

NWN Washington Exhibit BV-3:

Technical Appendix

Contents

NW	NW	ashington Exhibit BV-3: Technical Appendix	3
I.	DCF Models		
	A.	DCF Estimation of Cost of Equity	3
	B.	Details of the DCF Model	
		1. Dividends, Cash Flows, and Share Repurchases	4
	C.	DCF Model Inputs	5
		1. Dividends and Prices	5
		2. Company Specific Growth Rates	5
II.	CAPM and ECAPM		
	A.	The Capital Asset Pricing Model (CAPM)	7
	B.	Inputs to the CAPM	8
		1. The Risk-free Interest Rate	8
		2. The Market Equity Risk Premium	9
	C.	The Empirical CAPM	11
		1. Description of the ECAPM	
		2. Academic Evidence on the Alpha Term in the ECAPM	12
III.	Financial Risk and the Cost of Equity		
	A.	The Effect of Financial Leverage on the Cost of Equity	14
	B.	Methods to Account for Financial Risk	15
		1. Cost of Equity Implied by the Overall Cost of Capital	15
		2. Unlevering and Relevering Betas in the CAPM (Hamada Adjustment)	

NWN Washington Exhibit BV-3: Technical Appendix

This technical appendix contains details on the DCF and CAPM / ECAPM methods as well as on the financial leverage used to determine the cost of equity for a company with NWN's leverage.

I. DCF Models

A. DCF Estimation of Cost of Equity

The DCF method for estimating the cost of equity capital assumes that the market price of a stock is equal to the present value of the dividends that its owners expect to receive. The method also assumes that this present value can be calculated by the standard formula for the present value of a cash flow stream:

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots + \frac{D_T}{(1+r)^T}$$
(1)

where P_0 is the current market price of the stock; D_t is the dividend cash flow expected at the end of period t; r is the cost of equity capital; and T is the last period in which a dividend cash flow is to be received. The formula simply says that the stock price is equal to the sum of the expected future dividends, each discounted for the time and risk between now and the time the dividend is expected to be received. Since the current market price is known, it is possible to infer the cost of equity that corresponds to that price and a forecasted pattern of expected future dividends. In terms of Equation (1), if P_0 is known and D_1 , D_2 , ... D_T are estimated, an analyst can "solve for" the cost of equity capital r.

B. DETAILS OF THE DCF MODEL

Perhaps the most widely known and used application of the DCF method assumes that the expected rate of dividend growth remains constant forever. In the so-called Gordon Growth Model, the relationship expressed in Equation (1) is such that the present value equation can be rearranged algebraically into a formula for estimating the cost of equity. Specifically, if investors expect a dividend stream that will grow forever at a steady rate, then the market price of the stock will be given by

$$P_0 = \frac{D_1}{r - q} \tag{2}$$

where D_1 is the dividend expected at the end of the first period, g is the perpetual growth rate, and P_0 and r are the market price and the cost of capital, as before. Equation (2) is a simplified version of Equation (1) that can be solved algebraically to yield the well-known "DCF formula" for the cost of equity capital,

$$r = \frac{D_1}{P_0} + g = \frac{D_0 \times (1+g)}{P_0} + g \tag{3}$$

There are other versions of the DCF model that relax this restrictive assumption and posit a more complex or nuanced pattern of expected future dividend payments. For example, if there is reason to believe that investors do *not* expect a company's dividends to grow at a steady rate forever, but rather have different growth rate expectations in the near term (e.g., over the next five or ten years), compared to the distant future (e.g., a period *starting* ten years from the present moment), a "multi-stage" growth pattern can be modeled in the present value formula (Equation (1)).

1. Dividends, Cash Flows, and Share Repurchases

In addition to the DCF model described above, there are many alternative formulations. Notable among these are versions of the model that use cash flows rather than dividends in the present value formula (Equation (1)).¹

Because investors are interested in cash flow, it is technically important to capture *all* cash flows that are distributed to shareholders when estimating the cost of equity using the DCF method. In some circumstances, investors may expect to receive cash in forms other than dividends. An important example concerns the fact that many companies distribute cash to shareholders through share buybacks in addition to dividends. To the extent such repurchases are expected by investors, but not captured in the forecasted pattern of future dividends; a dividend-based implementation of the DCF model will <u>underestimate</u> the cost of equity.

Similarly, if investors have reason to suspect that a company's dividend payments will not reflect a full distribution of its available cash free cash flows in the period they were generated, it may be appropriate replace the forecasted dividends with estimated free cash flows to equity in the

For an example in a regulatory context, the U.S. Surface Transportation Board uses a cash flow based model with three stages to estimate the cost of equity for the railroads. See Surface Transportation Board Decision, "STB Ex Parte No. 664 (Sub-No. 1)," Decided January 23, 2009. Confirmed in EP-664 (Sub-No. 2), October 31, 2016.

present value formula (Equation (1)). Focusing on *available* cash rather than that actually distributed in the form of dividends can help account for instances when near-term investing and financing activities (e.g., capital expenditures or asset sales, debt issuances or retirements, or share repurchases) may cause dividend growth patterns to diverge from growth in earnings.

Many utility companies such as those included in my samples have long histories of paying a dividend. In fact, as mentioned in Section I of this Appendix, one of my standard requirements for inclusion in my samples is that a company pays dividends for 5-years without a gap or a dividend cut (on per share basis).² Additionally, although some gas distribution utility companies have engaged in share repurchase programs, the companies in my samples do not distribute substantial cash flows by means other than dividends.³

C. DCF MODEL INPUTS

1. Dividends and Prices

As described above, DCF models are forward-looking, comparing the *current* price of a stock to its expected *future* dividends to estimate the required expected return demanded by the market for that stock (i.e., the cost of equity). Therefore, the models demand the current market price and currently prevailing forecasts of future dividends as inputs.

The stock price input I employ for each sample company is the average of the closing stock prices for the 15 trading days ending on the date of my analysis. This guards against biases that may arise on a single trading day, yet is consistent with using current stock prices.

2. Company Specific Growth Rates

a. Analysts' Forecasted Growth Rates

Finding the right growth rate(s) is usually the "hard part" of applying the DCF model, which is sometimes criticized due to what has been called "optimism bias" in the earnings growth rate

Because of the small number of companies meeting my standard selection criteria, I have included ONE Gas in my sample even though only 3 years of dividend data are available.

While a number of companies in my samples have or have had share repurchase programs (e.g., Atmos and New Jersey Resources), the magnitude tends to be relatively small, so that an inclusion of the cash flow from repurchases would likely have a minimal impact on the average results for the samples. However, it is clear that not including the cash distributions from such repurchases downwardly biases the estimated cost of equity.

forecasts of security analysts. Optimism bias is defined as tendency for analysts to forecast earnings growth rates that are higher than are actually achieved. Any optimism bias might be related to incentives faced by analysts that provide rewards not strictly based upon the accuracy of the forecasts. To the extent optimism bias is present in the analysts' earnings forecasts the cost of capital estimates from the DCF model would be too high.

While academic researchers during the 1990s as well as in early 2000s found evidence of analysts' optimism bias, there is some evidence that regulatory reforms have eliminated the issue. A recent paper by Hovakimina and Saenyasiri (2010) found that recent efforts to curb analysts' incentive to provide optimistic forecasts have worked, so that "the median forecast bias essentially disappeared." Thus, some recent research indicates that the analyst bias may be a problem of the past.

The findings of several academic studies⁵ show that analyst earnings forecasts turn out to be too optimistic for stocks that are more difficult to value, for instance, stocks of smaller firms, firms with high volatility or turnover, younger firms, or firms whose prospects are uncertain. Coincidentally, stocks with greater analyst disagreement have higher analyst optimism bias—all of these describe companies that are more volatile and/or less transparent—none of which is applicable to the majority of utility companies with wide analyst coverage and information transparency. Consequently, optimism bias is not expected to be an issue for utilities.

b. Sources for Forecasted Growth Rates

For the reasons described above, I rely on analyst forecasts of earnings growth for the company-specific growth rate inputs to my implementations of the single- and multi-stage DCF models. All of the companies in my sample except South Jersey Industries have coverage from equity analysts reporting to Thomson Reuters IBES, so I use the consensus 3-5 year EPS growth rate

⁴ A. Hovakimian and E. Saenyasiri, "Conflicts of Interest and Analyst Behavior: Evidence from Recent Changes in Regulation," *Financial Analysts Journal*, vol. 66, 2010.

These studies include the following: (i) Hribar, P, McInnis, J. "Investor Sentiment and Analysts' Earnings Forecast Errors," *Management Science* Vol. 58, No. 2 (February 2012): pp. 293-307; (ii) Scherbina, A. (2004), "Analyst Disagreement, Forecast Bias and Stock Returns," downloaded from Harvard Business School Working Knowledge: http://hbswk.hbs.edu/item/5418.html; and (iii) Michel, J-S., Pandes J.A. (2012), "Are Analysts Really Too Optimistic?" downloaded from http://www.efmaefm.org.

provided by that service. I supplement these consensus values with growth rates based on EPS estimates from *Value Line*.⁶

II. CAPM and ECAPM

A. THE CAPITAL ASSET PRICING MODEL (CAPM)

The Capital Asset Pricing Model (CAPM) is a theoretical model stating that the collective investment decisions of investors in capital markets will result in equilibrium prices for all risky assets such that the returns investors expect to receive on their investments are commensurate with the risk of those assets relative to the market as a whole. The CAPM posits a risk-return relationship known as the Security Market Line (see Figure 2 in my Direct Testimony), in which the required expected return on an asset is proportional to that asset's risk relative to the market as measured by its "beta". More precisely, the CAPM states that the cost of capital for an investment *S* (e.g., a particular common stock), is given by the following equation:

$$r_s = r_f + \beta_s \times MRP \tag{4}$$

where r_s is the required return on investment S;

 r_f is the risk-free interest rate;

 β_S is the beta risk measure for the investment S; and

MRP is the market equity risk premium.

The CAPM is based on portfolio theory, and recognizes two fundamental principles of finance: (1) investors seek to minimize the possible variance of their returns for a given level of expected returns (or alternatively, they demand higher *expected* returns when there is greater uncertainty about those returns), and (2) investors can reduce the variability of their returns by diversifying—constructing portfolios of many assets that do not all go up or down at the same time or to the same degree. Under the assumptions of the CAPM, the market participants will construct portfolios of risky investments that minimize risk for a given return so that the aggregate holdings of all investors represent the "market portfolio". The risk-return trade-off

Specifically, I compute the growth rate implied by Value Line's current year EPS estimate and its projected 3-5 year EPS estimate. I then average this in with the IBES consensus estimate as an additional independent estimate, giving it a weight of 1 and weighting the IBES consensus according to the number of analysts who contributed estimates.

faced by investors then concerns their exposure to the risk inherent in the market portfolio, as they weight their investment capital between the portfolio of risky assets and the risk-free asset.

Because of the effects of diversification, the relevant measure of risk for an individual security is its *contribution* to the risk of the market portfolio. Therefore, beta (β) is defined to capture the sensitivity of the security's returns to the market's returns. Formally,

$$\beta_s = \frac{covariance(r_s, R_m)}{variance(R_m)}$$
 (5)

where R_m is the return on the market portfolio.

Beta is usually calculated by statistically comparing (using regression analysis) the excess (positive or negative) of the return on the individual security over the government bond rate with the excess of the return on a market index such as the S&P 500 over a government bond rate.

The basic idea behind beta is the risk that cannot be diversified away in large portfolios is what matters to investors. Beta is a measure of the risks that *cannot* be eliminated by diversification. It is this non-diversifiable risk, or "systematic risk", for which investors require compensation in the form of higher expected returns. By definition, a stock with a beta equal to 1.0 has average non-diversifiable risk; its returns vary to the same degree as those on the market as a whole. According to the CAPM, the required return demanded by investors (i.e., the cost of equity) for investing in that stock will match the expected return on the market as a whole. Similarly, stocks with betas above 1.0 have more than average risk, and so have a cost of equity greater than the expected market return; those with betas below 1.0 have less than average risk, and are expected to earn lower than market levels of return.

B. INPUTS TO THE CAPM

1. The Risk-free Interest Rate

The precise meaning of a "risk-free" asset according to the finance theory underlying the CAPM is an investment whose return is guaranteed, with no possibility that it will vary around its expected value in response to the movements of the broader market. (Equivalently, the CAPM beta of a risk-free asset is zero.) In developed economies like the U.S., government debt is generally considered have no default risk. In this sense they are "risk-free"; however, unless they

are held to maturity, the rate of return on government bonds may in fact vary around their stated or expected yields.⁷

The theoretical CAPM is a single period model, meaning that it posits a relationship between risk and return over a single "holding period" of an investment. Because investors can rebalance their portfolios over short horizons, many academic studies and practical applications of the CAPM use the short-term government bond as the measure of the risk-free rate of return. However, regulators frequently use a version based on a measure of the long-term risk-free rate; e.g., a long-term government bond. I rely on the 20-year Treasury bond as a measure of the risk-free asset in this proceeding. ⁸ I use the term "risk-free rate" as describing the yield on the 20-year Treasury bond.

However, I do not believe the *current* yield on long-term Treasury bonds is a good estimate for the risk-free rate that will prevail over the time period relevant to this proceeding as currently prevailing bond yields are near historic lows for a variety of circumstances that should not be expected to persist for the reasons discussed in my direct testimony. For this reason I rely on Blue Chip's forecast of 3.60% for the yield on a 10-year Treasury bond for 2020. I adjust this value upward by 50 basis points, which is my estimate of the maturity premium for the 20-year over the 10-year Treasury Bond. This gives me a risk-free rate of 4.10% for 2020.

2. The Market Equity Risk Premium

a. Historical Average Market Risk Premium

Like the cost of capital itself, the market risk premium is a forward-looking concept. It is by definition the premium above the risk-free interest rate that investors can *expect* to earn by investing in a value-weighted portfolio of all risky investments in the market. The premium is not directly observable, and must be inferred or forecasted based on known market information.

⁷ This is due to interest rate fluctuations that can change the market value of previously issued debt in relation to the yield on new issuances

The use of a 20-year government bond is consistent with the measurement of the Ibbotson MRP and permits me to use a series that has been in consistent circulation since the 1990's (the 30-year government bond was not issued from 2002 to 2006).

⁹ Blue Chip Economic Indicators, October 10, 2018.

This maturity premium is estimated by comparing the average excess yield on 20-year versus 10-year Treasury Bonds over the period January 1990 – September 2018, using data from Bloomberg. See Table No. BV-9.

One commonly use method for estimating the MRP is to measure the historical average premium of market returns over the income returns on risk-free government bonds over some long historical period. *Duff and Phelps* performs such a calculation of the MRP using the traditional Ibbotson data. The arithmetic average of annual observed market equity risk premiums from 1926 to the present is 7.07%.¹¹

b. Forward Looking Market Equity Risk Premium

An alternative approach to estimating the MRP eschews historical averages in favor of using current market information and forecasts to infer the expected return on the market as a whole, which can then be compared to prevailing government bond yields to estimate the equity risk premium. Bloomberg performs such estimates of country-specific MRPs by implementing the DCF model on the market as a whole—using forecast market-wide dividend yields and current level on market indexes; for the U.S. Bloomberg uses the S&P 500 to infer the expected market return.

Bloomberg's estimate of the forward-looking market-implied MRP currently stands at about 7%.

c. Yield Spreads and the Market Equity Risk Premium

As shown in Figure 7 of my testimony the yield spreads for 20-year A rated utility debt over 20-year Treasury bonds is elevated relative to its historical norm by about 25 bps relative to its long-term average leading up to the 2008 financial crisis. This means that investors require a higher return on investment grade utility debt relative to the return on T-bonds than they did before the crisis and ensuing economic turmoil.

This information can be used to provide a quantitative benchmark for the implied increase in MRP based on a paper by Edwin J. Elton, et al., which documents that the yield spread on corporate bonds is normally a combination of a default premium, a tax premium, and a systematic risk premium.¹² Of these components, it is the systematic risk premium that likely explains the vast majority of the yield spread increase. In other words, unless the risk-free rate is underestimated as described above, the market equity risk premium has increased relative to its

¹¹ Duff & Phelps, "2018 SBBI Yearbook," p. 10-21.

¹² "Explaining the Rate Spread on Corporate Bonds," Edwin J. Elton, Martin J. Gruber, Deepak Agarwal, and Christopher Mann, *The Journal of Finance*, February 2001, pp. 247-277.

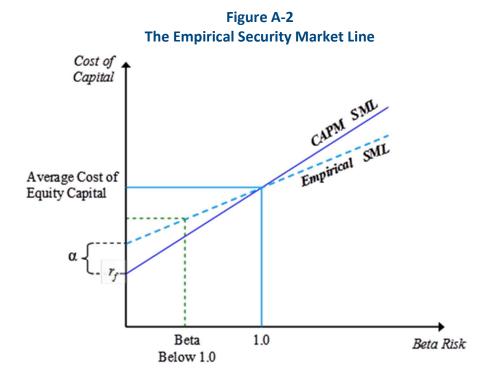
"normal" level. ¹³ For example, assuming a beta of 0.25 for A rated debt ¹⁴ means that an increase in the MRP of one percentage point translates into a ¹/₄ percentage point increase in the risk premium on A rated debt (i.e., 0.25 (beta) times 1 percentage point (increase in MRP) = ¹/₄ percentage point increase in yield spread). Thus, a 20 bps increase in the yield spread is therefore consistent with a 0.8 percentage point increase in the MRP ($\frac{0.20\%}{0.25}$ = 0.8%). Thus there is evidence that the current MRP is elevated relative to the historical MRP of 7.07%. My use of the historical MRP of 7.07% is therefore conservative.

C. THE EMPIRICAL CAPM

1. Description of the ECAPM

Empirical research has shown that the CAPM tends to overstate the actual sensitivity of the cost of capital to beta: low-beta stocks tend to have higher risk premiums than predicted by the CAPM and high-beta stocks tend to have lower risk premiums than predicted. A number of variations on the original CAPM theory have been proposed to explain this finding, but the observation itself can also be used to estimate the cost of capital directly, using beta to measure relative risk by making a direct empirical adjustment to the CAPM.

The Empirical CAPM (ECAPM) makes use of these empirical findings. It estimates the cost of capital with the equation,


$$r_{S} = r_{f} + \alpha + \beta_{S} \times (MRP - \alpha)$$
 (6)

where α is the "alpha" adjustment of the risk-return line, a constant, and the other symbols are defined as for the CAPM (see Equation (4)). The alpha adjustment has the effect of increasing

In theory, some of the increase in yield spread for A rated debt may be due to an increase in default risk, but the increase in default risk for A rated debt is undoubtedly very small because utilities with A range rated debt have a low default risk. This means that the vast majority—if not all—of the increase in A rated yield spreads is due to a combination of the increased systematic risk premium and the downward pressure on the yields of government debt. Although there is no increase in the tax premium discussed in the Elton et al. paper due to coupon payments, there may be some increase due to a small tax effect resulting from the probability of increased capital gains taxes when the debt matures.

Elton, *et al.* estimates the average beta on BBB-rated corporate debt as 0.26 over the period of their study, and A-rated debt will have a slightly lower beta than BBB-rated debt. I note that 0.25 is a conservatively high estimate of the beta on A-rated utility debt. Most academic estimates, including those presented in *Berk & Demarzo* that I utilize for my Hamada adjustments are significantly lower: in the range of 0.0 – 0.1 percent and would result in a substantially higher MRP estimate.

the intercept but reducing the slope of the Security Market Line, which results in a Security Market Line that more closely matches the results of empirical tests. In other words, the ECAPM produces more accurate predictions of eventual realized risk premiums than does the CAPM.

2. Academic Evidence on the Alpha Term in the ECAPM

Figure A-3 below summarizes the empirical results of tests of the CAPM, including their estimates of the "alpha" parameter necessary to improve the accuracy of the CAPM's predictions of realized returns.

Figure A-3

EMPIRICAL EVIDENCE ON THE ALPHA FACTOR IN ECAPM*

AUTHOR	RANGE OF ALPHA	PERIOD RELIED UPON
Black (1993) ¹	1% for betas 0 to 0.80	1931-1991
Black, Jensen and Scholes (1972) ²	4.31%	1931-1965
Fama and McBeth (1972)	5.76%	1935-1968
Fama and French (1992) ³	7.32%	1941-1990
Fama and French (2004) ⁴	N/A	
Litzenberger and Ramaswamy (1979) ⁵	5.32%	1936-1977
Litzenberger, Ramaswamy and Sosin (1980)	1.63% to 3.91%	1926-1978
Pettengill, Sundaram and Mathur (1995) ⁶	4.6%	1936-1990

^{*}The figures reported in this table are for the longest estimation period available and, when applicable, use the authors' recommended estimation technique. Many of the articles cited also estimate alpha for sub-periods and those alphas may vary.

Sources:

Black, Fischer. 1993. Beta and Return. The Journal of Portfolio Management 20 (Fall): 8-18.

Black, F., Michael C. Jensen, and Myron Scholes. 1972. The Capital Asset Pricing Model: Some Empirical Tests, from Studies in the theory of Capital Markets. In Studies in the Theory of Capital Markets, edited by Michael C. Jensen, 79-121. New York: Praeger.

Fama, Eugene F. and James D. MacBeth. 1972. Risk, Returns and Equilibrium: Empirical Tests. Journal of Political Economy 81 (3): 607-636.

Fama, Eugene F. and Kenneth R. French. 1992. The Cross-Section of Expected Stock Returns. Journal of Finance 47 (June): 427-465.

Fama, Eugene F. and Kenneth R. French. 2004. The Capital Asset Pricing Model: Theory and Evidence. *Journal of Economic Perspectives* 18 (3): 25-46.

Litzenberger, Robert H. and Krishna Ramaswamy. 1979. The Effect of Personal Taxes and Dividends on Capital Asset Prices, Theory and Empirical Evidence. *Journal of Financial Economics* XX (June): 163-195.

Litzenberger, Robert H. and Krishna Ramaswamy and Howard Sosin. 1980. On the CAPM Approach to Estimation of a Public Utility's Cost of Equity Capital. *The Journal of Finance* 35 (2): 369-387.

¹Black estimates alpha in a one step procedure rather than in an un-biased two-step procedure.

²Estimate a negative alpha for the subperiod 1931-39 which contain the depression years 1931-33 and 1937-39.

³Calculated using Ibbotson's data for the 30-day treasury yield.

⁴The article does not provide a specific estimate of alpha; however, it supports the general finding that the CAPM underestimates returns for low-beta stocks and overestimates returns for high-beta stocks.

⁵Relies on Lizenberger and Ramaswamy's before-tax estimation results. Comparable after-tax alpha estimate is 4.4%.

⁶Pettengill, Sundaram and Mathur rely on total returns for the period 1936 through 1990 and use 90-day treasuries. The 4.6% figure is calculated using auction averages 90-day treasuries back to 1941 as no other series were found this far back.

III. Financial Risk and the Cost of Equity

A common issue in regulatory proceedings is how to apply data from a benchmark set of comparable securities when estimating a fair return on equity for the target/regulated company. ¹⁵ It may be tempting to simply estimate the cost of equity capital for each of the sample companies (using one of the above approaches) and average them. After-all, the companies were chosen to be comparable in their business risk characteristics, so why would an investor necessarily prefer equity in one to the other (on average)?

The problem with this argument is that it ignores the fact that underlying asset risk (i.e., the risk inherent in the lines of business in which the firm invests its assets) for each company is typically divided between debt and equity holders. The firm's debt and equity are therefore financial derivatives of the underlying asset return, each offering a differently structured claim on the cash flows generated by those assets. Even though the risk of the underlying assets may be comparable, a different capital structure splits that risk differently between debt and equity holders. The relative structures of debt and equity claims are such that higher degrees of debt financing increase the variability of returns on equity, even when the variability of asset returns remains constant. As a consequence, otherwise identical firms with different capital structures will impose different levels of risk on their equity holders. Stated differently, increased leverage adds financial risk to a company's equity. ¹⁶

A. THE EFFECT OF FINANCIAL LEVERAGE ON THE COST OF EQUITY

To develop an intuition for the manner in which financial leverage affects the risk of equity, it is helpful to consider a concrete example. Figure A-1 and Figure A-2 below demonstrate the impact of leverage on the risk and return for equity by comparing equity's risk when a company uses no debt to finance its assets, and when it uses a 50-50 capital structure (i.e., it finances 50 percent of its assets with equity, 50 percent with debt). For illustrative purposes, the figures assume that the cash flows will be either \$5 or \$15 and that these two possibilities have the same chance of occurring (e.g., the chance that either occurs is ½).

This is also a common valuation problem in general business contexts.

I refer to this effect in terms of *financial risk* because the additional risk to equity holders stems from how the company chooses to finance its assets. In this context financial risk is distinct from and independent of the *business risk* associated with the manner in which the firm deploys its cash flow generating assets. The impact of leverage on risk is conceptually no different than that faced by a homeowner who takes out a mortgage. The equity of a homeowner who finances his home with 90% debt is much riskier than the equity of one who only finances with 50% debt.

Figure A-1: All Equity Capital Structure

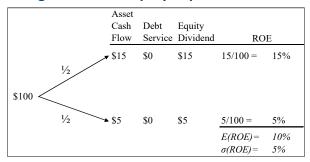
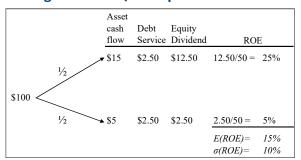



Figure A-2: 50/50 Capital Structure.

In the figures, E(ROE) indicates the mean return and $\sigma(ROE)$ represents the standard deviation. This simple example illustrates that the introduction of debt increases both the mean (expected) return to equity holders and the variance of that return, even though the firm's expected cash flows—which are a property of the line of business in which its assets are invested—are unaffected by the firm's financing choices. The "magic" of financial leverage is not magic at all—leveraged equity investors can only earn a higher return because they take on greater risk.

B. METHODS TO ACCOUNT FOR FINANCIAL RISK

1. Cost of Equity Implied by the Overall Cost of Capital

If the companies in a sample are truly comparable in terms of the systematic risks of the underlying assets, then the overall cost of capital of each company should be about the same across companies (except for sampling error), so long as they do not use extreme leverage or no leverage. The intuition here is as follows. A firm's asset value (and return) is allocated between equity and debt holders.¹⁷ The expected return to the underlying asset is therefore equal to the

Other claimants can be added to the weighted average if they exist. For example, when a firm's capital structure contains preferred equity, the term $\frac{P}{V} \times r_p$ is added to the expression for the overall cost of capital shown in Equation (7), where P refers to the market value of preferred equity, r_P is the cost of preferred equity and V = E + D + P. In my analysis, I attribute the same implied yield to the cost of preferred equity as to the cost of debt.

value weighted average of the expected returns to equity and debt holders – which is the overall cost of capital (r^*), or the expected return on the assets of the firm as a whole.¹⁸

$$\mathbf{r}^* = \frac{E}{V} \times r_E + \frac{D}{V} \times r_D (1 - \tau_c) \tag{7}$$

where r_D is the market cost of debt,

 r_E is the market cost of equity,

 τ_c is the corporate income tax rate,

D is the market value of the firm's debt,

E is the market value of the firm's equity, and

V = E + D is the total market value of the firm.

Since the overall cost of capital is the cost of capital for the underlying asset risk, and this is comparable across companies, it is reasonable to believe that the overall cost of capital of the underlying companies should also be comparable, so long as capital structures do not involve unusual leverage ratios compared to other companies in the industry.¹⁹

The notion that the overall cost of capital is constant across a broad middle range of capital structures is based upon the Modigliani-Miller theorem that choice of financing does not affect the firm's value. Franco Modigliani and Merton Miller eventually won Nobel Prizes in part for their work on the effects of debt.²⁰ Their 1958 paper made what is in retrospect a very simple point: if there are no taxes and no risk to the use of excessive debt, use of debt will have no effect on a company's operating cash flows (i.e., the cash flows to investors as a group, debt and equity combined). If the operating cash flows are the same regardless of whether the company

As this is on an after-tax basis, the cost of debt reflects the tax value of interest deductibility. Note that the precise formulation of the weighted average formula representing the required return on the firm's assets independent of financing (sometimes called the *unlevered* cost of capital) depends on specific assumptions made regarding the value of tax shields from tax-deductible corporate debt, the role of personal income tax, and the cost of financial distress. See Taggart, Robert A., "Consistent Valuation and Cost of Capital Expressions with Corporate and Personal Taxes," *Financial Management*, 1991; 20(3) for a detailed discussion of these assumptions and formulations. Equation (7) represents the overall cost of capital to the firm, which can be assumed to be constant across a relatively broad range of capital structures.

Empirically, companies within the same industry tend to have similar capital structures, while typical capital structures may vary between industries, so whether a leverage ratio is "unusual" depends upon the company's line of business.

Franco Modigliani and Merton H. Miller (1958), "The Cost of Capital, Corporation Finance and the Theory of Investment," *American Economic Review*, 48, pp. 261-297.

finances mostly with debt or mostly with equity, then the value of the firm cannot be affected at all by the debt ratio. In cost of capital terms, this means the overall cost of capital is constant regardless of the debt ratio, too.

Obviously, the simple and elegant Modigliani-Miller theorem makes some counterfactual assumptions: no taxes and no cost of financial distress from excessive debt. However, subsequent research, including some by Modigliani and Miller,²¹ showed that while taxes and costs to financial distress affect a firm's incentives when choosing its capital structure as well as its overall cost of capital,²² the latter can still be shown to be constant across a broad range of capital structures.²³

This reasoning suggests that one could compute the overall cost of capital for each of the sample companies and then average to produce an estimate of the overall cost of capital associated with the underlying asset risk. Assuming that the overall cost of capital is constant, one can then rearrange the overall cost of capital formula to estimate what the implied cost of equity is at the target company's capital structure on a book value basis.²⁴

2. Unlevering and Relevering Betas in the CAPM (Hamada Adjustment)

An alternative approach to account for the impact of financial risk is to examine the impact of leverage on beta. Notice that this means working within the CAPM framework as the methodology cannot be applied directly to the DCF models.

Franco Modigliani and Merton H. Miller (1963), "Corporate Income Taxes and the Cost of Capital: A Correction," *American Economic Review*, 53, pp. 433-443.

When a company uses a high level of debt financing, for example, there is significant risk of bankruptcy and all the costs associated with it. The so called costs of financial distress that occurs when a company is over-leveraged can increase its cost of capital. In contrast a company can generally decrease its cost of capital by taking on reasonable levels of debt, owing in part to the deductibility of interest from corporate taxes.

This is a simplified treatment of what is generally a complex and on-going area of academic investigation. The roles of taxes, market imperfections and constraints, etc. are areas of on-going research and differing assumptions can yield subtly different formulations for how to formulate the weighted average cost of capital that is constant over all (or most) capital structures.

²⁴ Market value capital structures are used in estimating the overall cost of capital for the sample companies.

Recognizing that under general conditions, the value of a firm can be decomposed into its value with and without a tax shield, I obtain:²⁵

$$V = V_{II} + PV(ITS) \tag{8}$$

where V = E + D is the total value of the firm as in Equation (7),

 V_U is the "unlevered" value of the firm—its value if financed entirely by equity PV(ITS) represents the present value of the interest tax shields associated with debt

For a company with a fixed book-value capital structure and no additional costs to leverage, it can be shown that the formula above implies:

$$r_E = r_U + \frac{D}{E} (1 - \tau_c)(r_U - r_D)$$
 (9)

where r_U is the "unlevered cost of capital"—the required return on assets if the firm's assets were financed with 100% equity and zero debt—and the other parameters are defined as in Equation (7).

Replacing each of these returns by their CAPM representation and simplifying them gives the following relationship between the "levered" equity beta β_L for a firm (i.e., the one observed in market data as a consequence of the firm's actual market value capital structure) and the "unlevered" beta β_U that would be measured for the same firm if it had no debt in its capital structure:

$$\beta_L = \beta_U + \frac{D}{E} (1 - \tau_c)(\beta_U - \beta_D) \tag{10}$$

This follows development in Fernandez (2003). Other standard papers in this area include Hamada (1972), Miles and Ezzell (1985), Harris and Pringle (1985), Fernandez (2006). (See Fernandez, P., "Levered and Unlevered Beta," IESE Business School Working Paper WP-488, University of Navarra, Jan 2003 (rev. May 2006); Hamada, R.S., "The Effect of the Firm's Capital Structure on the Systematic Risk of Common Stock," *Journal of Finance*, 27, May 1972, pp. 435-452; Miles, J.A. and J.R. Ezzell, "Reformulating Tax Shield Valuation: A Note," *Journal of Finance*, XL5, Dec 1985, pp. 1485-1492; Harris, R.S. and J.J. Pringle, "Risk-Adjusted Discount Rates Extensions form the Average-Risk Case," *Journal of Financial Research*, Fall 1985, pp. 237-244; Fernandez, P., "The Value of Tax Shields Depends Only on the Net Increases of Debt," IESE Business School Working Paper WP-613, University of Navarra, 2006.) Additional discussion can be found in Brealey, Myers, and Allen (2014).

where β_D is the beta on the firm's debt. The unlevered beta is assumed to be constant with respect to capital structure, reflecting as it does the systematic risk of the firm's assets. Since the beta on an investment grade firm's debt is much lower than the beta of its assets (i.e., $\beta_D < \beta_U$), this equation embodies the fact that increasing financial leverage (and thereby increasing the debt to equity ratio) increases the systematic risk of *levered* equity (β_L).

An alternative formulation derived by Harris and Pringle (1985) provides the following equation that holds when the market value capital structures (rather than book value) are assumed to be held constant:

$$\beta_L = \beta_U + \frac{D}{E}(\beta_U - \beta_D) \tag{11}$$

Unlike Equation (10), Equation (11) does not include an adjustment for the corporate tax deduction. However, both equations account for the fact that increased financial leverage increases the systematic risk of equity that will be measured by its market beta. And both equations allow an analyst to adjust for differences in financial risk by translating back and forth between β_L and β_U . In principal, Equation (10) is more appropriate for use with regulated utilities, which are typically deemed to maintain a fixed book value capital structure. However, I employ both formulations when adjusting my CAPM estimates for financial risk, and consider the results as sensitivities in my analysis.

It is clear that the beta of debt needs to be determined as an input to either Equation (10), or Equation (11). Rather than estimating debt betas, I rely on the standard financial textbook of Professors Berk & DeMarzo, who report a debt beta of 0.05 for A rated debt and a beta of 0.10 for BBB rated debt.²⁶

Once a decision on debt betas is made, the levered equity beta of each sample company can be computed (in this case by Value Line) from market data and then translated to an unlevered beta at the company's market value capital structure. The unlevered betas for the sample companies are comparable on an "apples to apples" basis, since they reflect the systematic risk inherent in the assets of the sample companies, independent of their financing. The unlevered betas are averaged to produce an estimate of the industry's unlevered beta. To estimate the cost of equity

²⁶ Berk, J. & DeMarzo, P., Corporate Finance, 2nd Edition. 2011 Prentice Hall, p. 389.

for the regulated target company, this estimate of unlevered beta can be "re-levered" to the regulated company's capital structure, and CAPM reapplied with this levered beta, which reflects both the business and financial risk of the target company.

Hamada adjustment procedures—so-named for Professor Robert S. Hamada who contributed to their development²⁷—are ubiquitous among finance practitioners when using the CAPM to estimate discount rates.

Hamada, R.S., "The Effect of the Firm's Capital Structure on the Systematic Risk of Common Stock", *The Journal of Finance*, 27(2), 1971, pp. 435-452.