30-132%			
2,3,4,6-Tetrachlorophenol 525 13.3 26.6 ug/kg wet 2 533 99 44-125% 2,3,5,6-Tetrachlorophenol 493 13.3 26.6 ug/kg wet 2 533 92 40-120% 2,4,5-Trichlorophenol 521 13.3 26.6 ug/kg wet 2 533 98 41-124% 2,4,5-Trichlorophenol 521 13.3 26.6 ug/kg wet 2 533 98 41-124% 2,4,6-Trichlorophenol 523 13.3 26.6 ug/kg wet 2 533 107 34-122% 2,4,6-Trichlorophenol 523 13.3 26.6 ug/kg wet 2 533 107 34-122% 316(2-ethylhexyl)phthalate 570 40.0 80.0 ug/kg wet 2 533 107 51-133% 316(2-ethylhexyl)phthalate 591 26.6 53.4 ug/kg wet 2 533 107 51-133% 316(2-ethylphthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% 316(2-ethylphthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% 316(2-ethylphthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% 316(2-ethylphthalate 589 26.6 53.4 ug/kg wet 2 533 111 51-128% 316(2-ethylphthalate 590 26.6 53.4 ug/kg wet 2 533 111 51-128% 316(2-ethylphthalate 590 26.6 53.4 ug/kg wet 2 533 111 45-140% 316(2-ethylphthalate 590 26.6 13.3 ug/kg wet 2 533 1106 23-120% 316(2-ethylphthalate 595 6.66 13.3 ug/kg wet 2 533 110 36-120% 316(2-ethylphthalate 552 6.66 13.3 ug/kg wet 2 533 106 33-120% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 104 38-127% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 104 36-121% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 104 36-121% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 106 31-120% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 106 31-120% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 106 31-120% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 106 31-120% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 106 31-120% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 106 31-120% 316(2-ethylphthalate 553 6.66 13.3 ug/kg wet 2 533 106 31-120%	Pentachlorophenol (PCP)	442	26.6	53.4	ug/kg we	t 2	533		83	25-133%			
2,3,5,6-Tetrachlorophenol 493 13.3 26.6 ug/kg wet 2 533 92 40-120% 2,4,5-Trichlorophenol 521 13.3 26.6 ug/kg wet 2 533 98 41-124% 2,4,5-Trichlorophenol 521 13.3 26.6 ug/kg wet 2 533 107 34-122% 2,4,6-Trichlorophenol 523 13.3 26.6 ug/kg wet 2 533 107 34-122%	Phenol	583	5.34	10.7	ug/kg we	t 2	533		109	34-121%			
2.4,5-Trichlorophenol 521 13.3 26.6 ug/kg wet 2 533 98 41-124% Nitrobenzene 570 26.6 53.4 ug/kg wet 2 533 107 34-122% 2.4,6-Trichlorophenol 523 13.3 26.6 ug/kg wet 2 533 98 39-126% 39. Sis(2-ethylhexyl)phthalate 570 40.0 80.0 ug/kg wet 2 533 107 51-133% 39. Sis(2-ethylhexyl)phthalate 591 26.6 53.4 ug/kg wet 2 533 107 51-133% 39. Sis(2-ethylhexyl)phthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% 39. Sis(2-ethylphthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% 39. Sis(2-ethylphthalate 590 26.6 53.4 ug/kg wet 2 533 111 51-128% 39. Sis(2-ethylphthalate 590 26.6 13.3 ug/kg wet 2 533 111 45-140% 39. Sis(2-ethylphthalate 595 6.66 13.3 ug/kg wet 2 533 106 31-120% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 104 36-121% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 104 36-121% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 104 36-121% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 39. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 30. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 30. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 30. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 30. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 30. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 30. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 30. Sis(2-ethoroethyl) ether 568 6.66 13.3 ug/kg wet 2 5	2,3,4,6-Tetrachlorophenol	525	13.3	26.6	ug/kg we	t 2	533		99	44-125%			
Nitrosenzene 570 26.6 53.4 ug/kg wet 2 533 107 34-122% 24,46-Trichlorophenol 523 13.3 26.6 ug/kg wet 2 533 98 39-126% 38is(2-ethylhexyl)phthalate 570 40.0 80.0 ug/kg wet 2 533 107 51-133% 512 512 512 512 512 512 512 512 512 512	2,3,5,6-Tetrachlorophenol	493	13.3	26.6	ug/kg we	t 2	533		92	40-120%			
2,4,6-Trichlorophenol 523 13.3 26.6 ug/kg wet 2 533 98 39-126% 39-136(2-ethylhexyl)phthalate 570 40.0 80.0 ug/kg wet 2 533 107 51-133% 39-1213% 39-	2,4,5-Trichlorophenol	521	13.3	26.6	ug/kg we	t 2	533		98	41-124%			
Bis(2-ethylhexyl)phthalate 570 40.0 80.0 ug/kg wet 2 533 107 51-133% Butyl benzyl phthalate 591 26.6 53.4 ug/kg wet 2 533 111 48-132% Diethylphthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% Dimethylphthalate 517 26.6 53.4 ug/kg wet 2 533 97 48-124% Di-n-butylphthalate 589 26.6 53.4 ug/kg wet 2 533 111 51-128% Di-n-octyl phthalate 590 26.6 53.4 ug/kg wet 2 533 111 51-128% Di-n-octyl phthalate 590 26.6 53.4 ug/kg wet 2 533 111 45-140% N-Nitrosodimethylamine 565 6.66 13.3 ug/kg wet 2 533 116 23-120% N-Nitroso-di-n-propylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% Sis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 38-127% Bis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Bis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120%	Nitrobenzene	570	26.6	53.4	ug/kg we	t 2	533		107	34-122%			
Butyl benzyl phthalate 591 26.6 53.4 ug/kg wet 2 533 101 50-124% Diethylphthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% Dimethylphthalate 517 26.6 53.4 ug/kg wet 2 533 97 48-124% Di-n-butylphthalate 589 26.6 53.4 ug/kg wet 2 533 111 51-128% Di-n-octyl phthalate 590 26.6 53.4 ug/kg wet 2 533 111 51-128% N-Nitrosodimethylamine 565 6.66 13.3 ug/kg wet 2 533 110 23-120% N-Nitrosodiphenylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% N-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Sis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Si	2,4,6-Trichlorophenol	523	13.3	26.6	ug/kg we	t 2	533		98	39-126%			
Diethylphthalate 541 26.6 53.4 ug/kg wet 2 533 101 50-124% Dimethylphthalate 517 26.6 53.4 ug/kg wet 2 533 97 48-124% Dimethylphthalate 589 26.6 53.4 ug/kg wet 2 533 111 51-128% Di-n-octyl phthalate 590 26.6 53.4 ug/kg wet 2 533 111 51-128% N-Nitrosodimethylamine 565 6.66 13.3 ug/kg wet 2 533 106 23-120% N-Nitrosodiphenylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% N-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Sis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Comparison of the state of	Bis(2-ethylhexyl)phthalate	570	40.0	80.0	ug/kg we	t 2	533		107	51-133%			
Dimethylphthalate 517 26.6 53.4 ug/kg wet 2 533 97 48-124% Di-n-butylphthalate 589 26.6 53.4 ug/kg wet 2 533 111 51-128% Di-n-octyl phthalate 590 26.6 53.4 ug/kg wet 2 533 111 45-140% N-Nitrosodimethylamine 565 6.66 13.3 ug/kg wet 2 533 106 23-120% N-Nitrosodiphenylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% N-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Sis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% Co	Butyl benzyl phthalate	591	26.6	53.4	ug/kg we	t 2	533		111	48-132%			
Di-n-butylphthalate 589 26.6 53.4 ug/kg wet 2 533 111 51-128% Di-n-octyl phthalate 590 26.6 53.4 ug/kg wet 2 533 111 45-140% N-Nitrosodimethylamine 565 6.66 13.3 ug/kg wet 2 533 106 23-120% N-Nitrosodiphenylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% 0 N-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Bis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Bis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120%	Diethylphthalate	541	26.6	53.4	ug/kg we	t 2	533		101	50-124%			
Di-n-octyl phthalate 590 26.6 53.4 ug/kg wet 2 533 111 45-140% N-Nitrosodimethylamine 565 6.66 13.3 ug/kg wet 2 533 106 23-120% N-Nitrosodiphenylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% N-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Sis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 05	Dimethylphthalate	517	26.6	53.4	ug/kg we	t 2	533		97	48-124%			
N-Nitrosodimethylamine 565 6.66 13.3 ug/kg wet 2 533 106 23-120% N-Nitroso-di-n-propylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% CN-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Sis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% CN-Nitrosodiphenylamine 553 106 31-120% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 106 31-120% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 104 36-121% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 104 36-121% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 104 36-121% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 104 36-121% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 104 36-121% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 104 36-121% CN-Nitrosodiphenylamine 553 6.66 13.3 ug/kg wet 2 533 104 36-121%	Di-n-butylphthalate	589	26.6	53.4	ug/kg we	t 2	533		111	51-128%			
N-Nitroso-di-n-propylamine 595 6.66 13.3 ug/kg wet 2 533 112 36-120% CN-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Sis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Sis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% CO	Di-n-octyl phthalate	590	26.6	53.4	ug/kg we	t 2	533		111	45-140%			
N-Nitrosodiphenylamine 552 6.66 13.3 ug/kg wet 2 533 104 38-127% Bis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Bis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 00	N-Nitrosodimethylamine	565	6.66	13.3	ug/kg we	t 2	533		106	23-120%			
Bis(2-Chloroethoxy) methane 553 6.66 13.3 ug/kg wet 2 533 104 36-121% Bis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% 00	N-Nitroso-di-n-propylamine	595	6.66	13.3	ug/kg we	t 2	533		112	36-120%			Q
Bis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% C	N-Nitrosodiphenylamine	552	6.66	13.3	ug/kg we	t 2	533		104	38-127%			
Bis(2-Chloroethyl) ether 568 6.66 13.3 ug/kg wet 2 533 106 31-120% C	Bis(2-Chloroethoxy) methane	553	6.66	13.3	ug/kg we	t 2	533		104	36-121%			
2,2'-Oxybis(1-Chloropropane) 647 6.66 13.3 ug/kg wet 2 533 121 39-120% Q-29, Q	Bis(2-Chloroethyl) ether	568	6.66	13.3	ug/kg we	t 2	533		106	31-120%			Q
	2,2'-Oxybis(1-Chloropropane)	647	6.66	13.3	ug/kg we	t 2	533		121	39-120%			Q-29, Q-

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22K0908 - EPA 3546 Solid LCS (22K0908-BS1) Prepared: 11/28/22 05:50 Analyzed: 11/28/22 16:18 479 2.66 5.34 ug/kg wet 2 533 90 45-122% Hexachlorobenzene Hexachlorobutadiene 460 6.66 13.3 ug/kg wet 2 533 86 32-123% ---2 Hexachlorocyclopentadiene 473 13.3 26.6 ug/kg wet 533 89 10-140% Hexachloroethane 497 6.66 13.3 ug/kg wet 2 533 93 28-120% 505 95 2-Chloronaphthalene 2.66 5.34 2 533 41-120% ug/kg wet 91 1,2,4-Trichlorobenzene 485 6.66 13.3 ug/kg wet 2 533 34-120% 4-Bromophenyl phenyl ether 505 6.66 13.3 ug/kg wet 2 533 95 46-124% 2 533 93 45-121% 4-Chlorophenyl phenyl ether 499 6.66 13.3 ug/kg wet 13.3 2 Aniline 306 26.6 ug/kg wet 533 57 10-120% 4-Chloroaniline 247 6.66 13.3 ug/kg wet 2 533 46 17-120% 2 2-Nitroaniline 535 53.4 107 533 100 44-127% ug/kg wet 491 53.4 107 92 3-Nitroaniline ug/kg wet 2 533 33-120% 497 53.4 107 2 533 93 51-125% 4-Nitroaniline ug/kg wet 2,4-Dinitrotoluene 557 26.6 53.4 ug/kg wet 2 533 104 48-126% 2,6-Dinitrotoluene 53.4 2 533 100 46-124% 533 26.6 ug/kg wet Benzoic acid 885 334 666 ug/kg wet 2 1070 83 10-140% 547 13.3 26.6 2 533 103 Benzyl alcohol ug/kg wet 29-122% 587 13.3 2 533 110 30-122% Isophorone 6.66 ug/kg wet Q-41 6.66 13.3 2 533 119 39-125% Azobenzene (1,2-DPH) 634 ug/kg wet ------Bis(2-Ethylhexyl) adipate 583 66.6 133 ug/kg wet 2 533 109 61-121% 3,3'-Dichlorobenzidine 2760 53.4 107 2 1070 258 22-121% Q-29, Q-41 ug/kg wet ---1,2-Dinitrobenzene 525 66.6 133 ug/kg wet 2 533 98 44-120% 43-127% 1,3-Dinitrobenzene 512 133 ug/kg wet 2 533 96 66.6 1,4-Dinitrobenzene 526 66.6 133 ug/kg wet 2 533 99 37-132% 465 13.3 2 533 87 Pyridine 26.6 ug/kg wet 10-120% ---1,2-Dichlorobenzene 469 6.66 13.3 ug/kg wet 2 533 88 33-120% 465 6.66 13.3 2 533 87 30-120% 1.3-Dichlorobenzene ug/kg wet ---1,4-Dichlorobenzene 467 6.66 13.3 ug/kg wet 2 533 88 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 112 % Limits: 37-122 % Dilution: 2x 97% 44-120 % 2-Fluorobiphenyl (Surr) Phenol-d6 (Surr) 115 % 33-122 % p-Terphenyl-d14 (Surr) 109 % 54-127 % 2-Fluorophenol (Surr) 108 % 35-120 % 2,4,6-Tribromophenol (Surr) 104 % 39-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Benzo(g,h,i)perylene 16500 1300 2600 ug/kg dry 200 13100			Se	mivolatile (Organic C	ompour	ds by EP	A 8270E				
Duplicate (22K0908-DUP1)	Analyte	Result			Units	Dilution			% REC	RPD		Notes
Acceaphthche 11600 1300 2600 ug/kg dry 200 9680 18 30%	Batch 22K0908 - EPA 3546							Sol	id			
Acenaphthene	Duplicate (22K0908-DUP1)			Prepared	: 11/28/22 0	5:50 Ana	lyzed: 11/28/	/22 17:27				
Acenaphthylene 2850 1300 2600 ug/kg dry 200 2450 15 30% Anthracene 25700 1300 2600 ug/kg dry 200 21300 19 30% 3	QC Source Sample: Non-SDG (AZ	2K0620-01)										
Anthracene	Acenaphthene	11600	1300	2600	ug/kg dr	y 200		9680		 18	30%	
Benz(a)anthracene 22100 1300 2600 ug/kg dry 200 18100	Acenaphthylene	2850	1300	2600	ug/kg dr	y 200		2450		 15	30%	
Benzo(a)pyrene 27900 1950 3890 ug/kg dry 200 22300 22 30%	Anthracene	25700	1300	2600	ug/kg dr	y 200		21300		 19	30%	
Benzo(b) fluoranthene 22300 1950 3890 ug/kg dry 200 17500 24 30% Benzo(b) fluoranthene 8460 1950 3890 ug/kg dry 200 7180 16 30% M Benzo(g,h,h)perylene 16500 1300 2600 ug/kg dry 200 13100 23 30% Enzo(g,h,h)perylene 16500 1300 2600 ug/kg dry 200 23000 24 30% M Benzo(g,h,h)perylene 1860 1300 2600 ug/kg dry 200 23000 24 30% Dibenz(a,h)anthracene 1860 1300 2600 ug/kg dry 200 64100 21 30% Eluoranthene 78800 1300 2600 ug/kg dry 200 64100 21 30% Eluoranthene 15900 1300 2600 ug/kg dry 200 8560 18 30% Indeno(1,2,3-cd)pyrene 15900 1300 2600 ug/kg dry 200 8560 18 30% Indeno(1,2,3-cd)pyrene 15900 1300 2600 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene ND 2600 5190 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene ND 2600 5190 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 2600 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 2600 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 2600 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 2600 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 2600 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 2600 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 90400 1300 ug/kg dry 200 ND 30% Indeno(1,2,3-cd)pyrene 30% Indeno(1,2,3-c	Benz(a)anthracene	22100	1300	2600	ug/kg dr	y 200		18100		 20	30%	
Benzo(k)fluoranthene	Benzo(a)pyrene	27900	1950	3890	ug/kg dr	y 200		22300		 22	30%	
Benzo(g,h,i)perylene 16500 1300 2600 ug/kg dry 200 13100 23 30% Chrysene 29200 1300 2600 ug/kg dry 200 23000 24 30% Dibenz(a,h)anthracene 1860 1300 2600 ug/kg dry 200 1580 16 30% Fluoranthene 78800 1300 2600 ug/kg dry 200 64100 21 30% Fluoranthene 10300 1300 2600 ug/kg dry 200 8560 18 30% Indeno(1,2,3-ed)pyrene 15900 1300 2600 ug/kg dry 200 8560 18 30% Indeno(1,2,3-ed)pyrene 15900 1300 2600 ug/kg dry 200 8560 18 30% Indeno(1,2,3-ed)pyrene 15900 1300 2600 ug/kg dry 200 ND 30% I-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% 2-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% Phenanthrene 90700 1300 2600 ug/kg dry 200 ND 30% Phenanthrene 90700 1300 2600 ug/kg dry 200 ND 30% Pyrene 90400 1300 2600 ug/kg dry 200 ND 30% Pyrene 90400 1300 2600 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2-Chloirrophenol ND 6490 13000 ug/kg dry 200 ND 30% 2-Chloirrophenol ND 6490 13000 ug/kg dry 200 ND 30% 2-Chloirrophenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Chloirrophenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240	Benzo(b)fluoranthene	22300	1950	3890	ug/kg dr	y 200		17500		 24	30%	
Chrysene 29200 1300 2600 ug/kg dry 200 23000 24 30%	Benzo(k)fluoranthene	8460	1950	3890	ug/kg dr	y 200		7180		 16	30%	M-05
Dibenz(a,h)anthracene 1860 1300 2600 ug/kg dry 200 1580 16 30%	Benzo(g,h,i)perylene	16500	1300	2600	ug/kg dr	y 200		13100		 23	30%	
Fluoranthene 78800 1300 2600 ug/kg dry 200 64100 21 30% Fluorene 10300 1300 2600 ug/kg dry 200 8560 18 30% Indeno(1,2,3-cd)pyrene 15900 1300 2600 ug/kg dry 200 13000 20 30% I-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% Z-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 ug/kg dry 200 ND 30% Naphthalene ND 2600 ug/kg dry 200 ND 21 30% Naphthalene ND 2600 ug/kg dry 200 ND 20 30% Naphthalene ND 2600 ug/kg dry 200 ND 20 30% Naphthalene ND 300 2600 ug/kg dry 200 73500 21 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 20 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 20 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 20 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 3200 2600 ug/kg dry 200 ND 30% Naphthalene ND 3200 2600 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg d	Chrysene	29200	1300	2600	ug/kg dr	y 200		23000		 24	30%	
Fluorene 10300 1300 2600 ug/kg dry 200 8560 18 30% Indeno(1,2,3-ed)pyrene 15900 1300 2600 ug/kg dry 200 13000 20 30% 1-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% 2-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 1300 2600 ug/kg dry 200 ND 21 30% Pyrene 90400 1300 2600 ug/kg dry 200 73500 21 30% Naphthalene ND 1950 3890 ug/kg dry 200 74200 20 30% Naphthalene ND 1950 3890 ug/kg dry 200 74200 20 30% Naphthalene ND 1300 2600 ug/kg dry 200 74200 20 30% Naphthalene ND 1300 2600 ug/kg dry 200 74200 20 30% Naphthalene ND 1300 2600 ug/kg dry 200 74200 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 1300 26000 ug/kg dry 200 ND 30% Naphthalene ND 1300 26000 ug/kg dry 200 ND 30% Naphthalene ND 1300 26000 ug/kg dry 200 ND 30% Naphthalene ND 1300 26000 ug/kg dry 200 ND 30% Naphthalene ND 32400 6490 ug/kg dry 200 ND 30% Naphthalene ND 32400 64900 ug/kg dry 200 ND 30% Naphthalene ND 32400 64900 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene ND 3240 6490 ug/kg dry 200 ND 30% Naphthalene N	Dibenz(a,h)anthracene	1860	1300	2600	ug/kg dr	y 200		1580		 16	30%	•
Fluorene 10300 1300 2600 ug/kg dry 200 8560 18 30% 10deno(1,2,3-cd)pyrene 15900 1300 2600 ug/kg dry 200 13000 20 30% 1-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% 2-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% 30% 2-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% 3	Fluoranthene	78800	1300	2600	ug/kg dr	y 200		64100		 21	30%	
Indeno(1,2,3-cd)pyrene 1590 1300 2600 ug/kg dry 200 13000 20 30% 1-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% 2-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene 90700 1300 2600 ug/kg dry 200 ND 30% Phenanthrene 90700 1300 2600 ug/kg dry 200 73500 21 30% Pyrene 90400 1300 2600 ug/kg dry 200 74200 20 30% Carbazole ND 1950 3890 ug/kg dry 200 ND 30% Dibenzoftran ND 1300 2600 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 4-Chloro-3-methylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 2,4-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 2-Methylphenol	Fluorene	10300	1300	2600				8560		 18	30%	
2-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene 90700 1300 2600 ug/kg dry 200 73500 21 30% Naphthalene 90400 1300 2600 ug/kg dry 200 74200 20 30% Naphthalene ND 1950 3890 ug/kg dry 200 ND 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 1300 2600 ug/kg dry 200 ND 30% Naphthalene ND 13000 26000 ug/kg dry 200 ND 30% Naphthalene ND 13000 26000 ug/kg dry 200 ND 30% Naphthalene ND 13000 26000 ug/kg dry 200 ND 30% Naphthalene ND 13000 ug/kg dry 200 ND 30% Naphthalene ND 13000 ug/kg dry 200 ND 30% Naphthalene ND 32400 64900 ug/kg dry 200 ND 30% Naphthalene ND 30% Naphthalene ND 32400 64900 ug/kg dry 200 ND 30% Naphthalene	Indeno(1,2,3-cd)pyrene	15900	1300	2600	ug/kg dr	y 200		13000		 20	30%	
2-Methylnaphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% ND 30% ND 1300 2600 ug/kg dry 200 73500 21 30% ND Pyrene 90400 1300 2600 ug/kg dry 200 74200 20 30% ND 1950 3890 ug/kg dry 200 ND 30% ND 30% ND ND 1300 2600 ug/kg dry 200 ND 30% ND 30% ND ND 1300 2600 ug/kg dry 200 ND 30% ND 30% ND ND 1300 2600 ug/kg dry 200 ND 30% ND 30% ND 13000 26000 ug/kg dry 200 ND 30% ND 30% ND 13000 26000 ug/kg dry 200 ND 30% ND 30% ND 30% ND 13000 26000 ug/kg dry 200 ND 30% ND 30% ND 30% ND 30% ND 13000 ug/kg dry 200 ND 30% N	1-Methylnaphthalene	ND	2600	5190	ug/kg dr	y 200		ND		 	30%	
Naphthalene ND 2600 5190 ug/kg dry 200 ND 30% Phenanthrene 90700 1300 2600 ug/kg dry 200 73500 21 30% Pyrene 90400 1300 2600 ug/kg dry 200 74200 20 30% Carbazole ND 1950 3890 ug/kg dry 200 ND 30% Dibenzofuran ND 1300 2600 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 4-Chloro-3-methylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 6490 ug/kg dry 200 </td <td>* *</td> <td>ND</td> <td>2600</td> <td>5190</td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td> </td> <td>30%</td> <td></td>	* *	ND	2600	5190				ND		 	30%	
Phenanthrene 90700 1300 2600 ug/kg dry 200 73500 21 30% Pyrene 90400 1300 2600 ug/kg dry 200 74200 20 30% Carbazole ND 1950 3890 ug/kg dry 200 ND 30% Dibenzofuran ND 1300 2600 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 4-Chloro-3-methylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimitrophenol ND 32400 64900 ug/kg dry 200	• •	ND	2600	5190				ND		 	30%	
Pyrene 90400 1300 2600 ug/kg dry 200	Phenanthrene	90700	1300	2600				73500		 21	30%	
Carbazole ND 1950 3890 ug/kg dry 200 ND 30% Dibenzofuran ND 1300 2600 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 4-Chloro-3-methylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dichlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 3240 6490 ug/kg dry 2	Pyrene	90400	1300	2600				74200		 20	30%	
Dibenzofuran ND 1300 2600 ug/kg dry 200 ND 30% 2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 4-Chloro-3-methylphenol ND 13000 26000 ug/kg dry 200 ND 30% 2,4-Dichlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	•		1950	3890				ND		 	30%	
2-Chlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 4-Chloro-3-methylphenol ND 13000 26000 ug/kg dry 200 ND 30% 2,4-Dichlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	Dibenzofuran	ND	1300	2600				ND		 	30%	
4-Chloro-3-methylphenol ND 13000 26000 ug/kg dry 200 ND 30% 2,4-Dichlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 13000 26000 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% 30% 4-Nitrophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	2-Chlorophenol	ND	6490	13000				ND		 	30%	
2,4-Dichlorophenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (1	ND	13000	26000				ND		 	30%	
2,4-Dimethylphenol ND 6490 13000 ug/kg dry 200 ND 30% 2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30% </td <td>, ı</td> <td>ND</td> <td>6490</td> <td>13000</td> <td>υυ.</td> <td>,</td> <td></td> <td>ND</td> <td></td> <td> </td> <td>30%</td> <td></td>	, ı	ND	6490	13000	υυ.	,		ND		 	30%	
2,4-Dinitrophenol ND 32400 64900 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%		ND	6490	13000				ND		 	30%	
4,6-Dinitro-2-methylphenol ND 32400 64900 ug/kg dry 200 ND 30% 2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	• •	ND	32400	64900				ND		 	30%	
2-Methylphenol ND 3240 6490 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	•					,				 		
3+4-Methylphenol(s) ND 3240 6490 ug/kg dry 200 ND 30% 2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	• •					,				 		
2-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% 4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	* 1									 		
4-Nitrophenol ND 13000 26000 ug/kg dry 200 ND 30% Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	• • • • • • • • • • • • • • • • • • • •									 		
Pentachlorophenol (PCP) ND 13000 26000 ug/kg dry 200 ND 30%	•											
	•											
EDENIN NI / 1000 1170 110/KO/1EV / 100 NI 119/k	Phenol	ND	2600	5190	ug/kg dr	,		ND		 	30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22K0908 - EPA 3546 Solid Duplicate (22K0908-DUP1) Prepared: 11/28/22 05:50 Analyzed: 11/28/22 17:27 QC Source Sample: Non-SDG (A2K0620-01) 2,3,4,6-Tetrachlorophenol ND 6490 13000 ug/kg dry 200 ND 30% ND 6490 13000 200 2,3,5,6-Tetrachlorophenol ug/kg dry ND 30% 2,4,5-Trichlorophenol ND 6490 13000 ug/kg dry 200 ND 30% Nitrobenzene ND 13000 26000 ug/kg dry 200 ND 30% 2,4,6-Trichlorophenol ND 6490 13000 ug/kg dry 200 ND 30% ------ND 19500 38900 Bis(2-ethylhexyl)phthalate ug/kg dry 200 ND 30% Butyl benzyl phthalate ND 13000 26000 ug/kg dry 200 ND 30% ND 200 ND 30% Diethylphthalate 13000 26000 ug/kg dry Dimethylphthalate ND 13000 26000 ug/kg dry 200 ND 30% Di-n-butylphthalate ND 13000 26000 ug/kg dry 200 ND 30% Di-n-octyl phthalate ND 13000 26000 ug/kg dry 200 ND 30% ND 3240 6490 200 ND 30% N-Nitrosodimethylamine ug/kg dry N-Nitroso-di-n-propylamine ND 3240 6490 ug/kg dry 200 ND 30% 3240 6490 ND 200 ND 30% N-Nitrosodiphenylamine ug/kg dry Bis(2-Chloroethoxy) methane ND 3240 6490 ug/kg dry 200 ND 30% Bis(2-Chloroethyl) ether ND 3240 6490 ug/kg dry 200 ND ___ 30% 2,2'-Oxybis(1-Chloropropane) ND 3240 6490 ug/kg dry 200 ND 30% ND 1300 200 30% Hexachlorobenzene 2600 ND ug/kg dry ---ND Hexachlorobutadiene 3240 6490 ug/kg dry 200 ND 30% Hexachlorocyclopentadiene 6490 13000 ND ug/kg dry 200 ND 30% ND 3240 6490 Hexachloroethane ug/kg dry 200 ND 30% 2-Chloronaphthalene ND 1300 2600 ug/kg dry 200 ND ___ ---30% 1,2,4-Trichlorobenzene ND 3240 6490 ug/kg dry 200 ND 30% ND 6490 ND 30% 4-Bromophenyl phenyl ether 3240 ug/kg dry 200 ND 3240 6490 30% 4-Chlorophenyl phenyl ether ug/kg dry 200 ND ND 6490 Aniline 13000 200 ND 30% ug/kg dry ---4-Chloroaniline ND 3240 6490 200 ND 30% ug/kg dry ND 2-Nitroaniline 26000 51900 ug/kg dry 200 ND ---30% 3-Nitroaniline ND 26000 51900 ug/kg dry 200 ND 30% 4-Nitroaniline ND 26000 51900 200 ND 30% ug/kg dry ---2,4-Dinitrotoluene ND 13000 26000 ug/kg dry 200 ND 30% 13000 26000 2.6-Dinitrotoluene ND 200 ND 30% ug/kg dry ---Benzoic acid ND 163000 324000 ug/kg dry 200 ND 30%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Amount Result % REC Limits RPD Limit Limit Notes Batch 22K0908 - EPA 3546 Solid Duplicate (22K0908-DUP1) Prepared: 11/28/22 05:50 Analyzed: 11/28/22 17:27 QC Source Sample: Non-SDG (A2K0620-01) Benzyl alcohol ND 6490 13000 ug/kg dry 200 ND 30% ND 3240 6490 200 Isophorone ug/kg dry ND 30% ND Azobenzene (1,2-DPH) 3240 6490 ug/kg dry 200 ND 30% Bis(2-Ethylhexyl) adipate ND 32400 64900 ug/kg dry 200 ND 30% 3,3'-Dichlorobenzidine ND 26000 51900 ug/kg dry 200 ND 30% Q-52 30% ND 32400 64900 200 1,2-Dinitrobenzene ug/kg dry ND 32400 1,3-Dinitrobenzene ND 64900 ug/kg dry 200 ND 30% 64900 ND 32400 200 ND 30% 1,4-Dinitrobenzene ug/kg dry Pyridine ND 6490 13000 ug/kg dry 200 ND 30% 1,2-Dichlorobenzene ND 3240 6490 ug/kg dry 200 ND 30% 1,3-Dichlorobenzene ND 3240 6490 ug/kg dry 200 ND 30% 3240 6490 1,4-Dichlorobenzene ND 200 ND 30% ug/kg dry Surr: Nitrobenzene-d5 (Surr) Recovery: Limits: 37-122 % 80 % Dilution: 200x S-05 2-Fluorobiphenyl (Surr) 87% 44-120 % S-05 Phenol-d6 (Surr) 33-122 % 53 % S-05 p-Terphenyl-d14 (Surr) 107 % 54-127 % S-05 2-Fluorophenol (Surr) 61% 35-120 % S-05

39-132 %

116 %

Apex Laboratories

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

S-05

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0881 - EPA 3051A							Sol	id				
Blank (22K0881-BLK1)			Prepared	: 11/23/22 0	9:43 Anal	yzed: 11/28	/22 20:51					
EPA 6020B												
Arsenic	ND	481	962	ug/kg we	t 10							
Barium	ND	481	962	ug/kg we	t 10							
Cadmium	ND	96.2	192	ug/kg we	t 10							
Chromium	ND	481	962	ug/kg we	t 10							
Lead	ND	96.2	192	ug/kg we	t 10							
Mercury	ND	38.5	76.9	ug/kg we	t 10							
Selenium	ND	481	962	ug/kg we	t 10							
Silver	ND	96.2	192	ug/kg we	t 10							
LCS (22K0881-BS1)			Prepared	: 11/23/22 0	9:43 Anal	lyzed: 11/28	/22 20:56					
EPA 6020B												
Arsenic	48700	500	1000	ug/kg we	t 10	50000		97	80-120%			
Barium	49200	500	1000	ug/kg we		50000		98	80-120%			
Cadmium	48300	100	200	ug/kg we	t 10	50000		97	80-120%			
Chromium	50400	500	1000	ug/kg we	t 10	50000		101	80-120%			
Lead	51900	100	200	ug/kg we	t 10	50000		104	80-120%			
Mercury	1010	40.0	80.0	ug/kg we	t 10	1000		101	80-120%			
Selenium	22900	500	1000	ug/kg we	t 10	25000		92	80-120%			
Silver	26700	100	200	ug/kg we	t 10	25000		107	80-120%			
Duplicate (22K0881-DUP1)			Prepared	: 11/23/22 0	9:43 Anal	lyzed: 11/28	/22 21:07					
QC Source Sample: Non-SDG (A	2K0620-01)											
Arsenic	8360	1850	3700	ug/kg dry	7 10		8460			1	20%	
Barium	190000	1850	3700	ug/kg dry	7 10		192000			0.6	20%	
Cadmium	ND	370	740	ug/kg dry	7 10		ND				20%	
Chromium	ND	1850	3700	ug/kg dry	7 10		ND				20%	
Lead	955	370	740	ug/kg dry	7 10		934			2	20%	
Mercury	ND	148	296	ug/kg dry	7 10		ND				20%	
Selenium	ND	1850	3700	ug/kg dry	7 10		ND				20%	
Silver	ND	370	740	ug/kg dry	/ 10		ND				20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daren Jhim

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Gasco -- Filter Bags Project Number: 111323 2749 Lockport Road Niagara Falls, NY 14305 Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Project:

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 22K0881 - EPA 3051A Solid Prepared: 11/23/22 09:43 Analyzed: 11/28/22 21:12 Matrix Spike (22K0881-MS1) QC Source Sample: Non-SDG (A2K0620-01) EPA 6020B 1840 96 3690 186000 ug/kg dry 10 184000 8460 75-125% Arsenic Barium 367000 1840 3690 ug/kg dry 10 184000 192000 95 75-125% Cadmium 369 737 184000 176000 ug/kg dry 10 ND 96 75-125% Chromium 181000 1840 3690 ug/kg dry 10 184000 ND 98 75-125% Lead 187000 369 737 184000 75-125% ug/kg dry 10 934 101 3740 147 295 10 3690 ND 101 75-125% Mercury ug/kg dry 1840 92 Selenium 84700 3690 10 92200 ND 75-125% ug/kg dry ---Silver 94200 369 737 ug/kg dry 10 92200 ND 102 75-125%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Sevenson Environmental Services, Inc.</u> Project: <u>Gasco -- Filter Bags</u>

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22K0878 - EPA 1311/301	15A						So	lid					
Blank (22K0878-BLK1)			Prepared	: 11/23/22	09:30 Ana	lyzed: 11/28	/22 11:04						
1311/6020B													
Arsenic	ND	50.0	100	ug/L	10							TCL	
Barium	ND	2500	5000	ug/L	10							TCL	
Cadmium	ND	50.0	100	ug/L	10							TCL	
Chromium	ND	50.0	100	ug/L	10							TCL	
Lead	ND	25.0	50.0	ug/L	10							TCL	
Mercury	ND	3.75	7.00	ug/L	10							TCL	
Selenium	ND	50.0	100	ug/L	10							TCL	
Silver	ND	50.0	100	ug/L	10							TCL	
LCS (22K0878-BS1)			Prepared	: 11/23/22	09:30 Ana	lyzed: 11/28	/22 11:10						
1311/6020B													
Arsenic	5030	50.0	100	ug/L	10	5000		101	80-120%			TCL	
Barium	10200	2500	5000	ug/L	10	10000		102	80-120%			TCL	
Cadmium	984	50.0	100	ug/L	10	1000		98	80-120%			TCL	
Chromium	4900	50.0	100	ug/L	10	5000		98	80-120%			TCL	
Lead	5040	25.0	50.0	ug/L	10	5000		101	80-120%			TCL	
Mercury	95.4	3.75	7.00	ug/L	10	100		95	80-120%			TCL	
Selenium	971	50.0	100	ug/L	10	1000		97	80-120%			TCL	
Silver	896	50.0	100	ug/L	10	1000		90	80-120%			TCL	
Duplicate (22K0878-DUP1)			Prepared	: 11/23/22	09:30 Ana	lyzed: 11/28	/22 11:20						
QC Source Sample: Non-SDG (A2	2K0620-01)												
Arsenic	ND	50.0	100	ug/L	10		ND				20%		
Barium	ND	2500	5000	ug/L	10		ND				20%		
Cadmium	ND	50.0	100	ug/L	10		ND				20%		
Chromium	ND	50.0	100	ug/L	10		ND				20%		
Lead	ND	25.0	50.0	ug/L	10		ND				20%		
Mercury	ND	3.75	7.00	ug/L	10		ND				20%		
Selenium	ND	50.0	100	ug/L	10		ND				20%		
Silver	ND	50.0	100	ug/L	10		ND				20%		
M -4-2- C-21- (221/0070 NG1)			ъ .	11/02/02	00.20	1 11/20	/22.11.22						
Matrix Spike (22K0878-MS1)			rrepared	. 11/23/22	09:30 Ana	iyzeu: 11/28	122 11:23						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dann Jun

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco Project Number: 111323

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305

Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22K0878 - EPA 1311/	3015A						Sol	id					
Matrix Spike (22K0878-MS	1)		Prepared	: 11/23/22	09:30 Anal	lyzed: 11/28/	/22 11:25						
QC Source Sample: Non-SDG	(A2K0620-01)												
1311/6020B													
Arsenic	5010	50.0	100	ug/L	10	5000	ND	100	50-150%				
Barium	10300	2500	5000	ug/L	10	10000	ND	103	50-150%				
Cadmium	983	50.0	100	ug/L	10	1000	ND	98	50-150%				
Chromium	4930	50.0	100	ug/L	10	5000	ND	99	50-150%				
Lead	5070	25.0	50.0	ug/L	10	5000	ND	101	50-150%				
Mercury	95.7	3.75	7.00	ug/L	10	100	ND	96	50-150%				
Selenium	925	50.0	100	ug/L	10	1000	ND	93	50-150%				
Silver	876	50.0	100	ug/L	10	1000	ND	88	50-150%				
Matrix Spike (22K0878-MS OC Source Sample: BF-111622		01)	Prepared	: 11/23/22	09:30 Anal	lyzed: 11/28/	/22 11:36						
1311/6020B	-140 (A2K0021	<u>-01)</u>											
Arsenic	5020	50.0	100	ug/L	10	5000	ND	100	50-150%				
Barium	10900	2500	5000	ug/L	10	10000	ND	109	50-150%				
Cadmium	986	50.0	100	ug/L	10	1000	ND	99	50-150%				
Chromium	4860	50.0	100	ug/L	10	5000	ND	97	50-150%				
Lead	5170	25.0	50.0	ug/L	10	5000	ND	103	50-150%				
Mercury	98.3	3.75	7.00	ug/L	10	100	ND	98	50-150%				
Selenium	964	50.0	100	ug/L	10	1000	ND	96	50-150%				
Silver	931	50.0	100	ug/L	10	1000	ND	93	50-150%				
Matrix Spike (22K0878-MS	3)		Prepared		09:30 Anal	lyzed: 11/28/	/22 11:47						
QC Source Sample: Non-SDG	(A2K0695-05)												
1311/6020B													
Arsenic	5040	50.0	100	ug/L	10	5000	ND	101	50-150%			CON	
Barium	10500	2500	5000	ug/L	10	10000	ND	105	50-150%			CON	
Cadmium	986	50.0	100	ug/L	10	1000	ND	99	50-150%			CON	
Chromium	4860	50.0	100	ug/L	10	5000	ND	97	50-150%			CON	
Lead	5070	25.0	50.0	ug/L	10	5000	ND	101	50-150%			CON	
Mercury	95.0	3.75	7.00	ug/L	10	100	ND	95	50-150%			CON	
Selenium	963	50.0	100	ug/L	10	1000	ND		50-150%			CON	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit Batch 22K0878 - EPA 1311/3015A Solid Matrix Spike (22K0878-MS3) Prepared: 11/23/22 09:30 Analyzed: 11/28/22 11:47 QC Source Sample: Non-SDG (A2K0695-05) 50.0 100 10 1000 ND 93 50-150% COMP Silver ug/L

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

	Solu	ıble Cyanic	de by UV Di	gestion/	Gas Diffu	sion/Amp	erometri	ic Detection	on			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0777 - ASTM D7511	l-12mod (S	·)					Soi	I				
Blank (22K0777-BLK1)			Prepared	: 11/21/22	10:06 Ana	lyzed: 11/21	/22 13:36					
D7511-12 Total Cyanide	ND	50.0	100	ug/kg w	et 1							
LCS (22K0777-BS1)			Prepared	: 11/21/22	10:06 Ana	lyzed: 11/21	/22 13:38					
<u>D7511-12</u> Total Cyanide	403	50.0	100	ug/kg w	et 1	400		101	84-116%			
Matrix Spike (22K0777-MS3)			Prepared	: 11/21/22	10:06 Ana	lyzed: 11/21	/22 16:23					
QC Source Sample: Non-SDG (A	2K0620-01R	E2)										
Total Cyanide	6130	879	1760	ug/kg di	ry 5	1410	3590	181	64-136%			Q-01, Q-1
Matrix Spike Dup (22K0777-I	MSD3)		Prepared	: 11/21/22	10:06 Ana	lyzed: 11/21	/22 16:25					
OC Source Sample: Non-SDG (A Total Cyanide	2K0620-01R 5970	E2) 864	1730	ug/kg di	ry 5	1380	3590	173	64-136%	3	47%	Q-01, Q-1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: 2749 Lockport Road Project Number: 111323

Niagara Falls, NY 14305 Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filter Bags

				Percent	t Dry Weig	ht						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22K0693 - Total Solids (I	Dry Weigl	ht)					Soil	<u> </u>				
Duplicate (22K0693-DUP1)			Prepared	: 11/17/22	14:31 Anal	yzed: 11/18/	22 05:28					
QC Source Sample: Non-SDG (A2)	K0592-01)											
% Solids	94.9		1.00	%	1		94.7			0.1	10%	
Duplicate (22K0693-DUP2)			Prepared	: 11/17/22	14:31 Anal	yzed: 11/18/	/22 05:28					
QC Source Sample: Non-SDG (A2)	K0592-02)											
% Solids	93.6		1.00	%	1		93.8			0.2	10%	
Duplicate (22K0693-DUP3)			Prepared	: 11/17/22	14:31 Anal	yzed: 11/18/	/22 05:28					
QC Source Sample: Non-SDG (A2)	K0592-03)											
% Solids	94.9		1.00	%	1		95.2			0.4	10%	
Duplicate (22K0693-DUP4)			Prepared	: 11/17/22	18:13 Anal	yzed: 11/18/	22 05:28					
QC Source Sample: Non-SDG (A2)	K0679-01)											
% Solids	90.2		1.00	%	1		90.0			0.3	10%	
Duplicate (22K0693-DUP5)			Prepared	: 11/17/22	18:13 Anal	yzed: 11/18/	22 05:28					
QC Source Sample: Non-SDG (A2)	K0679-02)											
% Solids	82.2		1.00	%	1		84.9			3	10%	
Duplicate (22K0693-DUP6)			Prepared	: 11/17/22	19:35 Anal	yzed: 11/18/	/22 05:28					
QC Source Sample: Non-SDG (A2)												
% Solids	80.8		1.00	%	1		80.9			0.09	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A2K0621 - 12 03 22 1302

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (Fuel	<u>s)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0987							
A2K0621-01	Solid	NWTPH-Dx	11/16/22 07:45	11/30/22 07:44	10.02g/5mL	10g/5mL	1.00
	Gasol	ine Range Hydrocarb	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0775							
A2K0621-01RE1	Solid	NWTPH-Gx (MS)	11/16/22 07:45	11/16/22 13:35	5.92g/5mL	5g/5mL	0.85
		Volatile C	Organic Compounds	by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0775			1	1			
A2K0621-01RE1	Solid	5035A/8260D	11/16/22 07:45	11/16/22 13:35	5.92g/5mL	5g/5mL	0.85
		Regulated TCLP Vol	atile Organic Comp	ounds by EPA 1311	/8260D		
Prep: EPA 1311/5030E	3 TCLP Volatiles				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K1007			•	•			
A2K0621-01	Solid	1311/8260D	11/16/22 07:45	11/30/22 10:50	5mL/5mL	5mL/5mL	1.00
		Semivolatile	e Organic Compour	ids by EPA 8270E			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0908			1	1			
A2K0621-01	Solid	EPA 8270E	11/16/22 07:45	11/28/22 05:50	10.2g/2mL	15g/2mL	1.47
		Total	Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3051A			-	•	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0881			F	F			
							0.99

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

SAMPLE PREPARATION INFORMATION

		Total	Metals by EPA 6020	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
		TCLF	P Metals by EPA 602	OB (ICPMS)			
Prep: EPA 1311/3015	<u>A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0878 A2K0621-01	Solid	1311/6020B	11/16/22 07:45	11/23/22 09:30	10mL/50mL	10mL/50mL	1.00
	S	Soluble Cyanide by U\	/ Digestion/Gas Diffu	usion/Amperometric	Detection		
Prep: ASTM D7511-12	2mod (S)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0777 A2K0621-01	Solid	D7511-12	11/16/22 07:45	11/21/22 10:06	2.517g/50mL	2.5g/50mL	0.99
			Percent Dry Wei	ight			
Prep: Total Solids (Dry	y Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0693 A2K0621-01	Solid	EPA 8000D	11/16/22 07:45	11/17/22 14:31			NA
		Т	CLP Extraction by E	PA 1311			
Prep: EPA 1311 (TCLI	<u>P)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0795			•	-			
A2K0621-01	Solid	EPA 1311	11/16/22 07:45	11/22/22 14:00	100g/2000g	100g/2000g	NA
Prep: EPA 1311 TCLP	<u></u> <u>P/ZHE</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22K0965			1	1			
A2K0621-01	Solid	EPA 1311 ZHE	11/16/22 07:45	11/29/22 16:55	19.9g/400.1g	25g/500g	NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

COMP	Sample is a composite of discrete samples. See prep information for details.
H-10	This sample was TCLP extracted (leached) outside of the recommended holding time.
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
ICV-02	Estimated Result. Initial Calibration Verification (ICV) failed low.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-16	Reanalysis of an original Batch QC sample.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-30	Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-50	Due to instrument malfunction, not all Batch QC samples were analyzed. The batch is accepted based on the recoveries of the Blank Spike (BS).
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +14%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +20%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +21%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +23%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The results are reported as Estimated Values.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.Project:Gasco -- Filter Bags2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

inguin i un	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	roject manager. Chip by tu	A2K0021 - 12 03 2
Q-54e	Daily Continuing Calibration Verification recovery for results are reported as Estimated Values.	or this analyte failed the +/-20% criteria listed in EPA method 8260/8	270 by +35%. The
Q-54f	Daily Continuing Calibration Verification recovery for results are reported as Estimated Values.	or this analyte failed the +/-20% criteria listed in EPA method 8260/8	270 by +47%. The
Q-54g	Daily Continuing Calibration Verification recovery for results are reported as Estimated Values.	or this analyte failed the +/-20% criteria listed in EPA method 8260/8	270 by +5%. The
Q-54h	Daily Continuing Calibration Verification recovery for results are reported as Estimated Values.	or this analyte failed the +/-20% criteria listed in EPA method 8260/8	270 by +6%. The
Q-54i	Daily Continuing Calibration Verification recovery for results are reported as Estimated Values.	or this analyte failed the +/-20% criteria listed in EPA method 8260/8	270 by -3%. The
Q-55	Daily CCV/LCS recovery for this analyte was below detection at the reporting level.	the +/-20% criteria listed in EPA 8260, however there is adequate se	nsitivity to ensure
Q-56	Daily CCV/LCS recovery for this analyte was above	the +/-20% criteria listed in EPA 8260	
R-02	The Reporting Limit for this analyte has been raised	to account for interference from coeluting organic compounds preser	nt in the sample.
S-05	Surrogate recovery is estimated due to sample dilution	on required for high analyte concentration and/or matrix interference.	
TCLP	This batch QC sample was prepared with TCLP or S	PLP fluid from preparation batch 22K0795.	
TCLPa	This batch QC sample was prepared with TCLP or S	PLP fluid from preparation batch 22K0965.	
V-15	Sample aliquot was subsampled from the sample corsampling.	tainer. The subsampled aliquot was preserved in the laboratory within	n 48 hours of

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex 1	[a]	ora	tor	iec
дрел.	La	oora	iOI.	ıcs

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

REPORTING NOTES AND CONVENTIONS (Cont.):

Gasco -- Filter Bags

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA2K0621 - 12 03 22 1302

			L	1			I		-											1				
Company: Seventon Environmental Services, Inc.	ces, inc.		Pro	Project Mgr. Chip Byrd	5	p Byn				Proje	ct Nan	ne: Ga	Project Name: Gasco Bag Filter	- Bag F	Filter			ď	Project # 111323	111323	_			
Address: 2749 Lockport Road, Niagara Falls, NY 14305	agara Falls, N	Y 14305					Phon	.e: (7	Phone: (716) 583-2754	3-275	.4		Fax:			Ψ	E-mail:	wbyrd@sevenson.com	sevens	moo.nc				
Sampled by: Jeffer Labiacki	Lubincki												1888		1		123325			1				
			-											ANA	1212	ANALYSIS REGUEST	2	-	<u> </u>				-	
SAMPLE ID	# Ol 847	∃1A 0	TIME XIATAM	# OF CONTAINERS	8560 VOCs	1311/8260 TCPL VOCs	82700 L.L Full 나눔	Dry Weight	Metals, RCRA 8	Metals, TPCL	Total Cyanide	XQ- H4TWN	хэлччтми						100000			***************************************		
BF-111622-146	W IN	11/6/22 021	S Ship	-	×	×	×	×	×	×	×	×	×		 	<u> </u>		-			 	-	_	
111111111111111111111111111111111111111																		-			-		ļ	_
				_							\vdash													
		+	-					$\neg \dagger$	\dashv	+	\dashv	-	\dashv		\dashv									
			+	_					\dashv	\dashv	+	-	\dashv	\dashv	-+	+	$\neg \dagger$				+	_		
TOTAL KANGARINA				_				1			-	-	+-	-	-		\top	-		\perp	+	+		
										$\dagger \dagger \dagger$		+	+	+	-	\sqcup		+			+		$\perp \downarrow$	
		+							\dashv	+		\dashv	+		-	_	\top	-		\dashv	_		_	
Normal Tur	Normal Turn Around Time (TAT) = 6-10 Business Days	(TAT) = 6-1	0 Busines	is Days				1	SPECI	A N	SPECIAL INSTRUCTIONS:	-16	-NS:	+		4	7				\dashv	_	_	
	1 DAY	2 E	2 DAY	3 DAY		4 DAY	-	<u> </u>																
IAI Requested (circle)	5 DAY	S	STD	Other:	ان			1																
	MPLES ARE	HELD FOR	30 DAYS		1			П															2/16/14 BC	980
SHED BY:	Date: Signature: Signature:	% % % % % % % % % % % % % % % % % % %	SEIVED BY	A	\	Date:	Date: 1/6/12	- 8	REL INC	HSIN:	RELINQUISHED BY: Signature:				Date	6	, s	RECEIVED BY: Signature:	DBY:			Date:		
FRY LABEACK	Time:	لِين <u>۽</u>	ted Name.	∑ }		Time:	Time: 440		Printed Name:	Name					Time:	ài	<u> </u>	Printed Name:	me:			Time:		
Company: $\leq \not\in \varsigma$		S	AQEX	7	405	~		<u> </u>	Company:	à							0	Company:						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323

Project Manager: Chip Byrd

Report ID: A2K0621 - 12 03 22 1302

Client: Sevens	\sim		Eleme	ent WO# A	2 K a(-1)	
			Licin		323	
Project/Project #:6	usco - bag	rille	***************************************	(3)		
Delivery Info:	1/1					
Date/time received:					-	
Delivered by: Apex	_ClientESS	FedExUP	SSwift	Senvoy	SDSOt	her
Cooler Inspection	Date/time inspected					
Chain of Custody inclu-	The state of the s	No	Custody seals?	Yes	No_ <u>X</u>	
Signed/dated by client?	And the second second	No				
Signed/dated by Apex?	· · · · · · · · · · · · · · · · · · ·	No				
	Cooler #1 Co	ooler #2 Cooler	#3 Cooler #4	Cooler #5	Cooler #6	Cooler #7
Temperature (°C)	2.5					
Received on ice? (Y/N)	· - 1 , -					
Temp. blanks? (Y/N)	_ 				***************************************	
Ice type: (Gel/Real/Othe	/		****		AMERICA	
Condition (In/Out):	_ In_					
Green dots applied to or Out of temperature sam: Sample Inspection: I	of temperature sar ples form initiated? Date/time inspected:	mples? Yes/No Yes/No 11/16/22 @		ву: <i>ДХУ</i> У)	
Green dots applied to of Out of temperature sample Inspection: All samples intact? Yes	of temperature samples form initiated? Date/time inspected: No Com	mples? Yes/No Yes/No JI/16/22 @ nments:	13:25			
Green dots applied to of Out of temperature sample Inspection: All samples intact? Yes	of temperature samples form initiated? Date/time inspected: No Com	mples? Yes/No Yes/No 11/76/22 @ nments: Comments:	13:25 14122			
Green dots applied to of Out of temperature sams Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree	of of temperature samples form initiated? Date/time inspected: Some Comes Pee? Yes No	mples? Yes/No Yes/No µ/16/22 @ nments: Comments:	13:25 14/22 M 1110/22			
Green dots applied to of Out of temperature sam Sample Inspection: I All samples intact? Yes Bottle labels/COCs agre	of of temperature samples form initiated? Date/time inspected: S No Com Date? Yes No	mples? Yes/No Yes/No Yes/No II/16/72 @ ments: Comments: Comments:	13:25 14/22 M 11/10/12			
Green dots applied to of Out of temperature sams Sample Inspection: All samples intact? Yes Bottle labels/COCs agree	of of temperature samples form initiated? Date/time inspected: S No Com Date? Yes No	mples? Yes/No Yes/No Yes/No II/16/72 @ ments: Comments: Comments:	13:25 14/22 M 11/10/12			
Green dots applied to of Out of temperature sams Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes received.	of of temperature samples form initiated? Date/time inspected: Solution Competer Yes No compet	mples? Yes/No Yes/No Yes/No II/16/12 @ nments: Comments: ? Yes No r analysis? Yes	13:25 14/22 M *//10/22 X No(
Green dots applied to of Out of temperature sams Sample Inspection: All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes reco	of of temperature samples form initiated? Date/time inspected: Solution Competer Yes No compet	mples? Yes/No Yes/No Yes/No II/16/12 @ nments: Comments: ? Yes No r analysis? Yes	13:25 14/22 M *//10/22 X No(
Green dots applied to of Out of temperature sams Sample Inspection: All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes record Do VOA vials have visit Comments	of of temperature samples form initiated? Date/time inspected: Solution Date No	mples? Yes/No Yes/No Yes/No II/16/72 @ mments: Comments: Yes No r analysis? Yes es No	13:25 14/22 M *//*/*/* M No (NA (Comments:		
Green dots applied to of Out of temperature sams Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes received to VOA vials have visit Comments Water samples: pH check	of temperature samples form initiated? Date/time inspected: S No Com See? Yes No uncies form initiated eived appropriate form ble headspace? Yes Sked: Yes No	mples? Yes/No Yes/No Yes/No II/16/72 @ mments: Comments: Yes No r analysis? Yes es No	13:25 14/22 M *//*/*/* M No (NA (Comments:		
Green dots applied to of Out of temperature sams Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes received Do VOA vials have visit Comments Water samples: pH chec	of temperature samples form initiated? Date/time inspected: S No Com See? Yes No uncies form initiated eived appropriate form ble headspace? Yes Sked: Yes No	mples? Yes/No Yes/No Yes/No II/16/72 @ mments: Comments: Yes No r analysis? Yes es No	13:25 14/22 M *//*/*/* M No (NA (Comments:		
Green dots applied to of Out of temperature sams Sample Inspection: All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes reco Do VOA vials have visit Comments Water samples: pH chec	of of temperature samples form initiated? Date/time inspected: S No Compare? Yes No uncies form initiated? ble headspace? Y cked: Yes No?	mples? Yes/No Yes/No Yes/No II/16/72 @ mments: Comments: Yes No r analysis? Yes es No	13:25 14/22 M *//*/*/* M No (NA (Comments:		
Green dots applied to of Out of temperature sams Sample Inspection: All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes reco Do VOA vials have visit Comments Water samples: pH chec	of of temperature samples form initiated? Date/time inspected: S No Compare? Yes No uncies form initiated? ble headspace? Y cked: Yes No?	mples? Yes/No Yes/No Yes/No II/16/72 @ mments: Comments: Yes No r analysis? Yes es No	13:25 14/22 M *//*/*/* M No (NA (Comments:		
Green dots applied to of Out of temperature samp Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes received by COC vials have visite Comments Water samples: pH check Comments: Additional information:	of temperature samples form initiated? Date/time inspected: S No Come? Yes No uncles form initiated? eived appropriate fo ble headspace? Y eked: Yes No	mples? Yes/No Yes/No Yes/No Yes/No Interes @ The comments: Comments: ? Yes No r analysis? Yes The comments of the comments	13:25 14/22 M *//*/*/* M No (NA (Comments:		
Cooler out of temp? (Y) Green dots applied to of Out of temperature sam; Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes rece Do VOA vials have visit Comments Water samples: pH chec Comments: Additional information:	of of temperature samples form initiated? Date/time inspected: Solution No Compare? Yes No Compare? Yes No Solution initiated? Date the initiated of the initiated? Date the initiated of the initiated? Date the initiated?	mples? Yes/No Yes/No Yes/No Yes/No Interes @ The comments: Comments: ? Yes No r analysis? Yes The comments of the comments	13:25 14/12 M 1/10/12 X No (Comments:	d by:	

Apex Laboratories