

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, October 28, 2022 Chip Byrd Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, NY 14305

RE: A2I0874 - Gasco -- Filter Bags - 111323

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2I0874, which was received by the laboratory on 9/28/2022 at 10:05:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1

1.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, NY 14305

Project: <u>Gasco</u> Project Number: 111323

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL REPORT FOR SAMPLES

Project Manager: Chip Byrd

Gasco -- Filter Bags

	SAMPLE INFORMATION	N	
Client Sample ID	Laboratory ID Matrix	Date Sampled	Date Received
BF-092022-144	A2I0874-01 Solid	09/20/22 17:00	09/28/22 10:05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BF-092022-144 (A2I0874-01RE1)				Matrix: Solid	t	Batch:	22J0112				
Diesel	5250000	476000	952000	ug/kg	50	10/05/22 09:12	NWTPH-Dx				
Oil	3860000	952000	1900000	ug/kg	50	10/05/22 09:12	NWTPH-Dx				
Surrogate: o-Terphenyl (Surr)		Red	covery: %	Limits: 50-150 %	50	10/05/22 09:12	NWTPH-Dx	S-01			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
BF-092022-144 (A2I0874-01)			Matrix: Solid Batch: 2210974 V-16							
Gasoline Range Organics	9350000	298000	595000	ug/kg dry	100	09/29/22 19:03	NWTPH-Gx (MS)	F-13		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ery: 97 % 87 %	Limits: 50-150 % 50-150 %	-	09/29/22 19:03 09/29/22 19:03	NWTPH-Gx (MS) NWTPH-Gx (MS)			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	:60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BF-092022-144 (A2I0874-01)				Matrix: Sol	id	Batch:	2210974	V-16
Acetone	ND	59500	119000	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Acrylonitrile	ND	5950	11900	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Benzene	ND	595	1190	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Bromobenzene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Bromochloromethane	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Bromodichloromethane	58900	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Bromoform	20300	5950	11900	ug/kg dry	100	09/29/22 19:03	5035A/8260D	Q-54b
Bromomethane	ND	59500	59500	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
2-Butanone (MEK)	ND	29800	59500	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
n-Butylbenzene	ND	5950	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
sec-Butylbenzene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
ert-Butylbenzene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Carbon disulfide	ND	59500	59500	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Carbon tetrachloride	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Chlorobenzene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Chloroethane	ND	59500	59500	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Chloroform	71100	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Chloromethane	ND	14900	29800	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
2-Chlorotoluene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1-Chlorotoluene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Dibromochloromethane	40000	5950	11900	ug/kg dry	100	09/29/22 19:03	5035A/8260D	Q-54
1,2-Dibromo-3-chloropropane	ND	14900	29800	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Dibromomethane	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,2-Dichlorobenzene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,3-Dichlorobenzene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,4-Dichlorobenzene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Dichlorodifluoromethane	ND	11900	11900	ug/kg dry	100	09/29/22 19:03	5035A/8260D	ICV-0
,1-Dichloroethane	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,1-Dichloroethene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
cis-1,2-Dichloroethene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
rans-1,2-Dichloroethene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport RoadProject Number: 111323Niagara Falls, NY 14305Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

Gasco -- Filter Bags

Project:

			ic Compound	LFA 02				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
BF-092022-144 (A2I0874-01)				Matrix: Soli	id	Batch:	2210974	V-16
1,2-Dichloropropane	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,3-Dichloropropane	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
2,2-Dichloropropane	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,1-Dichloropropene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
cis-1,3-Dichloropropene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
trans-1,3-Dichloropropene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Ethylbenzene	6370	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Hexachlorobutadiene	ND	5950	11900	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
2-Hexanone	ND	59500	59500	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Isopropylbenzene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
4-Isopropyltoluene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Methylene chloride	ND	29800	59500	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	59500	59500	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Naphthalene	20400	5950	11900	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
n-Propylbenzene	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Styrene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	5950	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Tetrachloroethene (PCE)	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Toluene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,2,3-Trichlorobenzene	ND	14900	29800	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,2,4-Trichlorobenzene	ND	14900	29800	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,1,1-Trichloroethane	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,1,2-Trichloroethane	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Trichloroethene (TCE)	ND	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Trichlorofluoromethane	ND	5950	11900	ug/kg dry	100	09/29/22 19:03	5035A/8260D	EST
1,2,3-Trichloropropane	ND	8930	8930	ug/kg dry	100	09/29/22 19:03	5035A/8260D	R-02
1,2,4-Trimethylbenzene	8690	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
1,3,5-Trimethylbenzene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
Vinyl chloride	ND	2980	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
m,p-Xylene	ND	2980	5950	ug/kg dry	100	09/29/22 19:03	5035A/8260D	
o-Xylene	2500	1490	2980	ug/kg dry	100	09/29/22 19:03	5035A/8260D	J

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	U	nits	Dilution	Date Analyzed	Method Ref.	Notes		
BF-092022-144 (A2l0874-01)				Mat	rix: Soli	d	Batch:	2210974	V-16		
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 101 %	Limits:	80-120 %	6 I	09/29/22 19:03	5035A/8260D			
Toluene-d8 (Surr)			96 %		80-120 %	6 I	09/29/22 19:03	5035A/8260D			
4-Bromofluorobenzene (Surr)			96 %		79-120 %	6 I	09/29/22 19:03	5035A/8260D			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: <u>Gasco -- Filter Bags</u>

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

Regulated TCLP Volatile Organic Compounds by EPA 1311/8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BF-092022-144 (A2I0874-01)				Matrix: Solid	1	Batch:	22J0268				
Benzene	ND	6.25	12.5	ug/L	50	10/07/22 16:28	1311/8260D				
2-Butanone (MEK)	ND	250	500	ug/L	50	10/07/22 16:28	1311/8260D				
Carbon tetrachloride	ND	25.0	50.0	ug/L	50	10/07/22 16:28	1311/8260D				
Chlorobenzene	ND	12.5	25.0	ug/L	50	10/07/22 16:28	1311/8260D				
Chloroform	73.0	25.0	50.0	ug/L	50	10/07/22 16:28	1311/8260D				
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50	10/07/22 16:28	1311/8260D				
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50	10/07/22 16:28	1311/8260D				
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50	10/07/22 16:28	1311/8260D				
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50	10/07/22 16:28	1311/8260D				
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50	10/07/22 16:28	1311/8260D				
Vinyl chloride	ND	12.5	25.0	ug/L	50	10/07/22 16:28	1311/8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 113 %	Limits: 80-120 %	1	10/07/22 16:28	1311/8260D				
Toluene-d8 (Surr)			97 %	80-120 %	. I	10/07/22 16:28	1311/8260D				
4-Bromofluorobenzene (Surr)			101 %	80-120 %	. 1	10/07/22 16:28	1311/8260D				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic compo	unus by EPA	0∠/UE			
	Sample	Detection	Reporting	** .	P.11 .	Date	M 4 45 5	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BF-092022-144 (A2I0874-01RE1)				Matrix: Sol	id	Batch:	22J0030	
Acenaphthene	ND	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Acenaphthylene	394	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	J
Anthracene	339	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	J
Benz(a)anthracene	523	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	J
Benzo(a)pyrene	611	492	985	ug/kg dry	20	10/04/22 21:03	EPA 8270E	J
Benzo(b)fluoranthene	1050	492	985	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Benzo(k)fluoranthene	ND	492	985	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Benzo(g,h,i)perylene	334	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	J
Chrysene	1440	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Dibenz(a,h)anthracene	ND	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Fluoranthene	1420	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Fluorene	3340	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Indeno(1,2,3-cd)pyrene	415	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	J
1-Methylnaphthalene	ND	657	1310	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2-Methylnaphthalene	ND	657	1310	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Naphthalene	ND	657	1310	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Phenanthrene	2160	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Pyrene	495	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	J
Carbazole	6110	492	985	ug/kg dry	20	10/04/22 21:03	EPA 8270E	Q-42
Dibenzofuran	746	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2-Chlorophenol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
4-Chloro-3-methylphenol	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,4-Dichlorophenol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,4-Dimethylphenol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	Q-42
2,4-Dinitrophenol	ND	8200	16400	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	8200	16400	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2-Methylphenol	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
3+4-Methylphenol(s)	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2-Nitrophenol	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
4-Nitrophenol	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Pentachlorophenol (PCP)	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Phenol	ND	657	1310	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Compo	ınds by EPA	8270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BF-092022-144 (A2I0874-01RE1)				Matrix: Soli	id	Batch:	22J0030	
2,3,5,6-Tetrachlorophenol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,4,5-Trichlorophenol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Nitrobenzene	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,4,6-Trichlorophenol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	4920	9850	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Butyl benzyl phthalate	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Diethylphthalate	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Dimethylphthalate	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Di-n-butylphthalate	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Di-n-octyl phthalate	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
N-Nitrosodimethylamine	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
N-Nitrosodiphenylamine	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Hexachlorobenzene	ND	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Hexachlorobutadiene	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Hexachlorocyclopentadiene	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Hexachloroethane	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2-Chloronaphthalene	ND	327	657	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
1,2,4-Trichlorobenzene	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
4-Bromophenyl phenyl ether	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Aniline	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	Q-42
4-Chloroaniline	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	Q-42
2-Nitroaniline	ND	6570	13100	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
3-Nitroaniline	ND	6570	13100	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
4-Nitroaniline	ND	6570	13100	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,4-Dinitrotoluene	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
2,6-Dinitrotoluene	ND	3270	6570	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Benzoic acid	ND	41100	82000	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Benzyl alcohol	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compo	ounds by EPA 8	32/UE			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BF-092022-144 (A2I0874-01RE1)				Matrix: Solid	<u> </u>	Batch:	22J0030	
Isophorone	ND	2460	2460	ug/kg dry	20	10/04/22 21:03	EPA 8270E	R-02
Azobenzene (1,2-DPH)	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	8200	16400	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
3,3'-Dichlorobenzidine	ND	6570	13100	ug/kg dry	20	10/04/22 21:03	EPA 8270E	Q-42, Q-5
1,2-Dinitrobenzene	ND	8200	16400	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
1,3-Dinitrobenzene	ND	8200	16400	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
1,4-Dinitrobenzene	ND	8200	16400	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Pyridine	ND	1640	3270	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
1,2-Dichlorobenzene	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
1,3-Dichlorobenzene	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
1,4-Dichlorobenzene	ND	820	1640	ug/kg dry	20	10/04/22 21:03	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	very: 69 %	Limits: 37-122 %	6 20	10/04/22 21:03	EPA 8270E	
2-Fluorobiphenyl (Surr)			66 %	44-120 %		10/04/22 21:03	EPA 8270E	
Phenol-d6 (Surr)			37 %	33-122 %		10/04/22 21:03	EPA 8270E	
p-Terphenyl-d14 (Surr)			80 %	54-127 %		10/04/22 21:03	EPA 8270E	
2-Fluorophenol (Surr)			38 %	35-120 %		10/04/22 21:03	EPA 8270E	
2,4,6-Tribromophenol (Surr)			72 %	39-132 %	6 20	10/04/22 21:03	EPA 8270E	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
•	Result	Dillit	Limit			Anaryzed	Wichiod Ref.	Notes			
BF-092022-144 (A2I0874-01)		Matrix: Solid									
Batch: 22I0998											
Arsenic	111000	6800	13600	ug/kg dry	10	09/30/22 13:22	EPA 6020B				
Barium	245000	6800	13600	ug/kg dry	10	09/30/22 13:22	EPA 6020B				
Cadmium	ND	1360	2720	ug/kg dry	10	09/30/22 13:22	EPA 6020B				
Chromium	240000	6800	13600	ug/kg dry	10	09/30/22 13:22	EPA 6020B				
Lead	174000	1360	2720	ug/kg dry	10	09/30/22 13:22	EPA 6020B				
Mercury	ND	544	1090	ug/kg dry	10	09/30/22 13:22	EPA 6020B				
Selenium	ND	6800	13600	ug/kg dry	10	09/30/22 13:22	EPA 6020B				
Silver	ND	1360	2720	ug/kg dry	10	09/30/22 13:22	EPA 6020B				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Ga

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A210874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

	TCLP Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
BF-092022-144 (A2I0874-01)		Matrix: Solid										
Batch: 22J0134												
Arsenic	ND	50.0	100	ug/L	10	10/05/22 23:15	1311/6020B					
Barium	ND	2500	5000	ug/L	10	10/05/22 23:15	1311/6020B					
Cadmium	ND	50.0	100	ug/L	10	10/05/22 23:15	1311/6020B					
Chromium	ND	50.0	100	ug/L	10	10/05/22 23:15	1311/6020B					
Lead	ND	25.0	50.0	ug/L	10	10/05/22 23:15	1311/6020B					
Mercury	ND	3.75	7.00	ug/L	10	10/05/22 23:15	1311/6020B					
Selenium	ND	50.0	100	ug/L	10	10/05/22 23:15	1311/6020B					
Silver	ND	50.0	100	ug/L	10	10/05/22 23:15	1311/6020B					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport RoadProject Number: 111323Niagara Falls, NY 14305Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

Gasco -- Filter Bags

Project:

	Soluble Cyanide	by UV Diges	stion/Gas Dif	fusion/Ampe	rometric I	Detection		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BF-092022-144 (A2I0874-01)				Matrix: So	lid	Batch:	22J0022	
Total Cyanide	20200	3030	6060	ug/kg dry	5	10/03/22 15:06	D7511-12	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BF-092022-144 (A2I0874-01)				Matrix: So	olid	Batch:	2211046	
% Solids	8.01	1.00	1.00	%	1	10/03/22 06:52	EPA 8000D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road

Niagara Falls, NY 14305

Project:

Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

ANALYTICAL SAMPLE RESULTS

		TCLP E	xtraction by	EPA 1311				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BF-092022-144 (A2I0874-01)				Matrix: So	olid	Batch:	22J0014	
TCLP Extraction TCLP ZHE Extraction	PREP PREP			N/A N/A	1 1	10/04/22 17:00 10/04/22 15:01	EPA 1311 EPA 1311 ZHE	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	esel and/o	r Oil Hyd	rocarbor	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0032 - EPA 3546 (F	uels)						So	lid				
Blank (22J0032-BLK1)			Prepared	l: 10/03/22 1	0:39 Ana	lyzed: 10/04	/22 10:58					
NWTPH-Dx												
Diesel	ND	9090	18200	ug/kg	1							
Oil	ND	18200	36400	ug/kg	1							
Surr: o-Terphenyl (Surr)		Reco	very: 72 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (22J0032-BS1)			Prepared	1: 10/03/22 1	0:39 Ana	lyzed: 10/04	1/22 11:22					
NWTPH-Dx												
Diesel	106000	10000	20000	ug/kg	1	125000		85	38-132%			
Surr: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50	-150 %	Dili	ution: 1x					
Duplicate (22J0032-DUP1)			Prepared	1: 10/03/22 1	0:39 Anal	lyzed: 10/04	1/22 12:33					
QC Source Sample: BF-092022-14	44 (A2I0874-	<u>01)</u>										
NWTPH-Dx												
Diesel	1040000		19700	ug/kg	1		946000			10	30%	
Oil	610000	19700	39400	ug/kg	1		549000			11	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 52 %	Limits: 50	-150 %	Dili	ution: 1x					
Batch 22J0112 - EPA 3546 (Fi	uels)						So	lid				
Blank (22J0112-BLK1)			Prepared	l: 10/04/22 1	6:18 Ana	lyzed: 10/05	5/22 08:31					
NWTPH-Dx												
Diesel	ND	10000	20000	ug/kg	1							
Oil	ND	20000	40000	ug/kg	1							
Surr: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (22J0112-BS1)			Prepared	l: 10/04/22 1	6:18 Ana	lyzed: 10/05	5/22 08:52					
NWTPH-Dx												
Diesel	119000	10000	20000	ug/kg	1	125000		95	38-132%			
Surr: o-Terphenyl (Surr)		Reco	very: 96 %	Limits: 50	-150 %	Dili	ution: 1x					
Duplicate (22J0112-DUP1)			Prepared	l: 10/04/22 1	6:18 Ana	lyzed: 10/05	5/22 10:14					
QC Source Sample: Non-SDG (AZ	2J0030-02)											

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project:

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasco -- Filter Bags

Diesel and/or Oil Hydrocarbons by NWTPH-Dx Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 22J0112 - EPA 3546 (Fuels) Solid Duplicate (22J0112-DUP1) Prepared: 10/04/22 16:18 Analyzed: 10/05/22 10:14 QC Source Sample: Non-SDG (A2J0030-02) Oil 19500 38900 30% ug/kg ND Recovery: Surr: o-Terphenyl (Surr) 84 % Limits: 50-150 % Dilution: 1x

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolin	ne Range H	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0974 - EPA 5035A							Soi	I				
Blank (22I0974-BLK1)			Prepared	l: 09/29/22	08:00 Ana	lyzed: 09/29	/22 12:46					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	1670	3330	ug/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			90 %	5	0-150 %		"					
LCS (22I0974-BS2)			Prepared	1: 09/29/22	08:00 Ana	lyzed: 09/29	/22 12:19					
NWTPH-Gx (MS)												
Gasoline Range Organics	21700	2500	5000	ug/kg v	vet 50	25000		87	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
Duplicate (22I0974-DUP1)			Prepared	1: 09/28/22	16:14 Ana	lyzed: 09/29	/22 19:30					V-16
QC Source Sample: BF-092022-14	4 (A2I0874-	<u>-01)</u>										
NWTPH-Gx (MS)												
Gasoline Range Organics	9580000	298000	595000	ug/kg d	lry 100		9350000			2	30%	F-1
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 98 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			88 %	5	0-150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Blank (22I0974-BLK1) Prepared: 09/29/22 08:00 Analyzed: 09/29/22 12:46 5035A/8260D ND 333 ug/kg wet 50 Acetone ND 33.3 66.7 50 Acrylonitrile ug/kg wet Benzene ND 3.33 6.67 ug/kg wet 50 Bromobenzene ND 8.33 16.7 ug/kg wet 50 Bromochloromethane ND 16.7 33.3 50 ug/kg wet ND Bromodichloromethane 16.7 33.3 ug/kg wet 50 Bromoform ND 33.3 ug/kg wet 50 66.7 333 333 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 167 333 ug/kg wet 50 n-Butylbenzene ND 16.7 33.3 50 ug/kg wet sec-Butylbenzene ND 16.7 33.3 ug/kg wet 50 ND 33.3 tert-Butylbenzene 16.7 50 ug/kg wet ---Carbon disulfide ND 333 333 ug/kg wet 50 Carbon tetrachloride ND 33.3 50 16.7 ug/kg wet Chlorobenzene ND 8.33 16.7 ug/kg wet 50 Chloroethane ND 333 333 ug/kg wet 50 ---Chloroform ND 16.7 33.3 ug/kg wet 50 ND 83.3 167 Chloromethane ug/kg wet 50 2-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 4-Chlorotoluene ND 16.7 33.3 ug/kg wet 50 Dibromochloromethane ND 33.3 66.7 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 83.3 167 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 16.7 33.3 ug/kg wet 50 Dibromomethane ND 16.7 33.3 ug/kg wet 50 1,2-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,3-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 1,4-Dichlorobenzene ND 8.33 16.7 ug/kg wet 50 ICV-02 Dichlorodifluoromethane ND 66.7 66.7 ug/kg wet 50 ---ND 1,1-Dichloroethane 8.33 16.7 ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 8.33 16.7 50 1,1-Dichloroethene ND 50 8.33 16.7 ug/kg wet cis-1,2-Dichloroethene ND 8.33 16.7 ug/kg wet 50 8.33 16.7 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Blank (22I0974-BLK1) Prepared: 09/29/22 08:00 Analyzed: 09/29/22 12:46 ND 8.33 16.7 50 1,2-Dichloropropane ug/kg wet ND 16.7 33.3 ug/kg wet 50 1,3-Dichloropropane 2,2-Dichloropropane ND 16.7 33.3 ug/kg wet 50 1,1-Dichloropropene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 cis-1,3-Dichloropropene ug/kg wet trans-1,3-Dichloropropene ND 16.7 33.3 ug/kg wet 50 Ethylbenzene ND 8.33 16.7 ug/kg wet 50 Hexachlorobutadiene ND 33.3 66.7 ug/kg wet 50 333 2-Hexanone ND 333 ug/kg wet 50 Isopropylbenzene ND 16.7 33.3 ug/kg wet 50 ND 16.7 33.3 50 4-Isopropyltoluene ug/kg wet 333 Methylene chloride ND 167 ug/kg wet 50 ND 4-Methyl-2-pentanone (MiBK) 333 333 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 16.7 33.3 ug/kg wet 50 ND 33.3 66.7 Naphthalene ug/kg wet 50 n-Propylbenzene ND 8.33 16.7 ug/kg wet 50 ND 16.7 33.3 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 8.33 16.7 ug/kg wet 50 1.1.2.2-Tetrachloroethane ND 16.7 33.3 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 8.33 16.7 ug/kg wet 50 Toluene ND 16.7 33.3 ug/kg wet 50 1,2,3-Trichlorobenzene ND 83.3 167 ug/kg wet 50 1,2,4-Trichlorobenzene ND 83.3 167 50 ug/kg wet 1,1,1-Trichloroethane ND 8.33 16.7 50 ug/kg wet

50

50

50

50

50

50

50

50

50

ug/kg wet

Surr: 1,4-Difluorobenzene (Surr) Recovery: 103 % Limits: 80-120 % Dilution: Ix

8.33

8.33

33.3

16.7

16.7

16.7

16.7

16.7

8.33

ND

ND

ND

ND

ND

ND

ND

ND

ND

16.7

16.7

66.7

33.3

33.3

33.3

16.7

33.3

16.7

Apex Laboratories

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EST

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 2210974 - EPA 5035A							Soi	il				
Blank (22I0974-BLK1)			Prepared	1: 09/29/22 0	8:00 Anal	lyzed: 09/29	/22 12:46					
Surr: Toluene-d8 (Surr)		Reco	overy: 97%	Limits: 80-	120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			98 %	79-	120 %		"					
LCS (22I0974-BS1)			Prepared	d: 09/29/22 0	8:00 Anal	lyzed: 09/29	/22 11:51					
5035A/8260D												
Acetone	1670	500	1000	ug/kg we	t 50	2000		83	80-120%			ICV-0
Acrylonitrile	884	50.0	100	ug/kg we	t 50	1000		88	80-120%			
Benzene	1010	5.00	10.0	ug/kg we	t 50	1000		101	80-120%			
Bromobenzene	1020	12.5	25.0	ug/kg we	t 50	1000		102	80-120%			
Bromochloromethane	996	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
Bromodichloromethane	1170	25.0	50.0	ug/kg we	t 50	1000		117	80-120%			
Bromoform	1260	50.0	100	ug/kg we	t 50	1000		126	80-120%			Q-5
Bromomethane	966	500	500	ug/kg we	t 50	1000		97	80-120%			
2-Butanone (MEK)	1590	250	500	ug/kg we	t 50	2000		80	80-120%			
n-Butylbenzene	1020	25.0	50.0	ug/kg we	t 50	1000		102	80-120%			
sec-Butylbenzene	999	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
tert-Butylbenzene	856	25.0	50.0	ug/kg we	t 50	1000		86	80-120%			
Carbon disulfide	712	500	500	ug/kg we	t 50	1000		71	80-120%			Q-:
Carbon tetrachloride	1260	25.0	50.0	ug/kg we	t 50	1000		126	80-120%			Q-:
Chlorobenzene	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
Chloroethane	793	500	500	ug/kg we	t 50	1000		79	80-120%			Q-:
Chloroform	1020	25.0	50.0	ug/kg we	t 50	1000		102	80-120%			
Chloromethane	868	125	250	ug/kg we	t 50	1000		87	80-120%			
2-Chlorotoluene	962	25.0	50.0	ug/kg we	t 50	1000		96	80-120%			
4-Chlorotoluene	916	25.0	50.0	ug/kg we	t 50	1000		92	80-120%			
Dibromochloromethane	1340	50.0	100	ug/kg we	t 50	1000		134	80-120%			Q-:
1,2-Dibromo-3-chloropropane	1010	125	250	ug/kg we	t 50	1000		101	80-120%			
1,2-Dibromoethane (EDB)	993	25.0	50.0	ug/kg we	t 50	1000		99	80-120%			
Dibromomethane	1090	25.0	50.0	ug/kg we		1000		109	80-120%			
1,2-Dichlorobenzene	1020	12.5	25.0	ug/kg we		1000		102	80-120%			
1,3-Dichlorobenzene	1070	12.5	25.0	ug/kg we		1000		107	80-120%			
1,4-Dichlorobenzene	1050	12.5	25.0	ug/kg we		1000		105	80-120%			
Dichlorodifluoromethane	888	100	100	ug/kg we		1000		89	80-120%			ICV-(
1,1-Dichloroethane	991	12.5	25.0	ug/kg we		1000		99	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22I0974 - EPA 5035A Soil LCS (22I0974-BS1) Prepared: 09/29/22 08:00 Analyzed: 09/29/22 11:51 1,2-Dichloroethane (EDC) 950 12.5 25.0 50 1000 95 80-120% ug/kg wet 1,1-Dichloroethene 803 12.5 25.0 ug/kg wet 50 1000 80 80-120% ---------1000 cis-1,2-Dichloroethene 940 12.5 25.0 ug/kg wet 50 94 80-120% trans-1,2-Dichloroethene 964 12.5 25.0 ug/kg wet 50 1000 96 80-120% 1000 962 12.5 25.0 50 96 80-120% 1,2-Dichloropropane ug/kg wet 95 1,3-Dichloropropane 948 25.0 50.0 ug/kg wet 50 1000 80-120% O-56 2,2-Dichloropropane 1240 25.0 50.0 ug/kg wet 50 1000 124 80-120% 942 1000 94 1,1-Dichloropropene 25.0 50.0 ug/kg wet 50 80-120% 25.0 50.0 1000 cis-1,3-Dichloropropene 962 ug/kg wet 50 96 80-120% trans-1,3-Dichloropropene 1010 25.0 50.0 ug/kg wet 50 1000 101 80-120% Ethylbenzene 1000 961 25.0 50 96 80-120% 12.5 ug/kg wet 50.0 100 Hexachlorobutadiene 1100 ug/kg wet 50 1000 110 80-120% 1460 500 500 2000 O-55 2-Hexanone ug/kg wet 50 73 80-120% ---Isopropylbenzene 962 25.0 50.0 ug/kg wet 50 1000 96 80-120% 959 50.0 50 1000 96 80-120% 4-Isopropyltoluene 25.0 ug/kg wet Methylene chloride 1140 250 500 ug/kg wet 50 1000 114 80-120% 1470 500 500 2000 74 80-120% Q-55 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 Methyl tert-butyl ether (MTBE) 902 25.0 50.0 50 1000 90 80-120% ug/kg wet Naphthalene 1010 50.0 100 50 1000 101 80-120% ug/kg wet -----n-Propylbenzene 950 12.5 25.0 ug/kg wet 50 1000 95 80-120% 963 25.0 50.0 50 1000 96 80-120% Styrene ug/kg wet 1,1,1,2-Tetrachloroethane 1190 12.5 25.0 ug/kg wet 50 1000 119 80-120% 1,1,2,2-Tetrachloroethane 892 25.0 50.0 ug/kg wet 50 1000 89 80-120% Tetrachloroethene (PCE) 1150 12.5 25.0 ug/kg wet 50 1000 115 80-120% Toluene 943 25.0 50.0 1000 94 ug/kg wet 50 80-120% ------1,2,3-Trichlorobenzene 1060 125 250 ug/kg wet 50 1000 106 80-120% 1,2,4-Trichlorobenzene 1050 125 250 50 1000 105 80-120% ug/kg wet ------1,1,1-Trichloroethane 1050 12.5 25.0 ug/kg wet 50 1000 105 80-120%

50

50

50

50

50

50

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

1000

1000

1000

1000

1000

1000

Apex Laboratories

1.1.2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

97

114

180

97

97

97

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

973

1140

1800

974

970

973

12.5

12.5

50.0

25.0

25.0

25.0

25.0

25.0

100

50.0

50.0

50.0

Q-56, EST

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 22I0974 - EPA 5035A							Soi	il					
LCS (22I0974-BS1)			Prepared	: 09/29/22 0	8:00 Ana	lyzed: 09/29	/22 11:51						
Vinyl chloride	743	25.0	25.0	ug/kg we	t 50	1000		74	80-120%			Q-5	
m,p-Xylene	1920	25.0	50.0	ug/kg we	t 50	2000		96	80-120%				
o-Xylene	888	12.5	25.0	ug/kg we	t 50	1000		89	80-120%				
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 103 %	Limits: 80-	120 %	Dilt	ution: 1x						
Toluene-d8 (Surr)			97 %	80-	120 %		"						
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"						
Duplicate (22I0974-DUP1)			Prepared	: 09/28/22 1	6:14 Ana	lyzed: 09/29	/22 19:30					V-16	
OC Source Sample: BF-092022-14	14 (A2I0874	<u>-01)</u>											
5035A/8260D Acetone	ND	59500	119000	ug/kg dry	100		ND				30%		
Acrylonitrile	ND	5950	119000	ug/kg dry			ND				30%		
Benzene	ND ND	595	11900	ug/kg dry			ND ND				30%		
Bromobenzene	ND	1490	2980	ug/kg dry			ND				30%		
Bromochloromethane	ND	2980	5950	ug/kg dry			ND				30%		
Bromodichloromethane	59300	2980	5950	ug/kg dry			58900			0.7	30%		
Bromoform	20700	5950	11900	ug/kg dry			20300			2	30%	Q-54	
Bromomethane	ND	59500	59500	ug/kg dry			ND				30%		
2-Butanone (MEK)	ND	29800	59500	ug/kg dry			ND				30%		
n-Butylbenzene	ND	5950	5950	ug/kg dry			ND				30%		
sec-Butylbenzene	ND	2980	5950	ug/kg dry			ND				30%		
tert-Butylbenzene	ND	2980	5950	ug/kg dry			ND				30%		
Carbon disulfide	ND	59500	59500	ug/kg dry	100		ND				30%		
Carbon tetrachloride	ND	2980	5950	ug/kg dry	100		ND				30%		
Chlorobenzene	ND	1490	2980	ug/kg dry	100		ND				30%		
Chloroethane	ND	59500	59500	ug/kg dry	100		ND				30%		
Chloroform	70500	2980	5950	ug/kg dry	100		71100			0.8	30%		
Chloromethane	ND	14900	29800	ug/kg dry	100		ND				30%		
2-Chlorotoluene	ND	2980	5950	ug/kg dry	100		ND				30%		
4-Chlorotoluene	ND	2980	5950	ug/kg dry	100		ND				30%		
Dibromochloromethane	41800	5950	11900	ug/kg dry	100		40000			5	30%	Q-5	
1,2-Dibromo-3-chloropropane	ND	14900	29800	ug/kg dry	100		ND				30%		
1,2-Dibromoethane (EDB)	ND	2980	5950	ug/kg dry	100		ND				30%		
Dibromomethane	ND	2980	5950	ug/kg dry	100		ND				30%		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Duplicate (22I0974-DUP1) Prepared: 09/28/22 16:14 Analyzed: 09/29/22 19:30 V-16 QC Source Sample: BF-092022-144 (A2I0874-01) ug/kg dry 1,2-Dichlorobenzene 1490 2980 100 ND 30% ND 1490 2980 100 1,3-Dichlorobenzene ug/kg dry ND 30% 1,4-Dichlorobenzene ND 1490 2980 ug/kg dry 100 ND 30% ICV-02 Dichlorodifluoromethane ND 11900 11900 ug/kg dry 100 ND 30% 1,1-Dichloroethane ND 1490 2980 ug/kg dry 100 ND 30% ------1,2-Dichloroethane (EDC) ND 2980 1490 ug/kg dry 100 ND 30% 1,1-Dichloroethene ND 1490 2980 ug/kg dry 100 ND 30% 30% ND ND cis-1,2-Dichloroethene 1490 2980 ug/kg dry 100 trans-1,2-Dichloroethene ND 1490 2980 ug/kg dry 100 ND 30% 1,2-Dichloropropane ND 1490 2980 ug/kg dry 100 ND 30% 1,3-Dichloropropane ND 2980 5950 ug/kg dry 100 ND 30% ND 2980 5950 100 30% 2,2-Dichloropropane ug/kg dry ND 1,1-Dichloropropene ND 2980 5950 ug/kg dry 100 ND 30% ND 2980 5950 100 30% cis-1,3-Dichloropropene ug/kg dry ND trans-1,3-Dichloropropene ND 2980 5950 ug/kg dry 100 ND 30% Ethylbenzene 6310 1490 2980 ug/kg dry 100 6370 ___ 0.9 30% Hexachlorobutadiene ND 5950 11900 ug/kg dry 100 ND 30% ND 59500 100 30% 2-Hexanone 59500 ND ug/kg dry Isopropylbenzene ND 2980 5950 ug/kg dry 100 ND 30% 2980 5950 ND 100 ND 30% 4-Isopropyltoluene ug/kg dry ND 29800 59500 Methylene chloride ug/kg dry 100 ND 30% 4-Methyl-2-pentanone (MiBK) ND 59500 59500 ug/kg dry 100 ND ___ ---30% Methyl tert-butyl ether (MTBE) ND 2980 5950 ug/kg dry 100 ND 30% Naphthalene 14600 20400 30% Q-05 5950 11900 ug/kg dry 100 33 ND 1490 2980 30% n-Propylbenzene ug/kg dry 100 ND ND 5950 2980 100 ND 30% Styrene ug/kg dry 1,1,1,2-Tetrachloroethane ND 1490 2980 100 ND 30% ug/kg dry 1,1,2,2-Tetrachloroethane ND 5950 5950 ug/kg dry 100 ND 30% Tetrachloroethene (PCE) ND 1490 2980 ug/kg dry 100 ND 30% Toluene ND 2980 5950 100 ND 30% ug/kg dry 1,2,3-Trichlorobenzene ND 14900 29800 ug/kg dry 100 ND 30% 14900 29800 1,2,4-Trichlorobenzene ND 100 ND 30% ug/kg dry

Apex Laboratories

1,1,1-Trichloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

ND

1490

2980

ug/kg dry

100

30%

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

		<u>'</u>	Volatile Or	ganic Con	npounas	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 2210974 - EPA 5035A							Soi	il				
Duplicate (22I0974-DUP1)			Prepared	1: 09/28/22 1	6:14 Ana	yzed: 09/29/	/22 19:30					V-16
QC Source Sample: BF-092022-14	4 (A2I0874-	<u>-01)</u>										
1,1,2-Trichloroethane	ND	1490	2980	ug/kg dry	100		ND				30%	
Trichloroethene (TCE)	ND	1490	2980	ug/kg dry	y 100		ND				30%	
Trichlorofluoromethane	ND	5950	11900	ug/kg dry	100		ND				30%	EST
1,2,3-Trichloropropane	ND	8930	8930	ug/kg dry	y 100		ND				30%	R-02
1,2,4-Trimethylbenzene	8810	2980	5950	ug/kg dry	y 100		8690			1	30%	
1,3,5-Trimethylbenzene	ND	2980	5950	ug/kg dry	100		ND				30%	
Vinyl chloride	ND	2980	2980	ug/kg dry	y 100		ND				30%	
m,p-Xylene	ND	2980	5950	ug/kg dry	y 100		ND				30%	
o-Xylene	2680	1490	2980	ug/kg dry	y 100		2500			7	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-	120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	79-	120 %		"					
Matrix Spike (22I0974-MS1)			Prepared	1: 09/29/22 1	1:25 Anal	yzed: 09/29/	/22 16:48					V-15
Matrix Spike (22I0974-MS1) OC Source Sample: Non-SDG (A2	10908-01)		Prepared	1: 09/29/22 1	1:25 Anal	yzed: 09/29/	/22 16:48					V-15
QC Source Sample: Non-SDG (A2	10908-01)		Prepared	1: 09/29/22 1	1:25 Anal	yzed: 09/29/	/22 16:48					V-15
QC Source Sample: Non-SDG (A2 5035A/8260D		711	•					90	36-164%			
OC Source Sample: Non-SDG (A2 5035A/8260D Acetone	2570		1420	ug/kg dry	y 50	2850	/22 16:48 ND ND	90 85	36-164% 65-134%			
QC Source Sample: Non-SDG (A2 5035A/8260D	2570 1210	71.1	1420 142	ug/kg dry ug/kg dry	y 50 y 50		ND	85				
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene	2570 1210 1430	71.1 7.11	1420 142 14.2	ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50	2850 1420 1420	ND ND ND	85 100	65-134% 77-121%			
OC Source Sample: Non-SDG (A2 5035A/8260D Acetone Acrylonitrile	2570 1210 1430 1530	71.1 7.11 17.8	1420 142 14.2 35.5	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50	2850 1420 1420 1420	ND ND ND	85 100 107	65-134% 77-121% 78-121%			
OC Source Sample: Non-SDG (A2 5035A/8260D Acetone Acrylonitrile Benzene Bromobenzene	2570 1210 1430 1530 1380	71.1 7.11	1420 142 14.2	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50 y 50	2850 1420 1420 1420 1420	ND ND ND ND	85 100 107 97	65-134% 77-121% 78-121% 78-125%		 	
OC Source Sample: Non-SDG (A2 5035A/8260D Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane	2570 1210 1430 1530 1380 1670	71.1 7.11 17.8 35.5 35.5	1420 142 14.2 35.5 71.1 71.1	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50 y 50 y 50	2850 1420 1420 1420 1420 1420	ND ND ND ND ND	85 100 107 97 118	65-134% 77-121% 78-121% 78-125% 75-127%	 	 	ICV-01
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane	2570 1210 1430 1530 1380	71.1 7.11 17.8 35.5	1420 142 14.2 35.5 71.1	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50	2850 1420 1420 1420 1420	ND ND ND ND	85 100 107 97	65-134% 77-121% 78-121% 78-125%	 	 	ICV-0
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	2570 1210 1430 1530 1380 1670 1770	71.1 7.11 17.8 35.5 35.5 71.1	1420 142 14.2 35.5 71.1 71.1 142	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50 y 50 y 50 y 50 y 50	2850 1420 1420 1420 1420 1420 1420	ND ND ND ND ND ND ND	85 100 107 97 118 124	65-134% 77-121% 78-121% 78-125% 75-127% 67-132%		 	ICV-0
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	2570 1210 1430 1530 1380 1670 1770 1550	71.1 7.11 17.8 35.5 35.5 71.1 711	1420 142 14.2 35.5 71.1 71.1 142 711	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	y 50 y 50 y 50 y 50 y 50 y 50 y 50 y 50	2850 1420 1420 1420 1420 1420 1420 1420	ND ND ND ND ND ND ND ND ND	85 100 107 97 118 124 109	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143%		 	ICV-0
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	2570 1210 1430 1530 1380 1670 1770 1550 2280	71.1 7.11 17.8 35.5 35.5 71.1 711 355	1420 142 14.2 35.5 71.1 71.1 142 711 711	ug/kg dry	7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50	2850 1420 1420 1420 1420 1420 1420 1420 2850	ND	85 100 107 97 118 124 109 80	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148%	 	 	ICV-0
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	2570 1210 1430 1530 1380 1670 1770 1550 2280 3200	71.1 7.11 17.8 35.5 35.5 71.1 711 355 35.5	1420 142 14.2 35.5 71.1 71.1 142 711 71.1	ug/kg dry	7 50 7 50 7 50 7 50 7 50 7 50 7 50 7 50	2850 1420 1420 1420 1420 1420 1420 1420 2850 1420	ND N	85 100 107 97 118 124 109 80	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128%	 	 	ICV-01
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	2570 1210 1430 1530 1380 1670 1770 1550 2280 3200 2040 1410	71.1 7.11 17.8 35.5 35.5 71.1 711 355 35.5 35.5	1420 142 14.2 35.5 71.1 71.1 142 711 71.1 71.1	ug/kg dry	7 50 7 50	2850 1420 1420 1420 1420 1420 1420 1420 2850 1420 1420	ND N	85 100 107 97 118 124 109 80 99 117	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126%	 	 	ICV-0: Q-54I
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	2570 1210 1430 1530 1380 1670 1770 1550 2280 3200 2040 1410 1250	71.1 7.11 17.8 35.5 35.5 71.1 711 355 35.5 35.5 35.5	1420 142 14.2 35.5 71.1 71.1 142 711 71.1 71.1 71.1	ug/kg dry	50 50 50 50 50 50 50 50 50 50	2850 1420 1420 1420 1420 1420 1420 1420 142	ND N	85 100 107 97 118 124 109 80 99 117 99 88	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 63-132%	 	 	ICV-0: Q-54I Q-54I
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	2570 1210 1430 1530 1380 1670 1770 1550 2280 3200 2040 1410 1250 1880	71.1 7.11 17.8 35.5 35.5 71.1 711 355 35.5 35.5 35.5 711 35.5	1420 142 14.2 35.5 71.1 71.1 142 711 71.1 71.1 71.1 71.1	ug/kg dry	50 7	2850 1420 1420 1420 1420 1420 1420 1420 142	ND N	85 100 107 97 118 124 109 80 99 117 99 88 132	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-125% 63-132% 70-135%	 	 	ICV-01 Q-54k Q-54k
OC Source Sample: Non-SDG (A2 5035A/8260D) Acetone Acrylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	2570 1210 1430 1530 1380 1670 1770 1550 2280 3200 2040 1410 1250	71.1 7.11 17.8 35.5 35.5 71.1 711 355 35.5 35.5 35.5	1420 142 14.2 35.5 71.1 71.1 142 711 71.1 71.1 71.1 71.1	ug/kg dry	50 7	2850 1420 1420 1420 1420 1420 1420 1420 142	ND N	85 100 107 97 118 124 109 80 99 117 99 88	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 63-132%	 	 	V-15 ICV-01 Q-54k Q-54k Q-54k Q-54k

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Matrix Spike (22I0974-MS1) Prepared: 09/29/22 11:25 Analyzed: 09/29/22 16:48 V-15 QC Source Sample: Non-SDG (A2I0908-01) Chloromethane 1250 178 355 ug/kg dry 50 1420 ND 88 50-136% 35.5 71.1 1420 2-Chlorotoluene 1560 ug/kg dry 50 ND 107 75-122% 4-Chlorotoluene 1380 35.5 71.1 ug/kg dry 50 1420 ND 97 72-124% Dibromochloromethane 1920 71.1 142 ug/kg dry 50 1420 ND 135 74-126% O-54 1,2-Dibromo-3-chloropropane 1730 178 355 ug/kg dry 50 1420 ND 121 61-132% 35.5 71.1 1420 ND 102 1,2-Dibromoethane (EDB) 1450 ug/kg dry 50 78-122% Dibromomethane 1530 35.5 71.1 50 1420 ND 107 78-125% ug/kg dry 35.5 1420 ND 107 1.2-Dichlorobenzene 1530 17.8 ug/kg dry 50 78-121% 1,3-Dichlorobenzene 1590 17.8 35.5 ug/kg dry 50 1420 ND 112 77-121% 1,4-Dichlorobenzene 1510 17.8 35.5 ug/kg dry 50 1420 ND 106 75-120% Dichlorodifluoromethane 1410 142 142 ug/kg dry 50 1420 ND 99 29-149% ICV-02 17.8 35.5 50 1420 ND 102 76-125% 1.1-Dichloroethane 1450 ug/kg dry 1420 1,2-Dichloroethane (EDC) 1370 17.8 35.5 ug/kg dry 50 ND 96 73-128% 1380 17.8 35.5 1420 ND 97 1,1-Dichloroethene ug/kg dry 50 70-131% 35.5 cis-1,2-Dichloroethene 1370 17.8 ug/kg dry 50 1420 ND 97 77-123% trans-1,2-Dichloroethene 1410 17.8 35.5 ug/kg dry 50 1420 ND 99 74-125% 1,2-Dichloropropane 1340 17.8 35.5 ug/kg dry 50 1420 ND 94 76-123% 35.5 71.1 1420 ND 96 77-121% 1,3-Dichloropropane 1360 50 ug/kg dry 1790 1420 67-133% Q-54a 2,2-Dichloropropane 35.5 71.1 ug/kg dry 50 ND 126 35.5 71.1 50 1420 ND 97 76-125% 1,1-Dichloropropene 1380 ug/kg dry 1420 ND 97 74-126% cis-1,3-Dichloropropene 1390 35.5 71.1 ug/kg dry 50 trans-1,3-Dichloropropene 1440 35.5 71.1 ug/kg dry 50 1420 ND 101 71-130% Ethylbenzene 1430 17.8 35.5 ug/kg dry 50 1420 ND 101 76-122% 2280 71.1 142 1420 ND Q-01 Hexachlorobutadiene ug/kg dry 50 161 61-135% ---711 711 2850 ND 78 53-145% Q-54g 2-Hexanone 2220 ug/kg dry 50 1420 1610 35.5 71.1 50 ND 113 68-134% Isopropylbenzene ug/kg dry 35.5 71.1 50 1420 461 120 73-127% 4-Isopropyltoluene 2170 ug/kg dry 1420 ND Methylene chloride 1430 355 711 ug/kg dry 50 100 70-128% 4-Methyl-2-pentanone (MiBK) 2150 711 711 ug/kg dry 50 2850 ND 75 65-135% O-54f Methyl tert-butyl ether (MTBE) 1330 35.5 71.1 50 1420 ND 93 73-125% ug/kg dry Naphthalene 8170 71.1 142 50 1420 6370 127 62-129% ug/kg dry 1700 17.8 35.5 1420 n-Propylbenzene 50 186 106 73-125% ug/kg dry Styrene 1450 35.5 71.1 ug/kg dry 50 1420 ND 102 76-124%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22I0974 - EPA 5035A Soil Matrix Spike (22I0974-MS1) Prepared: 09/29/22 11:25 Analyzed: 09/29/22 16:48 V-15 QC Source Sample: Non-SDG (A2I0908-01) 1,1,1,2-Tetrachloroethane 1720 17.8 35.5 ug/kg dry 50 1420 ND 121 78-125% 1410 35.5 71.1 1420 1,1,2,2-Tetrachloroethane ug/kg dry 50 ND 91 70-124% Tetrachloroethene (PCE) 1690 17.8 35.5 ug/kg dry 50 1420 ND 119 73-128% Toluene 1370 35.5 71.1 ug/kg dry 50 1420 ND 97 77-121% 1,2,3-Trichlorobenzene 1820 178 355 ug/kg dry 50 1420 ND 128 66-130% Q-01 178 355 1420 1,2,4-Trichlorobenzene 1870 ug/kg dry 50 ND 132 67-129% 35.5 1,1,1-Trichloroethane 1570 17.8 ug/kg dry 50 1420 ND 111 73-130% 1,1,2-Trichloroethane 35.5 1420 ND 99 1410 17.8 ug/kg dry 50 78-121% Trichloroethene (TCE) 1650 17.8 35.5 ug/kg dry 50 1420 ND 116 77-123% 71.1 EST, Q-54c Trichlorofluoromethane 2190 142 ug/kg dry 50 1420 ND 154 62-140% 1,2,3-Trichloropropane 1460 35.5 71.1 ug/kg dry 50 1420 ND 100 73-125% 50 1,2,4-Trimethylbenzene 11700 35.5 71.1 1420 9990 75-123% ug/kg dry 117 35.5 1420 1,3,5-Trimethylbenzene 4680 71.1 ug/kg dry 50 3000 118 73-124% Q-54f 1420 Vinyl chloride 1290 35.5 35.5 ND 90 ug/kg dry 50 56-135% 35.5 71.1 2850 m,p-Xylene 2900 ug/kg dry 50 35.5 101 77-124% o-Xylene 1420 17.8 35.5 ug/kg dry 50 1420 20.6 99 77-123% ___ Surr: 1,4-Difluorobenzene (Surr) 101 % Recovery: Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 97% 80-120 % 101 % 79-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0268 - EPA 1311/503	0B TCLP	Volatiles					Wa	ter				
Blank (22J0268-BLK1)			Prepared	d: 10/07/22	08:23 Ana	lyzed: 10/07/	/22 15:07					TCLP
1311/8260D												
Benzene	ND	6.25	12.5	ug/L	50							
2-Butanone (MEK)	ND	250	500	ug/L	50							
Carbon tetrachloride	ND	25.0	50.0	ug/L	50							
Chlorobenzene	ND	12.5	25.0	ug/L	50							
Chloroform	ND	25.0	50.0	ug/L	50							
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50							
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50							
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50							
Vinyl chloride	ND	12.5	25.0	ug/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
Blank (22J0268-BLK2)			Prepared	d: 10/07/22	08:23 Anal	lyzed: 10/07/	/22 15:34					TCLP
1311/8260D												
Benzene	ND	6.25	12.5	ug/L	50							
2-Butanone (MEK)	ND	250	500	ug/L	50							
Carbon tetrachloride	ND	25.0	50.0	ug/L	50							
Chlorobenzene	ND	12.5	25.0	ug/L	50							
Chloroform	ND	25.0	50.0	ug/L	50							
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50							
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50							
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50							
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50							
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50							
Vinyl chloride	ND	12.5	25.0	ug/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80	0-120 %		"					
			102 %		0-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

	•		TCLP Volat	0. 941		- aao .by						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0268 - EPA 1311/503	OB TCLP	Volatiles					Wa	ter				
LCS (22J0268-BS1)			Prepared	l: 10/07/22	08:23 Anal	yzed: 10/07	/22 13:18					TCLPb
1311/8260D												
Benzene	1050	6.25	12.5	ug/L	50	1000		105	80-120%			
2-Butanone (MEK)	1890	250	500	ug/L	50	2000		95	80-120%			
Carbon tetrachloride	1290	25.0	50.0	ug/L	50	1000		129	80-120%			Q-
Chlorobenzene	1010	12.5	25.0	ug/L	50	1000		101	80-120%			
Chloroform	1030	25.0	50.0	ug/L	50	1000		103	80-120%			
1,4-Dichlorobenzene	999	12.5	25.0	ug/L	50	1000		100	80-120%			
1,1-Dichloroethene	1070	12.5	25.0	ug/L	50	1000		107	80-120%			
1,2-Dichloroethane (EDC)	987	12.5	25.0	ug/L	50	1000		99	80-120%			
Tetrachloroethene (PCE)	1260	12.5	25.0	ug/L	50	1000		126	80-120%			Q-:
Trichloroethene (TCE)	1080	12.5	25.0	ug/L	50	1000		108	80-120%			
Vinyl chloride	798	12.5	25.0	ug/L	50	1000		80	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 96 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			94 %		-120 %		"					
4-Bromofluorobenzene (Surr)			98 %)-120 %		"					
LCS (22J0268-BS2)			Prepared	l· 10/07/22	08·23 Anai	yzed: 10/07	/22 13:45					TCLPc
1311/8260D			Trepuree	10/0//22	00.25 71114	19200. 10/0//	22 13.13					10210
Benzene	1040	6.25	12.5	ug/L	50	1000		104	80-120%			
2-Butanone (MEK)	1900	250	500	ug/L	50	2000		95	80-120%			
Carbon tetrachloride	1290	25.0	50.0	ug/L	50	1000		129	80-120%			Q-:
Chlorobenzene	1010	12.5	25.0	ug/L	50	1000		101	80-120%			
Chloroform	1020	25.0	50.0	ug/L	50	1000		102	80-120%			
1,4-Dichlorobenzene	1000	12.5	25.0	ug/L	50	1000		100	80-120%			
1,1-Dichloroethene	1110	12.5	25.0	ug/L	50	1000		111	80-120%			
1,2-Dichloroethane (EDC)	971	12.5	25.0	ug/L	50	1000		97	80-120%			
Tetrachloroethene (PCE)	1250	12.5	25.0	ug/L	50	1000		125	80-120%			Q-
Trichloroethene (TCE)	1090	12.5	25.0	ug/L	50	1000		109	80-120%			Ψ.
Vinyl chloride	852	12.5	25.0	ug/L	50	1000		85	80-120%			
Surr: 1,4-Difluorobenzene (Surr)	032		overy: 95 %	Limits: 80			ution: 1x		30 120/0			
Toluene-d8 (Surr)		Reco	94 %)-120 %)-120 %	Diii	uion. 1x					
4-Bromofluorobenzene (Surr)			94 % 98 %		1-120 % 1-120 %		,,					

Prepared: 10/07/22 10:23 Analyzed: 10/07/22 17:22

Apex Laboratories

Duplicate (22J0268-DUP1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darwin Thomas, Business Development Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

	l	Regulated	TCLP Vola	tile Orgaı	nic Comp	ounds by	EPA 13 ⁴	11/8260D				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0268 - EPA 1311/503	0B TCLP	Volatiles					Wa	ter				
Duplicate (22J0268-DUP1)			Prepared	d: 10/07/22	10:23 Ana	yzed: 10/07	/22 17:22					
QC Source Sample: Non-SDG (A2	2 <u>10892-01)</u>											
Benzene	ND	6.25	12.5	ug/L	50		ND				30%	
2-Butanone (MEK)	ND	250	500	ug/L	50		ND				30%	
Carbon tetrachloride	ND	25.0	50.0	ug/L	50		ND				30%	
Chlorobenzene	ND	12.5	25.0	ug/L	50		ND				30%	
Chloroform	ND	25.0	50.0	ug/L	50		ND				30%	
1,4-Dichlorobenzene	ND	12.5	25.0	ug/L	50		ND				30%	
1,1-Dichloroethene	ND	12.5	25.0	ug/L	50		ND				30%	
1,2-Dichloroethane (EDC)	ND	12.5	25.0	ug/L	50		ND				30%	
Tetrachloroethene (PCE)	ND	12.5	25.0	ug/L	50		ND				30%	
Trichloroethene (TCE)	ND	12.5	25.0	ug/L	50		ND				30%	
Vinyl chloride	ND	12.5	25.0	ug/L	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
Matrix Spike (22J0268-MS1)			Prepared	d: 10/07/22	10:23 Ana	yzed: 10/07	/22 18:16					
QC Source Sample: Non-SDG (A2	2 <u>10980-01)</u>											
1311/8260D												
Benzene	1050	6.25	12.5	ug/L	50	1000	ND	105	79-120%			
2-Butanone (MEK)	1880	250	500	ug/L	50	2000	ND	94	56-143%			
Carbon tetrachloride	1310	25.0	50.0	ug/L	50	1000	ND	131	72-136%			Q-54
Chlorobenzene	1030	12.5	25.0	ug/L	50	1000	ND	103	80-120%			
Chloroform	1040	25.0	50.0	ug/L	50	1000	ND	104	79-124%			
1,4-Dichlorobenzene	999	12.5	25.0	ug/L	50	1000	ND	100	79-120%			
1,1-Dichloroethene	1120	12.5	25.0	ug/L	50	1000	ND	112	71-131%			
1,2-Dichloroethane (EDC)	996	12.5	25.0	ug/L	50	1000	ND	100	73-128%			
Tetrachloroethene (PCE)	1260	12.5	25.0	ug/L	50	1000	ND	126	74-129%			Q-54
Trichloroethene (TCE)	1090	12.5	25.0	ug/L	50	1000	ND	109	79-123%			
Vinyl chloride	816	12.5	25.0	ug/L	50	1000	ND	82	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 96 %	Limits: 80	0-120 %	Dilı	ution: 1x					_
Toluene-d8 (Surr)			94 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Spike % REC RPD Reporting Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Blank (22J0030-BLK1) Prepared: 10/03/22 10:34 Analyzed: 10/03/22 22:59 EPA 8270E Acenaphthene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Acenaphthylene ug/kg wet 1 Anthracene ND 1.25 2.50 ug/kg wet 1.25 ND 2.50 Benz(a)anthracene ug/kg wet 1 ND 1.87 3.75 Benzo(a)pyrene ug/kg wet 1 1.87 ND Benzo(b)fluoranthene 3.75 ug/kg wet 1 ------Benzo(k)fluoranthene ND 1.87 3.75 ug/kg wet 1.25 2.50 ND Benzo(g,h,i)perylene ug/kg wet 1 Chrysene ND 1.25 2.50 ug/kg wet 1 Dibenz(a,h)anthracene ND 1.25 2.50 ug/kg wet 1 Fluoranthene ND 1.25 2.50 ug/kg wet 1 1.25 ND 2.50 Fluorene 1 ug/kg wet ---Indeno(1,2,3-cd)pyrene ND 1.25 2.50 ug/kg wet 1 ND 2.50 5.00 1-Methylnaphthalene ug/kg wet 1 2-Methylnaphthalene ND 2.50 5.00 ug/kg wet Naphthalene ND 2.50 5.00 ug/kg wet 1 ------Phenanthrene ND 1.25 2.50 ug/kg wet ND 1.25 2.50 Pyrene ug/kg wet 1 ---Carbazole ND 1.87 3.75 ug/kg wet 1 Dibenzofuran ND 1.25 2.50 ug/kg wet 1 2-Chlorophenol ND 6.25 12.5 ug/kg wet 4-Chloro-3-methylphenol ND 12.5 25.0 ug/kg wet 1 6.25 2,4-Dichlorophenol ND 12.5 ug/kg wet 2,4-Dimethylphenol ND 6.25 12.5 ug/kg wet 1 31.2 62.5 2,4-Dinitrophenol ND ug/kg wet 1 4,6-Dinitro-2-methylphenol ND 31.2 62.5 ug/kg wet 1 2-Methylphenol ND 3.12 6.25 ug/kg wet 1 3+4-Methylphenol(s) ND 3.12 6.25 ug/kg wet 1 ------2-Nitrophenol ND 12.5 25.0 ug/kg wet 1 12.5 4-Nitrophenol ND 25.0 ug/kg wet 1 ug/kg wet Pentachlorophenol (PCP) ND 12.5 25.0 1 Phenol ND 2.50 5.00 ug/kg wet 1 ND 6.25 12.5 2,3,4,6-Tetrachlorophenol ug/kg wet 1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC RPD Result Limit Units Dilution Amount Result % REC Limits RPD Limit

Analyte	Result	Limit	Limit	Units [Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 22J0030 - EPA 3546							Sol	id				
Blank (22J0030-BLK1)			Prepared	l: 10/03/22 10:	34 Anal	yzed: 10/03/	22 22:59					
2,3,5,6-Tetrachlorophenol	ND	6.25	12.5	ug/kg wet	1							
2,4,5-Trichlorophenol	ND	6.25	12.5	ug/kg wet	1							
Nitrobenzene	ND	12.5	25.0	ug/kg wet	1							
2,4,6-Trichlorophenol	ND	6.25	12.5	ug/kg wet	1							
Bis(2-ethylhexyl)phthalate	ND	18.7	37.5	ug/kg wet	1							
Butyl benzyl phthalate	ND	12.5	25.0	ug/kg wet	1							
Diethylphthalate	ND	12.5	25.0	ug/kg wet	1							
Dimethylphthalate	ND	12.5	25.0	ug/kg wet	1							
Di-n-butylphthalate	ND	12.5	25.0	ug/kg wet	1							
Di-n-octyl phthalate	ND	12.5	25.0	ug/kg wet	1							
N-Nitrosodimethylamine	ND	3.12	6.25	ug/kg wet	1							
N-Nitroso-di-n-propylamine	ND	3.12	6.25	ug/kg wet	1							
N-Nitrosodiphenylamine	ND	3.12	6.25	ug/kg wet	1							
Bis(2-Chloroethoxy) methane	ND	3.12	6.25	ug/kg wet	1							
Bis(2-Chloroethyl) ether	ND	3.12	6.25	ug/kg wet	1							
2,2'-Oxybis(1-Chloropropane)	ND	3.12	6.25	ug/kg wet	1							
Hexachlorobenzene	ND	1.25	2.50	ug/kg wet	1							
Hexachlorobutadiene	ND	3.12	6.25	ug/kg wet	1							
Hexachlorocyclopentadiene	ND	6.25	12.5	ug/kg wet	1							
Hexachloroethane	ND	3.12	6.25	ug/kg wet	1							
2-Chloronaphthalene	ND	1.25	2.50	ug/kg wet	1							
,2,4-Trichlorobenzene	ND	3.12	6.25	ug/kg wet	1							
1-Bromophenyl phenyl ether	ND	3.12	6.25	ug/kg wet	1							
1-Chlorophenyl phenyl ether	ND	3.12	6.25	ug/kg wet	1							
Aniline	ND	6.25	12.5	ug/kg wet	1							
l-Chloroaniline	ND	3.12	6.25	ug/kg wet	1							
2-Nitroaniline	ND	25.0	50.0	ug/kg wet	1							
3-Nitroaniline	ND	25.0	50.0	ug/kg wet	1							
1-Nitroaniline	ND	25.0	50.0	ug/kg wet	1							
2,4-Dinitrotoluene	ND	12.5	25.0	ug/kg wet	1							
2,6-Dinitrotoluene	ND	12.5	25.0	ug/kg wet	1							
Benzoic acid	ND	157	312	ug/kg wet	1							
Benzyl alcohol	ND	6.25	12.5	ug/kg wet	1							
sophorone	ND	3.12	6.25	ug/kg wet	1							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Sevenson Environmental Services, Inc.</u> Project: <u>Gasco -- Filter Bags</u>

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546							So	lid				
Blank (22J0030-BLK1)			Prepared	d: 10/03/22	10:34 Ana	alyzed: 10/03	3/22 22:59					
Azobenzene (1,2-DPH)	ND	3.12	6.25	ug/kg wo	et 1							
Bis(2-Ethylhexyl) adipate	ND	31.2	62.5	ug/kg we	et 1							
3,3'-Dichlorobenzidine	ND	25.0	50.0	ug/kg we	et 1							Q-5
1,2-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
1,3-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
1,4-Dinitrobenzene	ND	31.2	62.5	ug/kg we	et 1							
Pyridine	ND	6.25	12.5	ug/kg we	et 1							
1,2-Dichlorobenzene	ND	3.12	6.25	ug/kg we	et 1							
1,3-Dichlorobenzene	ND	3.12	6.25	ug/kg we	et 1							
1,4-Dichlorobenzene	ND	3.12	6.25	ug/kg we	et 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 88 %	Limits: 37	-122 %	Dil	ution: 1x					
2-Fluorobiphenyl (Surr)			82 %	44	-120 %		"					
Phenol-d6 (Surr)			88 %	33	-122 %		"					
p-Terphenyl-d14 (Surr)			90 %	54	-127 %		"					
2-Fluorophenol (Surr)			88 %	35	-120 %		"					
2,4,6-Tribromophenol (Surr)			75 %	39	-132 %		"					
LCS (22J0030-BS1)			Prepared	d: 10/03/22	10:34 Ana	alyzed: 10/03	3/22 23:34					
EPA 8270E												
Acenaphthene	464	2.66	5.34	ug/kg we	et 2	533		87	40-123%			
Acenaphthylene	495	2.66	5.34	ug/kg we	et 2	533		93	32-132%			
Anthracene	500	2.66	5.34	ug/kg we	et 2	533		94	47-123%			
Benz(a)anthracene	500	2.66	5.34	ug/kg we	et 2	533		94	49-126%			
Benzo(a)pyrene	517	4.00	8.00	ug/kg we	et 2	533		97	45-129%			
Benzo(b)fluoranthene	523	4.00	8.00	ug/kg we	et 2	533		98	45-132%			
Benzo(k)fluoranthene	506	4.00	8.00	ug/kg we		533		95	47-132%			
Benzo(g,h,i)perylene	432	2.66	5.34	ug/kg w		533		81	43-134%			
Chrysene	482	2.66	5.34	ug/kg we		533		90	50-124%			
Dibenz(a,h)anthracene	494	2.66	5.34	ug/kg w		533		93	45-134%			
Fluoranthene	499	2.66	5.34	ug/kg we		533		94	50-127%			
Fluorene	481	2.66	5.34	ug/kg we		533		90	43-125%			
Indeno(1,2,3-cd)pyrene	468	2.66	5.34	ug/kg we		533		88	45-133%			
1-Methylnaphthalene	471	5.34	10.7	ug/kg we		533		88	40-120%			
2-Methylnaphthalene	474	5.34	10.7	ug/kg w		533		89	38-122%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Sevenson Environmental Services, Inc.</u> Project: <u>Gasco -- Filter Bags</u>

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546	Solid											
LCS (22J0030-BS1)			Prepared	: 10/03/22 1	0:34 Anal	yzed: 10/03/	/22 23:34					
Naphthalene	467	5.34	10.7	ug/kg we	t 2	533		87	35-123%			
Phenanthrene	466	2.66	5.34	ug/kg we	t 2	533		87	50-121%			
Pyrene	494	2.66	5.34	ug/kg we	t 2	533		93	47-127%			
Carbazole	488	4.00	8.00	ug/kg we	t 2	533		92	50-123%			
Dibenzofuran	475	2.66	5.34	ug/kg we	t 2	533		89	44-120%			
2-Chlorophenol	520	13.3	26.6	ug/kg we	t 2	533		98	34-121%			
l-Chloro-3-methylphenol	517	26.6	53.4	ug/kg we	t 2	533		97	45-122%			
2,4-Dichlorophenol	510	13.3	26.6	ug/kg we	t 2	533		96	40-122%			
2,4-Dimethylphenol	534	13.3	26.6	ug/kg we	t 2	533		100	30-127%			
2,4-Dinitrophenol	411	66.6	133	ug/kg we	t 2	533		77	10-137%			
1,6-Dinitro-2-methylphenol	461	66.6	133	ug/kg we	t 2	533		86	29-132%			
2-Methylphenol	530	6.66	13.3	ug/kg we		533		99	32-122%			
+4-Methylphenol(s)	545	6.66	13.3	ug/kg we		533		102	34-120%			
2-Nitrophenol	470	26.6	53.4	ug/kg we		533		88	36-123%			
I-Nitrophenol	460	26.6	53.4	ug/kg we		533		86	30-132%			
Pentachlorophenol (PCP)	446	26.6	53.4	ug/kg we		533		84	25-133%			
Phenol	541	5.34	10.7	ug/kg we		533		101	34-121%			
2,3,4,6-Tetrachlorophenol	509	13.3	26.6	ug/kg we		533		95	44-125%			
2,3,5,6-Tetrachlorophenol	477	13.3	26.6	ug/kg we		533		89	40-120%			
2,4,5-Trichlorophenol	501	13.3	26.6	ug/kg we		533		94	41-124%			
Nitrobenzene	505	26.6	53.4	ug/kg we		533		95	34-122%			
2,4,6-Trichlorophenol	511	13.3	26.6	ug/kg we		533		96	39-126%			
Bis(2-ethylhexyl)phthalate	509	40.0	80.0	ug/kg we		533		95	51-133%			
Butyl benzyl phthalate	527	26.6	53.4	ug/kg we		533		99	48-132%			
Diethylphthalate	490	26.6	53.4	ug/kg we		533		92	50-124%			
Dimethylphthalate	482	26.6	53.4	ug/kg we		533		90	48-124%			
Di-n-butylphthalate	534	26.6	53.4	ug/kg we		533		100	51-128%			
Di-n-octyl phthalate	576	26.6	53.4	ug/kg we		533		108	45-140%			
N-Nitrosodimethylamine	473	6.66	13.3	ug/kg we		533		89	23-120%			
N-Nitroso-di-n-propylamine	513	6.66	13.3	ug/kg we		533		96	36-120%			
N-Nitrosodiphenylamine	508	6.66	13.3	ug/kg we		533		95	38-127%			
Bis(2-Chloroethoxy) methane	479	6.66	13.3	ug/kg we		533		90	36-121%			
Bis(2-Chloroethyl) ether	505	6.66	13.3	ug/kg we		533		95	31-120%			
2,2'-Oxybis(1-Chloropropane)	494	6.66	13.3	ug/kg we		533		93	39-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid LCS (22J0030-BS1) Prepared: 10/03/22 10:34 Analyzed: 10/03/22 23:34 457 2.66 5.34 2 533 86 45-122% Hexachlorobenzene ug/kg wet Hexachlorobutadiene 455 6.66 13.3 ug/kg wet 2 533 85 32-123% ---2 Hexachlorocyclopentadiene 402 13.3 26.6 ug/kg wet 533 75 10-140% Hexachloroethane 465 6.66 13.3 ug/kg wet 2 533 87 28-120% 472 89 2-Chloronaphthalene 2.66 5.34 2 533 41-120% ug/kg wet 475 1,2,4-Trichlorobenzene 6.66 13.3 ug/kg wet 2 533 89 34-120% 4-Bromophenyl phenyl ether 482 6.66 13.3 ug/kg wet 2 533 90 46-124% 2 533 89 4-Chlorophenyl phenyl ether 473 6.66 13.3 ug/kg wet 45-121% 13.3 2 Aniline 360 26.6 ug/kg wet 533 67 10-120% 4-Chloroaniline 266 6.66 13.3 ug/kg wet 2 533 50 17-120% 2 91 2-Nitroaniline 487 53.4 107 533 44-127% ug/kg wet 53.4 107 91 3-Nitroaniline 485 ug/kg wet 2 533 33-120% 478 53.4 107 2 533 90 51-125% 4-Nitroaniline ug/kg wet 2,4-Dinitrotoluene 509 26.6 53.4 ug/kg wet 2 533 96 48-126% 2,6-Dinitrotoluene 502 53.4 2 533 94 46-124% 26.6 ug/kg wet Benzoic acid 743 334 666 ug/kg wet 2 1070 70 10-140% 521 13.3 26.6 2 533 98 29-122% Benzyl alcohol ug/kg wet 503 13.3 2 533 94 30-122% Isophorone 6.66 ug/kg wet 523 6.66 13.3 2 533 98 39-125% Azobenzene (1,2-DPH) ug/kg wet ---Bis(2-Ethylhexyl) adipate 518 66.6 133 ug/kg wet 2 533 97 61-121% 2790 3,3'-Dichlorobenzidine 53.4 107 2 1070 261 22-121% Q-29, Q-41 ug/kg wet ---1,2-Dinitrobenzene 496 66.6 133 ug/kg wet 2 533 93 44-120% 43-127% 1,3-Dinitrobenzene 477 133 ug/kg wet 2 533 89 66.6 1,4-Dinitrobenzene 489 66.6 133 ug/kg wet 2 533 92 37-132% 441 13.3 2 533 83 Pyridine 26.6 ug/kg wet 10-120% ---1,2-Dichlorobenzene 463 6.66 13.3 ug/kg wet 2 533 87 33-120% 459 6.66 13.3 2 533 86 30-120% 1.3-Dichlorobenzene ug/kg wet ---1,4-Dichlorobenzene 461 6.66 13.3 ug/kg wet 2 533 87 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 95 % Limits: 37-122 % Dilution: 2x 87% 44-120 % 2-Fluorobiphenyl (Surr) Phenol-d6 (Surr) 94 % 33-122 % p-Terphenyl-d14 (Surr) 94% 54-127 % 2-Fluorophenol (Surr) 93 % 35-120 % 2,4,6-Tribromophenol (Surr) 89 % 39-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Duplicate (22J0030-DUP1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 00:42 QC Source Sample: Non-SDG (A2I0864-01) 902 1810 200 4090 34 30% Q-04 Acenaphthene 5730 ug/kg dry 902 30% 1450 1810 200 J Acenaphthylene 1100 28 ug/kg dry Anthracene 12500 902 1810 200 9540 27 30% ug/kg dry 902 Benz(a)anthracene 9660 1810 ug/kg dry 200 7560 24 30% ___ 1360 2710 200 9440 27 30% Benzo(a)pyrene 12400 ug/kg dry Q-04 Benzo(b)fluoranthene 10300 1360 2710 ug/kg dry 200 7550 31 30% 1360 2710 8 M-05 Benzo(k)fluoranthene 4170 ug/kg dry 200 3870 30% 902 1810 200 5040 24 30% Benzo(g,h,i)perylene ug/kg dry 6420 ---12700 902 1810 200 9830 25 30% Chrysene ug/kg dry 1810 902 200 30% Dibenz(a,h)anthracene ND ug/kg dry ---ND ------Fluoranthene 35800 902 1810 200 28300 23 30% ug/kg dry 902 1810 200 Q-04 Fluorene 5550 ug/kg dry 4000 33 30% Indeno(1,2,3-cd)pyrene 7030 902 1810 ug/kg dry 200 5560 23 30% 1810 3620 1-Methylnaphthalene ND 200 ND 30% ug/kg dry ---2-Methylnaphthalene ND 1810 3620 ug/kg dry 200 ND 30% 30% Naphthalene ND 1810 3620 200 ND ug/kg dry ------Phenanthrene 51500 902 1810 200 40400 24 30% ug/kg dry 902 1810 200 32200 30% Pyrene 41200 ug/kg dry 2.5 Carbazole ND 1360 2710 200 ND 30% ug/kg dry ND 902 1810 200 ND 30% Dibenzofuran ug/kg dry 2-Chlorophenol ND 4530 9020 ug/kg dry 200 ND 30% ND 9020 18100 30% 4-Chloro-3-methylphenol ug/kg dry 200 ND ------2,4-Dichlorophenol ND 4530 9020 ug/kg dry 200 ND 30% 2,4-Dimethylphenol ND 4530 9020 200 ND 30% ug/kg dry 2,4-Dinitrophenol ND 22600 45300 ug/kg dry 200 ND 30% 4,6-Dinitro-2-methylphenol ND 22600 45300 200 ND 30% ug/kg dry ------2260 2-Methylphenol ND 4530 ug/kg dry 200 ND 30% 3+4-Methylphenol(s) ND 2260 4530 ug/kg dry 200 ND 30% 9020 2-Nitrophenol ND 18100 ug/kg dry 200 ND 30% 4-Nitrophenol ND 9020 18100 ug/kg dry 200 ND ------30% Pentachlorophenol (PCP) ND 9020 18100 ug/kg dry 200 ND 30% Phenol ND 1810 3620 200 ND 30% ug/kg dry

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Duplicate (22J0030-DUP1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 00:42 QC Source Sample: Non-SDG (A2I0864-01) 2,3,4,6-Tetrachlorophenol ND 4530 9020 ug/kg dry 200 ND 30% ND 4530 9020 200 2,3,5,6-Tetrachlorophenol ug/kg dry ND 30% 2,4,5-Trichlorophenol ND 4530 9020 ug/kg dry 200 ND 30% Nitrobenzene ND 9020 18100 ug/kg dry 200 ND 30% 2,4,6-Trichlorophenol ND 4530 9020 ug/kg dry 200 ND 30% ------ND 27100 Bis(2-ethylhexyl)phthalate 13600 ug/kg dry 200 ND 30% Butyl benzyl phthalate ND 9020 18100 ug/kg dry 200 ND 30% ND 9020 200 ND 30% Diethylphthalate 18100 ug/kg dry Dimethylphthalate ND 9020 18100 ug/kg dry 200 ND 30% Di-n-butylphthalate ND 9020 18100 ug/kg dry 200 ND 30% Di-n-octyl phthalate ND 9020 18100 ug/kg dry 200 ND 30% ND 2260 4530 200 ND 30% N-Nitrosodimethylamine ug/kg dry N-Nitroso-di-n-propylamine ND 2260 4530 ug/kg dry 200 ND 30% ND 2260 4530 200 30% N-Nitrosodiphenylamine ug/kg dry ND Bis(2-Chloroethoxy) methane ND 2260 4530 ug/kg dry 200 ND 30% Bis(2-Chloroethyl) ether ND 2260 4530 ug/kg dry 200 ND ___ 30% 2,2'-Oxybis(1-Chloropropane) ND 2260 4530 ug/kg dry 200 ND 30% ND 902 1810 200 30% Hexachlorobenzene ND ug/kg dry ---ND Hexachlorobutadiene 2260 4530 ug/kg dry 200 ND 30% Hexachlorocyclopentadiene 9020 ND 4530 200 ND 30% ug/kg dry ND 2260 Hexachloroethane 4530 ug/kg dry 200 ND 30% 2-Chloronaphthalene ND 902 1810 ug/kg dry 200 ND ___ ---30% 1,2,4-Trichlorobenzene ND 2260 4530 ug/kg dry 200 ND 30% ND 4530 ND 30% 4-Bromophenyl phenyl ether 2260 ug/kg dry 200 ND 2260 4530 30% 4-Chlorophenyl phenyl ether ug/kg dry 200 ND ND Aniline 4530 9020 200 ND 30% ug/kg dry ---4-Chloroaniline ND 2260 4530 200 ND 30% ug/kg dry ND 2-Nitroaniline 18100 36200 ug/kg dry 200 ND ---30% 3-Nitroaniline ND 18100 36200 ug/kg dry 200 ND 30% 4-Nitroaniline ND 18100 36200 200 ND 30% ug/kg dry 2,4-Dinitrotoluene ND 9020 18100 ug/kg dry 200 ND 30% 9020 2.6-Dinitrotoluene ND 18100 200 ND 30% ug/kg dry ---

Apex Laboratories

Benzoic acid

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

ND

113000

226000

ug/kg dry

200

30%

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompour	ius by EP	A 02/UE					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0030 - EPA 3546							So	lid				
Duplicate (22J0030-DUP1)			Prepared	1: 10/03/22 1	0:34 Ana	lyzed: 10/04	/22 00:42					
QC Source Sample: Non-SDG (A2	210864-01)											
Benzyl alcohol	ND	4530	9020	ug/kg dr	y 200		ND				30%	
Isophorone	ND	2260	4530	ug/kg dr	y 200		ND				30%	
Azobenzene (1,2-DPH)	ND	2260	4530	ug/kg dr	y 200		ND				30%	
Bis(2-Ethylhexyl) adipate	ND	22600	45300	ug/kg dr	y 200		ND				30%	
3,3'-Dichlorobenzidine	ND	18100	36200	ug/kg dr	y 200		ND				30%	Q
1,2-Dinitrobenzene	ND	22600	45300	ug/kg dr	y 200		ND				30%	
1,3-Dinitrobenzene	ND	22600	45300	ug/kg dr	y 200		ND				30%	
1,4-Dinitrobenzene	ND	22600	45300	ug/kg dr	y 200		ND				30%	
Pyridine	ND	4530	9020	ug/kg dr	y 200		ND				30%	
1,2-Dichlorobenzene	ND	2260	4530	ug/kg dr	y 200		ND				30%	
1,3-Dichlorobenzene	ND	2260	4530	ug/kg dr	y 200		ND				30%	
1,4-Dichlorobenzene	ND	2260	4530	ug/kg dr	y 200		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 60 %	Limits: 37-	-122 %	Dil	ution: 200	r				S-05
2-Fluorobiphenyl (Surr)			80 %	44-	120 %		"					S-05
Phenol-d6 (Surr)			61 %	33-	122 %		"					S-05
p-Terphenyl-d14 (Surr)			91 %	54-	127 %		"					S-05
2-Fluorophenol (Surr)			72 %	35-	120 %		"					S-05
2,4,6-Tribromophenol (Surr)			127 %	39-	-132 %		"					S-05
Matrix Spike (22J0030-MS1)			Prepared	1: 10/03/22 1	0:34 Ana	lyzed: 10/04	/22 21:39					
QC Source Sample: BF-092022-14	4 (A2I0874	-01RE1)										
EPA 8270E												
Acenaphthene	6150	332	666	ug/kg dr	y 20	6660	ND	92	40-123%			
Acenaphthylene	6480	332	666	ug/kg dr	y 20	6660	394	91	32-132%			
Anthracene	6700	332	666	ug/kg dr	y 20	6660	339	96	47-123%			
Benz(a)anthracene	7030	332	666	ug/kg dr	y 20	6660	523	98	49-126%			
Benzo(a)pyrene	7300	499	998	ug/kg dr		6660	611	100	45-129%			
Benzo(b)fluoranthene	8720	499	998	ug/kg dr	y 20	6660	1050	115	45-132%			
Benzo(k)fluoranthene	7380	499	998	ug/kg dr	y 20	6660	ND	111	47-132%			
Benzo(g,h,i)perylene	6910	332	666	ug/kg dr	y 20	6660	334	99	43-134%			
Chrysene	8270	332	666	ug/kg dr	y 20	6660	1440	103	50-124%			
Dibenz(a,h)anthracene	6520	332	666	ug/kg dr		6660	ND	98	45-134%			
				~ · · ·								

Apex Laboratories

Fluoranthene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

50-127%

111

1420

8780

332

666

ug/kg dry

20

6660

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Matrix Spike (22J0030-MS1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 21:39 QC Source Sample: BF-092022-144 (A2I0874-01RE1) ug/kg dry Fluorene 11100 332 666 20 6660 3340 117 43-125% 6910 332 Indeno(1,2,3-cd)pyrene 666 ug/kg dry 20 6660 415 98 45-133% 1-Methylnaphthalene 5710 666 1330 ug/kg dry 20 6660 ND 86 40-120% 2-Methylnaphthalene 5760 666 1330 ug/kg dry 20 6660 ND 87 38-122% Naphthalene 5510 666 1330 ug/kg dry 20 6660 ND 83 35-123% 6660 2160 109 Phenanthrene 9400 332 666 ug/kg dry 20 50-121% Pyrene 7350 332 666 20 6660 495 103 47-127% ug/kg dry Q-01 Carbazole 499 998 20 6660 6110 16000 ug/kg dry 148 50-123% ---Dibenzofuran 6940 332 666 ug/kg dry 20 6660 746 93 44-120% 2-Chlorophenol 4890 1660 3320 ug/kg dry 20 6660 ND 74 34-121% 4-Chloro-3-methylphenol 5950 3320 6660 ug/kg dry 20 6660 ND 89 45-122% J 1660 3320 20 6660 ND 85 40-122% 2,4-Dichlorophenol 5670 ug/kg dry 6660 J, Q-01 2,4-Dimethylphenol 1740 1660 3320 ug/kg dry 20 ND 26 30-127% J, Q-01 2,4-Dinitrophenol 11600 8310 16600 20 6660 ND 174 10-137% ug/kg dry J 4,6-Dinitro-2-methylphenol 8410 8310 16600 ug/kg dry 20 6660 ND 126 29-132% 2-Methylphenol 4220 831 1660 ug/kg dry 20 6660 ND 63 32-122% ___ 3+4-Methylphenol(s) 4570 831 1660 ug/kg dry 20 6660 ND 69 34-120% 3320 6660 ND 96 2-Nitrophenol 6370 6660 20 36-123% J ug/kg dry 3320 6660 ND 30-132% 4-Nitrophenol 5860 6660 ug/kg dry 20 88 Q-01 3320 Pentachlorophenol (PCP) 9120 6660 20 6660 ND 137 25-133% ug/kg dry 6660 ND 34-121% Phenol 4600 666 1330 ug/kg dry 20 69 2,3,4,6-Tetrachlorophenol 7270 1660 3320 ug/kg dry 20 6660 ND 109 44-125% ---2,3,5,6-Tetrachlorophenol 6730 1660 3320 ug/kg dry 20 6660 ND 101 40-120% 3320 20 6660 ND 94 41-124% 2,4,5-Trichlorophenol 6270 1660 ug/kg dry 5500 3320 ND 83 34-122% J Nitrobenzene 6660 ug/kg dry 20 6660 2,4,6-Trichlorophenol 6900 1660 3320 20 6660 ND 104 39-126% ug/kg dry Bis(2-ethylhexyl)phthalate 7310 4990 9980 20 6660 ND 110 51-133% ug/kg dry ND Butyl benzyl phthalate 8310 3320 6660 ug/kg dry 20 6660 125 48-132% Diethylphthalate 6330 3320 6660 ug/kg dry 20 6660 ND 95 50-124% 6150 3320 6660 20 6660 ND 92 48-124% Dimethylphthalate ug/kg dry ---Di-n-butylphthalate 7150 3320 6660 ug/kg dry 20 6660 ND 107 51-128% 3320 20 ND 45-140% Q-01 Di-n-octyl phthalate 10300 6660 6660 154 ug/kg dry N-Nitrosodimethylamine 4590 831 1660 ug/kg dry 20 6660 ND 69 23-120%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 22J0030 - EPA 3546 Solid Matrix Spike (22J0030-MS1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 21:39 QC Source Sample: BF-092022-144 (A2I0874-01RE1) N-Nitroso-di-n-propylamine 7650 831 1660 ug/kg dry 20 6660 ND 115 36-120% 38-127% 831 1660 N-Nitrosodiphenylamine 5350 ug/kg dry 20 6660 ND 80 Bis(2-Chloroethoxy) methane 5370 831 1660 ug/kg dry 20 6660 ND 81 36-121% Bis(2-Chloroethyl) ether 4650 831 1660 ug/kg dry 20 6660 ND 70 31-120% 2,2'-Oxybis(1-Chloropropane) 5470 831 1660 ug/kg dry 20 6660 ND 82 39-120% 6660 ND 96 Hexachlorobenzene 6410 332 666 ug/kg dry 20 45-122% Hexachlorobutadiene 5190 831 1660 ug/kg dry 20 6660 ND 78 32-123% 6660 ND 95 10-140% Hexachlorocyclopentadiene 6310 1660 3320 ug/kg dry 20 Hexachloroethane 4800 831 1660 ug/kg dry 20 6660 ND 72 28-120% 2-Chloronaphthalene 5570 332 666 ug/kg dry 20 6660 ND 84 41-120% 1,2,4-Trichlorobenzene 5170 831 1660 ug/kg dry 20 6660 ND 78 34-120% 4-Bromophenyl phenyl ether 831 1660 20 6660 ND 46-124% 6400 ug/kg dry 96 6660 ND 45-121% 4-Chlorophenyl phenyl ether 6250 831 1660 ug/kg dry 20 94 Q-01 Aniline ND 1660 3320 6660 ND 10-120% ug/kg dry 20 Q-01 4-Chloroaniline ND 831 1660 ug/kg dry 20 6660 ND 17-120% 20 2-Nitroaniline ND 6660 13300 ug/kg dry 6660 ND 44-127% ___ Q-11 3-Nitroaniline ND 6660 13300 ug/kg dry 20 6660 ND 33-120% Q-11 ND 13300 6660 ND Q-11 4-Nitroaniline 6660 20 51-125% ug/kg dry 6900 6660 ND 104 48-126% 2,4-Dinitrotoluene 3320 6660 ug/kg dry 20 3320 2,6-Dinitrotoluene 6660 20 6660 ND 103 46-124% 6860 ug/kg dry Benzoic acid ND 41700 83100 13300 ND Q-11 ug/kg dry 20 10-140% Benzyl alcohol 3670 1660 3320 ug/kg dry 20 6660 ND 55 29-122% ---Isophorone 7480 2500 2500 ug/kg dry 20 6660 ND 112 30-122% 6310 20 6660 ND 95 39-125% Azobenzene (1,2-DPH) 831 1660 ug/kg dry ---ND 8310 16600 ND Q-11 Bis(2-Ethylhexyl) adipate ug/kg dry 20 6660 61-121% Q-01, Q-41 3,3'-Dichlorobenzidine ND 6660 13300 20 13300 ND ug/kg dry 22-121% 1.2-Dinitrobenzene ND 8310 16600 20 6660 ND 44-120% Q-11 ug/kg dry Q-11 1,3-Dinitrobenzene ND 8310 16600 ug/kg dry 20 6660 ND 43-127% 1,4-Dinitrobenzene ND 8310 16600 ug/kg dry 20 6660 ND 37-132% Q-11 Pyridine 3490 1660 3320 20 6660 ND ug/kg dry 52 10-120% 1,2-Dichlorobenzene 4580 831 1660 ug/kg dry 20 6660 ND 69 33-120% 4440 831 20 1.3-Dichlorobenzene 1660 6660 ND 67 30-120% ug/kg dry 1,4-Dichlorobenzene 4540 831 1660 ug/kg dry 20 6660 ND 68 31-120%

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 22J0030 - EPA 3546 Solid Matrix Spike (22J0030-MS1) Prepared: 10/03/22 10:34 Analyzed: 10/04/22 21:39 QC Source Sample: BF-092022-144 (A2I0874-01RE1) Recovery: 74 % Limits: 37-122 % Surr: Nitrobenzene-d5 (Surr) Dilution: 20x 2-Fluorobiphenyl (Surr) 54 % 44-120 % Phenol-d6 (Surr) 68 % 33-122 % p-Terphenyl-d14 (Surr) 54-127 % 66%2-Fluorophenol (Surr) 35-120 % $62\,\%$ 2,4,6-Tribromophenol (Surr) 75 % 39-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l0998 - EPA 3051A							Sol	id				
Blank (22I0998-BLK1)			Prepared	: 09/29/22	15:36 Ana	yzed: 09/30	/22 12:51					
EPA 6020B												
Arsenic	ND	481	962	ug/kg we	et 10							
Barium	ND	481	962	ug/kg we	et 10							
Cadmium	ND	96.2	192	ug/kg we	et 10							
Chromium	ND	481	962	ug/kg we	et 10							
Lead	ND	96.2	192	ug/kg we	et 10							
Mercury	ND	38.5	76.9	ug/kg we	et 10							
Selenium	ND	481	962	ug/kg we	et 10							
Silver	ND	96.2	192	ug/kg we	et 10							
LCS (22I0998-BS1)			Prepared	: 09/29/22 1	15:36 Ana	lyzed: 09/30	/22 12:57					
EPA 6020B						-						
Arsenic	52700	500	1000	ug/kg we	et 10	50000		105	80-120%			
Barium	53700	500	1000	ug/kg we		50000		107	80-120%			
Cadmium	53300	100	200	ug/kg we		50000		107	80-120%			
Chromium	54300	500	1000	ug/kg we		50000		109	80-120%			
Lead	51900	100	200	ug/kg we		50000		104	80-120%			
Mercury	1030	40.0	80.0	ug/kg we		1000		103	80-120%			
Selenium	27200	500	1000	ug/kg we		25000		109	80-120%			
LCS (2210998-BS2)			Prepared	: 09/29/22 1	15:36 Ana	yzed: 10/03	/22 14:18					
EPA 6020B												
Silver	27500	100	200	ug/kg we	et 10	25000		110	80-120%			Q-1
Duplicate (22I0998-DUP1)			Prepared	: 09/29/22 1	15:36 Ana	yzed: 09/30	/22 13:07					
QC Source Sample: Non-SDG (A	210620-01)											
Arsenic	9600	539	1080	ug/kg we	et 10		7600			23	20%	Q-0
Barium	60200	539	1080	ug/kg we			71900			18	20%	Ψ.
Cadmium	1020	108	216	ug/kg we			867			17	20%	
Chromium	91600	539	1080	ug/kg we			76600			18	20%	
Lead	19500	108	216	ug/kg we			19900			2	20%	
Mercury	1320	43.1	86.2	ug/kg we			2320			55	20%	Q-0
Selenium	699	539	1080	ug/kg we			1230			55	20%	Q-05,
Silver	493	108	216	ug/kg we			696			34	20%	Q-0

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by I	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22I0998 - EPA 3051A							So	lid				
Matrix Spike (22I0998-MS1)			Prepared	: 09/29/22 1	5:36 Ana	lyzed: 09/30	/22 13:12					
QC Source Sample: Non-SDG (A2	I0620-01)											
EPA 6020B												
Arsenic	58400	503	1010	ug/kg we	t 10	50300	7600	101	75-125%			
Barium	121000	503	1010	ug/kg we	t 10	50300	71900	99	75-125%			
Cadmium	52700	101	201	ug/kg we	t 10	50300	867	103	75-125%			
Chromium	138000	503	1010	ug/kg we	t 10	50300	76600	122	75-125%			
Lead	69100	101	201	ug/kg we	t 10	50300	19900	98	75-125%			
Mercury	2630	40.2	80.5	ug/kg we		1010	2320	31	75-125%			Q-0
Selenium	25500	503	1010	ug/kg we	t 10	25200	1230	96	75-125%			
Silver	28800	101	201	ug/kg we	t 10	25200	696	112	75-125%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number: 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager: Chip Byrd
 A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0134 - EPA 1311/301	5A						So	lid				
Blank (22J0134-BLK1)			Prepared	: 10/05/22	08:50 Ana	lyzed: 10/05	/22 23:04					
1311/6020B												
Arsenic	ND	50.0	100	ug/L	10							TCLI
Barium	ND	2500	5000	ug/L	10							TCLI
Cadmium	ND	50.0	100	ug/L	10							TCLI
Chromium	ND	50.0	100	ug/L	10							TCLI
Lead	ND	25.0	50.0	ug/L	10							TCLI
Mercury	ND	3.75	7.00	ug/L	10							TCLI
Selenium	ND	50.0	100	ug/L	10							TCLI
Silver	ND	50.0	100	ug/L	10							TCLI
LCS (22J0134-BS1)			Prepared	: 10/05/22	08:50 Anal	lyzed: 10/05	/22 23:10					
1311/6020B												
Arsenic	5300	50.0	100	ug/L	10	5000		106	80-120%			TCLI
Barium	11000	2500	5000	ug/L	10	10000		110	80-120%			TCLI
Cadmium	1000	50.0	100	ug/L	10	1000		100	80-120%			TCLI
Chromium	5050	50.0	100	ug/L	10	5000		101	80-120%			TCLI
Lead	5310	25.0	50.0	ug/L	10	5000		106	80-120%			TCLI
Mercury	99.3	3.75	7.00	ug/L	10	100		99	80-120%			TCLI
Selenium	979	50.0	100	ug/L	10	1000		98	80-120%			TCLI
Silver	1050	50.0	100	ug/L	10	1000		105	80-120%			TCLI
Matrix Spike (22J0134-MS1)			Prepared	: 10/05/22	08:50 Anal	yzed: 10/05	/22 23:20					
QC Source Sample: BF-092022-14	4 (A2I0874	<u>-01)</u>										
1311/6020B												
Arsenic	5290	50.0	100	ug/L	10	5000	ND	106	50-150%			
Barium	11300	2500	5000	ug/L	10	10000	ND	113	50-150%			
Cadmium	993	50.0	100	ug/L	10	1000	ND	99	50-150%			
Chromium	5060	50.0	100	ug/L	10	5000	ND	101	50-150%			
Lead	5120	25.0	50.0	ug/L	10	5000	ND	102	50-150%			
Mercury	96.4	3.75	7.00	ug/L	10	100	ND	96	50-150%			
Selenium	979	50.0	100	ug/L	10	1000	ND	98	50-150%			
Silver	983	50.0	100	ug/L	10	1000	ND	98	50-150%			

Prepared: 10/05/22 08:50 Analyzed: 10/05/22 23:30

Apex Laboratories

Matrix Spike (22J0134-MS2)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Daym I hum

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0134 - EPA 1311/301	5A						So	lid				
Matrix Spike (22J0134-MS2)			Prepared	: 10/05/22	08:50 Anal	lyzed: 10/05	/22 23:30					
QC Source Sample: Non-SDG (A2	<u>10937-01)</u>											
<u>1311/6020B</u>												
Arsenic	5240	50.0	100	ug/L	10	5000	ND	105	50-150%			
Barium	10800	2500	5000	ug/L	10	10000	ND	108	50-150%			
Cadmium	996	50.0	100	ug/L	10	1000	ND	100	50-150%			
Chromium	4940	50.0	100	ug/L	10	5000	ND	99	50-150%			
Lead	5420	25.0	50.0	ug/L	10	5000	333	102	50-150%			
Mercury	96.4	3.75	7.00	ug/L	10	100	ND	96	50-150%			
Selenium	976	50.0	100	ug/L	10	1000	ND	98	50-150%			
Silver	1010	50.0	100	ug/L	10	1000	ND	101	50-150%			
QC Source Sample: Non-SDG (A2 1311/6020B	10937-02 <u>1</u>											
Arsenic	5270	50.0	100	ug/L	10	5000	ND	105	50-150%			
Barium	11000	2500	5000	ug/L	10	10000	ND	110	50-150%			
Cadmium	1010	50.0	100	ug/L	10	1000	ND	101	50-150%			
Chromium	4980	50.0	100	ug/L	10	5000	ND	100	50-150%			
Lead	5480	25.0	50.0	ug/L	10	5000	344	103	50-150%			
Mercury	99.0	3.75	7.00	ug/L	10	100	ND	99	50-150%			
Selenium	981	50.0	100	ug/L	10	1000	ND	98	50-150%			
Silver	1010	50.0	100	ug/L	10	1000	ND	101	50-150%			
Matrix Spike (22J0134-MS4)			Prepared	: 10/05/22	08:50 Anal	lyzed: 10/06	/22 00:01					
QC Source Sample: Non-SDG (A2	10937-03)											
<u>1311/6020B</u> Arsenic	5250	50.0	100	11 c/T	10	5000	ND	107	50 1500/			
	5350	50.0		ug/L	10				50-150%			
Barium	11300	2500	5000	ug/L	10	10000	ND	113	50-150%			
Cadmium	1010	50.0	100	ug/L	10	1000	ND	101	50-150%			
Chromium	5010	50.0	100	ug/L	10	5000	ND	100	50-150%			
Lead	24700	25.0	50.0	ug/L	10	5000	19600	102	50-150%			
Mercury	97.6	3.75	7.00	ug/L	10	100	ND	98	50-150%			
Selenium	979	50.0	100	ug/L	10	1000	ND	98	50-150%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0134 - EPA 1311/301	5A						Sol	id				
Matrix Spike (22J0134-MS4)			Prepared	: 10/05/22	08:50 Ana	lyzed: 10/06	/22 00:01					
QC Source Sample: Non-SDG (A2	10937-03)											
Silver	1030	50.0	100	ug/L	10	1000	ND	103	50-150%			
Matrix Spike (22J0134-MS5)			Prepared	: 10/05/22	08:50 Anal	lyzed: 10/06	/22 00:12					
QC Source Sample: Non-SDG (A2	10937-04)											
1311/6020B												
Arsenic	5150	50.0	100	ug/L	10	5000	ND	103	50-150%			TCLF
Barium	11200	2500	5000	ug/L	10	10000	ND	112	50-150%			TCLF
Cadmium	1010	50.0	100	ug/L	10	1000	ND	101	50-150%			TCLI
Chromium	4890	50.0	100	ug/L	10	5000	ND	98	50-150%			TCLI
Lead	6160	25.0	50.0	ug/L	10	5000	1080	102	50-150%			TCLF
Mercury	97.0	3.75	7.00	ug/L	10	100	ND	97	50-150%			TCLI
Selenium	956	50.0	100	ug/L	10	1000	ND	96	50-150%			TCLF
Silver	1010	50.0	100	ug/L	10	1000	ND	101	50-150%			TCLF
Matrix Spike (22J0134-MS6)			Prepared	: 10/05/22	08:50 Ana	lyzed: 10/06	/22 00:22					
QC Source Sample: Non-SDG (A2	10937-05)											
<u>1311/6020B</u>												
Arsenic	5460	50.0	100	ug/L	10	5000	ND	109	50-150%			
Barium	11400	2500	5000	ug/L	10	10000	ND	114	50-150%			
Cadmium	1040	50.0	100	ug/L	10	1000	ND	104	50-150%			
Chromium	5110	50.0	100	ug/L	10	5000	ND	102	50-150%			
Lead	5500	25.0	50.0	ug/L	10	5000	225	105	50-150%			
Mercury	100	3.75	7.00	ug/L	10	100	ND	100	50-150%			
Selenium	1000	50.0	100	ug/L	10	1000	ND	100	50-150%			
Silver	1050	50.0	100	ug/L	10	1000	ND	105	50-150%			
Matrix Spike (22J0134-MS7)			Prepared	: 10/05/22	08:50 Ana	lyzed: 10/06	/22 00:32					
QC Source Sample: Non-SDG (A2	10937-06)											
Arsenic	5070	50.0	100	ug/L	10	5000	ND	101	50-150%			
Barium	11500	2500	5000	ug/L	10	10000	ND	115	50-150%			
Cadmium	989	50.0	100	ug/L ug/L	10	10000	ND ND	99	50-150%			
Caumuiii	202	50.0	100	ug/L	10	1000	ND))	50-150/0			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project: Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0134 - EPA 1311/301	5A						So	lid				
Matrix Spike (22J0134-MS7)			Prepared	: 10/05/22	08:50 Anal	lyzed: 10/06	5/22 00:32					
QC Source Sample: Non-SDG (A2)	10937-06)											
Chromium	4960	50.0	100	ug/L	10	5000	ND	99	50-150%			
Lead	6490	25.0	50.0	ug/L	10	5000	1450	101	50-150%			
Mercury	96.6	3.75	7.00	ug/L	10	100	ND	97	50-150%			
Selenium	963	50.0	100	ug/L	10	1000	ND	96	50-150%			
Silver	993	50.0	100	ug/L	10	1000	ND	99	50-150%			
Matrix Spike (22J0134-MS8)			Prepared	: 10/05/22	08:50 Anal	lyzed: 10/06	5/22 00:53					
QC Source Sample: Non-SDG (A2	J0042-01)											
1311/6020B												
Arsenic	5180	50.0	100	ug/L	10	5000	ND	104	50-150%			
Barium	10700	2500	5000	ug/L	10	10000	ND	107	50-150%			
Cadmium	983	50.0	100	ug/L	10	1000	ND	98	50-150%			
Chromium	4930	50.0	100	ug/L	10	5000	ND	99	50-150%			
Lead	5020	25.0	50.0	ug/L	10	5000	ND	100	50-150%			
Mercury	96.2	3.75	7.00	ug/L	10	100	ND	96	50-150%			
Selenium	953	50.0	100	ug/L	10	1000	ND	95	50-150%			
Silver	958	50.0	100	ug/L	10	1000	ND	96	50-150%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

	Solu	ıble Cyanic	de by UV Di	igestion/	Gas Diffu	sion/Amp	erometr	c Detection	on			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22J0022 - ASTM D751	1-12mod (S)					Soi	I				
Blank (22J0022-BLK1)			Prepared	: 10/03/22	09:31 Anal	lyzed: 10/03	/22 14:50					
D7511-12 Total Cyanide	ND	50.0	100	ug/kg w	et 1							
LCS (22J0022-BS1)			Prepared	: 10/03/22	09:31 Ana	lyzed: 10/03	/22 14:52					
D7511-12 Total Cyanide	406	50.0	100	ug/kg w	et 1	400		101	84-116%			
Matrix Spike (22J0022-MS2))		Prepared	: 10/03/22	09:31 Ana	lyzed: 10/03	/22 15:38					
QC Source Sample: Non-SDG (2007511-12	A2I0864-01)											
Total Cyanide	7530	662	1320	ug/kg di	ry 4	1320	5370	164	64-136%			Q-01, Q-1
Matrix Spike Dup (22J0022-	MSD2)		Prepared	: 10/03/22	09:31 Ana	lyzed: 10/03	/22 15:40					
OC Source Sample: Non-SDG (A2I0864-01)											
Total Cyanide	6990	661	1320	ug/kg di	ry 4	1320	5370	123	64-136%	8	47%	Q-1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A210874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l1046 - Total Solids (Dry	Weight	t)					Soi	l				
Duplicate (22I1046-DUP1)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	/22 06:52					PRO
QC Source Sample: Non-SDG (A2106	71-02)											
% Solids	97.6	1.00	1.00	%	1		97.7			0.2	10%	
Duplicate (22I1046-DUP2)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	/22 06:52					PRO
QC Source Sample: Non-SDG (A2106	71-04)											
% Solids	97.8	1.00	1.00	%	1		97.7			0.08	10%	
Duplicate (22I1046-DUP3)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	/22 06:52					PRO
QC Source Sample: Non-SDG (A2107	(08-02)											
% Solids	98.4	1.00	1.00	%	1		98.4			0.03	10%	
Duplicate (22I1046-DUP4)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	/22 06:52					PRO
QC Source Sample: Non-SDG (A2I07	<u>(08-04)</u>											
% Solids	97.7	1.00	1.00	%	1		97.7			0.04	10%	
Duplicate (22I1046-DUP5)			Prepared	: 09/30/22	13:07 Anal	yzed: 10/03/	/22 06:52					PRO
QC Source Sample: Non-SDG (A2107	<u>(08-06)</u>											
% Solids	96.7	1.00	1.00	%	1		96.9			0.1	10%	
Duplicate (22I1046-DUP6)			Prepared	: 09/30/22	19:20 Anal	yzed: 10/03/	/22 06:52					
QC Source Sample: Non-SDG (A2109	<u>81-01)</u>											
% Solids	88.6	1.00	1.00	%	1		89.1			0.6	10%	
Duplicate (22I1046-DUP7)			Prepared	: 09/30/22	19:20 Anal	yzed: 10/03/	/22 06:52					
QC Source Sample: Non-SDG (A2109	<u>81-02)</u>											
% Solids	77.7	1.00	1.00	%	1		83.6			7	10%	
Duplicate (22I1046-DUP8)			Prepared	: 09/30/22	19:20 Anal	yzed: 10/03/	/22 06:52					
QC Source Sample: Non-SDG (A2109	81-03)			· · · · · · · · · · · · · · · · · · ·							·	
% Solids	89.0	1.00	1.00	%	1		88.0			1	10%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 22l1046 - Total Solids (Dry Weigh	t)					Soil					
Duplicate (22I1046-DUP9)			Prepared	: 09/30/22	19:20 Ana	yzed: 10/03/	22 06:52					
QC Source Sample: Non-SDG (A	210986-01)											
% Solids	79.4	1.00	1.00	%	1		78.8			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number:111323Report ID:Niagara Falls, NY 14305Project Manager:Chip ByrdA210874 - 10 28 22 0544

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbon	s by NWTPH-Dx			
Prep: EPA 3546 (Fue	ls)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0112							
A2I0874-01RE1	Solid	NWTPH-Dx	09/20/22 17:00	10/04/22 16:18	10.5g/5mL	10g/5mL	0.95
	Gasol	ine Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I0974			•	*			
A2I0874-01	Solid	NWTPH-Gx (MS)	09/20/22 17:00	09/28/22 16:14	1.3g/5mL	5g/5mL	3.85
		Volatile (Organic Compounds	by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I0974			1	1			
A2I0874-01	Solid	5035A/8260D	09/20/22 17:00	09/28/22 16:14	1.3g/5mL	5g/5mL	3.85
		Regulated TCLP Vol	atile Organic Comp	ounds by EPA 1311	/8260D		
Prep: EPA 1311/5030E	B TCLP Volatiles				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0268			•	*			
A2I0874-01	Solid	1311/8260D	09/20/22 17:00	10/07/22 10:23	5mL/5mL	5mL/5mL	1.00
		Semivolatile	e Organic Compour	ids by EPA 8270E			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0030			F	r			
A2I0874-01RE1	Solid	EPA 8270E	09/20/22 17:00	10/03/22 10:37	15.22g/2mL	15g/2mL	0.99
		Total	Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3051A			•	•	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
	Mulia	Nictiou	Sumpieu	Теригеи			
Batch: 22I0998							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

2749 Lockport Road Niagara Falls, NY 14305 Project: Gasco -- Filter Bags

Project Number: 111323
Project Manager: Chip Byrd

Report ID: A2I0874 - 10 28 22 0544

SAMPLE PREPARATION INFORMATION

		Tota	Metals by EPA 6020	OB (ICPMS)			
Prep: EPA 3051A Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
		TCLF	P Metals by EPA 602	0B (ICPMS)			
Prep: EPA 1311/3015	<u>A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0134 A2I0874-01	Solid	1311/6020B	09/20/22 17:00	10/05/22 08:50	10mL/50mL	10mL/50mL	1.00
	S	oluble Cyanide by U\	/ Digestion/Gas Diffu	usion/Amperometric	Detection		
Prep: ASTM D7511-12	2mod (S)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0022 A2I0874-01	Solid	D7511-12	09/20/22 17:00	10/03/22 09:31	2.575g/50mL	2.5g/50mL	0.97
			Percent Dry Wei	ight			
Prep: Total Solids (Dr	y Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22I1046 A2I0874-01	Solid	EPA 8000D	09/20/22 17:00	09/30/22 13:07			NA
		T	CLP Extraction by E	PA 1311			
Prep: EPA 1311 (TCL	<u>P)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0014 A2I0874-01	Solid	EPA 1311	09/20/22 17:00	10/04/22 17:00	100g/2000g	100g/2000g	NA
Prep: EPA 1311 TCLF	P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 22J0107 A2I0874-01	Solid	EPA 1311 ZHE	09/20/22 17:00	10/04/22 15:01	19.9g/399.1g	25g/500g	NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

EST	Result reported as an Estimated Value. Failed inital calabration criteria
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
ICV-02	Estimated Result. Initial Calibration Verification (ICV) failed low.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
PRO	Sample has undergone sample processing prior to extraction and analysis.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-11	Spike recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
Q-16	Reanalysis of an original Batch QC sample.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-52	Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +14%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +60%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +9%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

Niagara Falls	s, NY 14305	Project Manager: Chip Byrd	A2I0874 - 10 28
Q-54f	Daily Continuing Calibration Verification reresults are reported as Estimated Values.	ecovery for this analyte failed the +/-20% criteria listed in EPA method 826	60/8270 by -6%. The
Q-54g	Daily Continuing Calibration Verification reresults are reported as Estimated Values.	ecovery for this analyte failed the +/-20% criteria listed in EPA method 826	50/8270 by -7%. The
Q-54h	Daily Continuing Calibration Verification reresults are reported as Estimated Values.	ecovery for this analyte failed the +/-20% criteria listed in EPA method 826	50/8270 by -9%. The
Q-55	Daily CCV/LCS recovery for this analyte w detection at the reporting level.	vas below the +/-20% criteria listed in EPA 8260, however there is adequate	e sensitivity to ensure
Q-56	Daily CCV/LCS recovery for this analyte w	vas above the +/-20% criteria listed in EPA 8260	
R-02	The Reporting Limit for this analyte has been	en raised to account for interference from coeluting organic compounds pro	esent in the sample.
S-01	Surrogate recovery for this sample is not av interference.	vailable due to sample dilution required from high analyte concentration and	d/or matrix
S-05	Surrogate recovery is estimated due to samp	ple dilution required for high analyte concentration and/or matrix interferen	ice.
TCLP	This batch QC sample was prepared with T	CLP or SPLP fluid from preparation batch 22J0014.	
TCLPa	Limited sample volume. Leachate was prep consistency in leaching, the standard ratio of	pared using less than the recommended amount of sample per EPA 1311 or of sample to leachate fluid was maintained.	1312. To maintain
TCLPb	This batch QC sample was prepared with Te	CLP or SPLP fluid from preparation batch 22J0107.	
TCLPc	This batch QC sample was prepared with T	CLP or SPLP fluid from preparation batch 22J0233.	
V-15	Sample aliquot was subsampled from the sa sampling.	ample container. The subsampled aliquot was preserved in the laboratory w	vithin 48 hours of

Sample aliquot was subsampled from the sample container in the laboratory. The subsampled aliquot was not preserved within 48 hours of

Apex Laboratories

V-16

sampling.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

2749 Lockport RoadProject Number: 111323Report ID:Niagara Falls, NY 14305Project Manager: Chip ByrdA210874 - 10 28 22 0544

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex]	La	bora	tor	ies
ripen.	Lu	OOIU		100

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc. Project: Gasco -- Filter Bags

 2749 Lockport Road
 Project Number:
 111323
 Report ID:

 Niagara Falls, NY 14305
 Project Manager:
 Chip Byrd
 A210874 - 10 28 22 0544

																		•					ĺ
COMPANY: Sevenson Environmental Services, Inc.	ices, Inc.			Prog	Project Mgr: Chip Byrd	음	Byrd			Ā	oject	Name	Gasco	Project Name: Gasco Bag Filter	Filter	-			Projec	Project # 111323	63		
Address: 2749 Lockport Road, Niagara Falls, NY 14305	iagara	Falls, NY 143	88				٦	Phone: (716) 583-2754	1716	583-	2754		Fax	,,		<u> </u>	mail:	wbyrd	@seve	E-mail: wbyrd@sevenson.com	_		
Sampled by: Jothey Lubinski	3	biaski												ANA	TVSIS	ANALYSIS REQUEST	JEST						
					NEKS		NOC*									***************************************						***************************************	
	#			>	NATNO	s(JGDT 0																
SAMPLEID	GI 8AJ	at aza	TIME	(ІЯТАМ	# OE C	OOV 0928	1311/826	77 G0728	Dry Weigh	Metals, Re Metals, Ti	Total Cya	- H9TWN	D-H9TWW										
BF-092022-144		8/30/33	Ω17€	S	-	×	×	×	×	×	×	×	×										
	-							\dashv	+							\dashv							
	+		-				\top	+	+	_	-				+		-		1				+
	+		-					+	+	-					\forall	+				-		+	-
	+-						\top		+-				-		1	+	-						+
		A STATE OF THE STA									-												
	+	***************************************	-				\top		+	-													-
Normal Tun	n Arour	Normal Turn Around Time (TAT) = 6-10 Business Days)=6-10B	usines	3 Days]		1	N N	PECIA	IL INS	TRUC	SPECIAL INSTRUCTIONS:		1	1						1	-
	1 DAY	ΑΥ	2DAY		3 DAY		4 DAY	_															
IAI Kequested (circle)	5 D	5 DAY	STO		Other				1														
	AMPLE	SAMPLES ARE HELD FOR 30 DAYS	D FOR 30	DAYS					Н													2/1	2/16/14 BC
Signature:	Date:	128/22	RECEIVED BY: Signature:	VED BY.	A	_	Darte	Caled/Aglas		ELINOL	RELINQUISHED BY: Signature:) BY:			u	Date:		RECE	RECEIVED BY: Signature:	e:	2014	Date:	
refessional Labinski	TE -	1005 1005	ig (Z	Name	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	Time:	Time (05/2)		Printed Name:	ame:		si	·	-	Time:		Printe	Printed Name:			Time	3
Company: S.E.S.			Company:	pany.		13	ZES			Company:	<u></u>							Company:	any:				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Sevenson Environmental Services, Inc.

Project:

Gasco -- Filter Bags

2749 Lockport Road Niagara Falls, NY 14305 Project Number: 111323

Project Manager: Chip Byrd

Report ID: A210874 - 10 28 22 0544

Client:	
CHUH.	Sevenson Environmental Servicestry. Element WO#: AZ ID874
	Project #: Gasco - Bay Filter 11/323
	,
Delivery	<u>Info:</u> executed: 9/28/22 @ 1005 By: ΕΤ
	by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Spection Date/time inspected: 9/28/27 @ 11/2 By: E
	Custody included? Yes No Custody seals? Yes No No
·	ated by client? Yes No No
Signed/da	ated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
TP	
Temperat	
	on ice? (Y/N)
-	anks? (Y/N)
	(Gel/Real/Other) (Gel/Real/Other)
Condition	
	to f temp? (YN) Possible reason why: ts applied to out of temperature samples? Yes No imperature samples form initiated? Yes No imperature: Date/time inspected: All All (All By: W)
All samp	Inspection: Date/time inspected: 1545 By: By: Wolfer By: Wolfe By: Wolf By: Wolfe By: Wolfe By: Wolfe By: Wolfe By: Wolfe By: Wolfe By:
All samp	Inspection: Date/time inspected: \(\frac{1000}{1000} \) Date/time
All sampl	Inspection: Date/time inspected: All War By: By: By: Bes intact? Yes No Comments: Dels/COCs agree? Yes No Comments:
All sample Bottle lab	mperature samples form initiated? Yes No
All sample Bottle lab	Inspection: Date/time inspected: All War By: By: By: Bes intact? Yes No Comments: Dels/COCs agree? Yes No Comments:
Bottle lab COC/con Container	Inspection: Date/time inspected:
Bottle lab COC/con Container	Inspection: Date/time inspected:
Bottle lab COC/con Container Do VOA Commen	Inspection: Date/time inspected:
Bottle lab COC/con Container Do VOA Commen Water sar	Inspection: Date/time inspected: All War By:
Bottle lab COC/con Container Do VOA Commen Water sar	Inspection: Date/time inspected: All War By: Italianer discrepancies form initiated? Yes No Comments: Inspection: Date/time inspected: All War By: Italianer discrepancies form initiated? Yes No Comments: Installar discrepancies form initiated? Yes No Comments: Installar discrepancies form initiated? Yes No No Comments: Installar discrepancies form initiated? Yes No
Bottle lab COC/con Container Do VOA Commen Water sar	Inspection: Date/time inspected: All War By: Italianer discrepancies form initiated? Yes No Comments: Inspection: Date/time inspected: All War By: Italianer discrepancies form initiated? Yes No Comments: Installar discrepancies form initiated? Yes No Comments: Installar discrepancies form initiated? Yes No No Comments: Installar discrepancies form initiated? Yes No
Bottle lab COC/con Container Do VOA Commen Water sar	Inspection: Date/time inspected:
Bottle lab COC/con Container Do VOA Commen Water san Commen	mperature samples form initiated? Yes No
Bottle lab COC/con Container Do VOA Commen Water sar	mperature samples form initiated? Yes No

Apex Laboratories