SUPPLEMENTAL SCC QUESTIONNAIRE GAS TRANSMISSION OR LIQUID PIPELINE

- 1. Pipeline Safety Advisory Bulletin ADB-03-05 October 8, 2003
 - Review Bulletin with operator, if operator is not familiar with.
 - Reference also Baker Stress Corrosion Cracking Study at: http://primis.phmsa.dot.gov/gasimp/docs/SCC Report-Final Report with Database.pdf

Comments: Operator evaluates for SCC when pipeline is exposed.

- 2. Has the pipeline system ever experienced SCC (in service, out of service, leak, non-leak)?
 - Type of SCC?
 Clasical high pH
 Non-classical low or near neutral pH
 - What are the known risk indicators that may have contributed to the SCC?

Comments: No SCC has been found on transmission or plant pipelines.

3. Does the operator have a written program in place to evaluate the pipeline system for the presence of SCC? If no, have operator explain. If operator has not considered SCC as a possible safety risk, go to #10.

Comments: Yes.

4. Has/does the operator evaluate the pipeline system for the presence of SCC risk indicators?

Comments: Yes.

5. Has the operator identified pipeline segments that are susceptible to SCC?

Comments: Yes, the operator is considering evaluating the 14" pipeline for SCC.

6. If conditions for SCC are present, are written inspection, examination and evaluation procedures in place?

Comments: Yes.

SUPPLEMENTAL SCC QUESTIONNAIRE GAS TRANSMISSION OR LIQUID PIPELINE

7. Does the operator have written remediation measures in place for addressing SCC when discovered?

Comments: Yes.

- 8. What preventive measures has the operator taken to prevent recurrence of SCC?
 - Modeling?
 - Crack growth rate?
 - Comparing pipe/environ./cp data vs. established factors?
 - Other?
 - Hydrotest program?
 - Intelligent pigging program?
 - Pipe re-coating?
 - Operational changes?
 - Inspection program?
 - Other?

Comments: SCC has not been identified via exposed pipe and in-line inspections.

9. Does the operator incorporate the risk assessment of SCC into a comprehensive risk management program?

Comments: Yes, it's part of the risk assessment tool

Continue below for those operators who have not considered SCC as a possible safety risk.

10. Does the operator know of pipeline and right of way conditions that would match the risk indicators for either classical or non-classical SCC? See typical risk indicators below.

Comments: N/A

High pH SCC Potential Risk Indicators

- Known SCC history (failure, non-failure, in service, and during testing)
- Pipeline and Coating Characteristics
- Steel grades X-52, X-60, X-65, X-70, and possibly X-42
 - Age ≥ 10 years
 - Operating stress > 60% SMYS

SUPPLEMENTAL SCC QUESTIONNAIRE GAS TRANSMISSION OR LIQUID PIPELINE

- Pipe temperature >100 deg. F (typically < 20 miles d/s of compression)
- Damaged pipe coating
- Soil Characteristics
 - Soil pH range: 8.5 to 11
 - Alkaline carbonate/bicarbonate solution in the soil
 - Elevated soil temperature contributing to elevated pipe temperature
- Polarized cathodic potential range: -600 to -750 mV, Cu/CuSO4

Low or Near-Neutral pH SCC Potential Risk Indicators

- Known SCC history (failure, non-failure, in service, and during testing)
- Pipeline and Coating Characteristics
- Steel grades X-52, X-60, X-65, X-70, and possibly X-42
 - Age ≥ 10 years
 - Frequently associated with metallurgical features, such as mechanical damage, longitudinal seams, etc.
 - Protective coatings that may be susceptible to disbondment
 - Any coating **other than** correctly applied fusion bonded epoxy, field applied epoxies, or coal tar urethane . . .
 - Coal tar
 - Asphalt enamels
 - Tapes
 - Others
- Soil Characteristics
 - Soil pH range: 4 to 8
 - Dissolved CO2 and carbonate chemicals present in soil
 - Organic decay
 - Soil leaching (in rice fields, for example)
- "Normal" cathodic protection readings (disbonded coating shields the pipe from cp current)

OPTIONAL FIELD DATA COLLECTION FORM FOR INTRASTATE INSPECTORS

NOTES-FIELD INSPECTION

Company: Puget Sound Energy

Date(s): June 8 – 11, 2009

Unit: Jackson Prairie Gas Storage

Page 1 of 2

				.	Field Readings	ngs			
Line & Location		Line	CP	Volts	Rectifier	ifier	Pres	Pressures	Remarks
	Size	In.	P/S	Casing	Volts	Amps	Set	Actual	
Rectifier # 4					15.7	32.3			Location: South End of Plant
					-				Setting: Course #1, Fine #6
Rectifier #12					12.6	14.3			Location: West End of Plant
20° 4									Setting: C1, F4
Kectifier #13					11.8	22.3			Location: South End of Plant
Rectifier #15					76	170			Setting: CI, F4
					0./	17.0			Location: North End of Plant Setting: C1 F5
Rectifier #16					7.7	8.7			Diodes are damaged and need
·									replacing.
									Location: North End of Plant
									Setting: C2, F5
Test Site #13			-1.256						Need insulator between Piping
									and support post
Test Site #14	10,,		-1.669						
Test Site #16	16"		-1.610						
Test Site #17	20,,	,	-1.084						At Williams Pipeline-Transfer
	20,,		-1.288						At PSE-Jackson Prairie Pipe
Test Site #20	16"		-1.333						Corrosion cell at ground-to-air
									interface
Well No. 906			-1.564						
			,						

CADocuments and Settings/inwoodard/Local Settings/Temporary Internet Files/Content.Outlook/QFDH7MOH/PSE JP - Form R - NotesField Insp (Rev Feb 03).doc

OPTIONAL FIELD DATA COLLECTION FORM FOR INTRASTATE INSPECTORS

				F	Field Readings	ngs			
Line & Location	I	Line	CP ¹	CP Volts	Rectifier	lfier	Pressures	ures	Remarks
	Size	In.	P/S	Casing	Volts	Amps	Set	Actual	
									Page 2 of 2
Olympic Pipeline	24"		-1.429						
Serie Taxe Suns	16"		-1.428						
	14"		-1.427						
"G" Casing	10"		-1.637	-0.421					Good CP separation between pipeline and casing
Inside secured Plant Facility at:						`			
(a)West end of Plant	24"		-1.44		`				
(b) NE corner of Plant	24"		-1.45					-	
(c)East Cooler #1			-0.917					-	
(d)Triethylene			-0.576						The Glycol lines are not
Glycol (TEG) Plant Piping									jurisdictional.
(e)Fuel Line to TEG Regen#1	2"		-0.955						
(f)Fuel Line to TEG Regen#1	2"		-1.074						
		-							